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Abstract. We prove some new evaluations for multiple polylogarithms of arbitrary depth. The
simplest of our results is a multiple zeta evaluation one order of complexity beyond the well-

known Broadhurst–Zagier formula. Other results we provide settle three of the remaining out-
standing conjectures of Borwein, Bradley, and Broadhurst. A complete treatment of a certain
arbitrary depth class of periodic alternating unit Euler sums is also given.
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1. Introduction

The study of special values of multiple zeta functions concerns itself with relations

between values at integer vectors ðs1; . . . ; skÞ of sums of the form

zðs1; . . . ; skÞ :¼
X

n1>���>nk>0

Yk
j¼1

n
�sj
j ; ð1Þ

commonly referred to as multiple zeta values [5, 21, 24, 26]. We are primarily inter-

ested in positive integer values of the arguments s1; . . . ; sk, in which case it is easily

seen that s1 > 1 is both necessary and sufficient for the sum (1) to converge.

A good deal of work on multiple zeta values has focused on the problem of deter-

mining when ‘complicated’ sums can be expressed in terms of ‘simpler’ sums. A

crude but convenient measure of the complexity of the sum (1) is the number k of

nested summations. This is also equal to the number of arguments in the definition

(1), and is called the depth. Thus, researchers are interested in determining which

sums can be expressed in terms of other sums of lesser depth.

For each positive integer k, let Zk denote the set of all multiple zeta values (with

positive integer arguments) of depth less than k. If we restrict our attention to
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rational polynomial relationships, the aforementioned problem amounts to deter-

mining for each k the values of the arguments s1; . . . ; sk for which the sum (1) lies

in the polynomial ring Q½Zk�. Settling this question in complete generality is cur-

rently well beyond the reach of number theory. For example, there is as yet no proof

that zð5Þ =2Q½Z1� ¼ Q, although it is strongly suspected that zð5Þ is indeed irrational.
Nevertheless, considerable progress has been made with regard to proving specific

classes of reductions, even at arbitrary depth. A brief historical overview will serve

to put the problem in perspective.

Apart from Euler’s celebrated depth-1 evaluation for the Riemann zeta function

zð2nÞ ¼
X1
j¼1

1

j2n
¼ �

1

2

ð2piÞ2nB2n
ð2nÞ!

; 04 n 2 Z;

in terms of the Bernoulli numbers B0¼1;B1 ¼ �1=2;B2¼1=6;B3 ¼ 0; B4¼� 1=30,

etc., defined by

z

ez � 1
¼
X1
n¼0

Bn
n!
zn; jzj < 2p;

the study of multiple zeta values can be fairly said to have begun with Euler’s depth-2

reduction [15]

2zðn; 1Þ ¼ nzðnþ 1Þ �
Xn�2
k¼1

zðn� kÞzðkþ 1Þ; 24 n 2 Z; ð2Þ

expressing an infinite class of multiple zeta values of depth 2 in terms of depth-1

(Riemann zeta) values. More generally, we refer to a relation amongst multiple zeta

values as a depth-k reduction if the relation expresses a multiple zeta value of depth k

in terms of multiple zeta values of depth less than k.

The first systematic study of reductions up to depth 3 was carried out by Borwein,

Bailey and Girgensohn, in a short series of papers [2, 3, 7] appearing in the early

1990s. Research undertaken by Hoffman [18–21], Zagier [26], and Borwein–Bradley–

Broadhurst [4] on multiple zeta values of arbitrary depth led to the discovery of sev-

eral relations satisfied by them. These relations can be exploited by computer algebra

systems to prove reductions of small weight [23]. (Here the weight of the multiple zeta

value (1) is simply the sum of the arguments: s1 þ s2 þ � � � þ sk.)

Additionally, high-precision evaluation of specific multiple zeta values combined

with human-directed computer searches using lattice basis reduction algorithms

led to several beautiful conjectures concerning arbitrary depth reductions [4–6].

An example of an arbitrary depth reduction is

zð3; 1; 3; 1; . . . ; 3; 1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2n

Þ ¼ 4�nzð4; 4; . . . ; 4|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

Þ ¼
21�4nzð4nÞ

ð2nþ 1Þð4nþ 1ÞjB4nj
¼

2p4n

ð4nþ 2Þ!
; ð3Þ

in which the positive integers 2n and n beneath the underbraces in (3) denote the

depth of the respective multiple zeta values. The formula (3), originally conjectured
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by Zagier [26], was first proved by Broadhurst. A modification of Broadhurst’s proof

appears in [5]. Subsequently, purely combinatorial proofs were given [6, 10] based on

the well-known shuffle property of iterated integrals. To simplify the reading of such

formulas, when a string of arguments is repeated an exponent is used. In other

words, we treat string multiplication as concatenation. With this notation, the first

two members of formula (3) may be written zðf3; 1gnÞ ¼ 4�nzðf4gnÞ:
Although we focus here on analytic aspects of ultimately periodic multiple

polylogarithms, other aspects also play an important role in related work.

See [6, 8, 10, 11, 13, 14, 16, 17] for connections with quantum groups, motivic

Lie algebras, algebraic geometry, knot theory, quantum field theory, and shuffle

combinatorics, respectively. The survey [9] provides additional references and

pointers to the literature.

2. Statement of Results

The Broadhurst–Zagier formula (3) is an example of an arbitrary depth reduction in

which the argument strings are periodic. Whereas the case of periodic strings of per-

iod 1 is quite well understood—there is a formula expressing zðfsgnÞ in terms of the
depth-1 zeta values zðsÞ; zð2sÞ; . . . ; zðnsÞ [4] very little is known in general about

strings with longer periods apart from the fact that their associated bivariate gene-

rating functions satisfy a differential equation of order equal to the weight of the per-

iod. In this paper, we offer some new multiple zeta evaluations for ultimately

periodic strings of period 2 and period weight 4. We also give a complete treatment

of a certain class of ultimately periodic alternating unit Euler sums of period 2. These

results are highlighted in subsection 2.2 below. Three of our results settle conjectures

from [4] and [5].

2.1. ADDITIONAL NOTATION

Let x be a real number satisfying 04 x < 1. The parametrized multiple zeta function

zxðs1; . . . ; skÞ :¼
X

n1>���>nk>0

xn1
Yk
j¼1

n
�sj
j ð4Þ

is defined for positive integers sj, and is an instance of a multiple polylogarithm

[5, 9, 10]. Of course, if s1 > 1, then we can allow x ¼ 1 and in that case, (4) coincides

with (1). Euler sums have the form

zðs1; . . . ; skÞ :¼
X

n1>���>nk>0

Yk
j¼1

n
�jsjj
j s�njj ; ð5Þ

where s1; . . . ; sk are non-zero integers and sj :¼ signumðsjÞ. Thus, a multiple zeta

value is an Euler sum with no alternations, i.e. each sj ¼ 1. If each sj ¼ �1, we also

refer to (5) as a unit Euler sum. To avoid confusion with the notion of analytic
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continuation, we shall henceforth adopt the notation of [4], in which each sj in (5) is

replaced by �sj when sj < 0. Thus, for example, zð1Þ ¼ � log 2:

Let a; b; c and x be complex numbers with jxj < 1 and c not equal to zero or a

negative integer. We denote the Gaussian hypergeometric function by

Fða; b; c;xÞ ¼ 2F1
a;b
c

����x
	 


¼
X1
n¼0

ðaÞnðbÞn
ðcÞn

xn

n!
; ð6Þ

where

ðaÞn :¼

Qn�1
j¼0

ðaþ jÞ; if n is a positive integer,

1; if n ¼ 0

8<
:

is the Pochammer symbol (rising factorial). If <ðc� b� aÞ > 0, the series (6) conver-

ges even when jxj ¼ 1, and thus for complex z we may abbreviate

Y1ðx; zÞ :¼ Fðz;�z; 1; xÞ; jxj4 1; ð7Þ

Y2ðx; zÞ :¼ ð1� xÞFð1þ z; 1� z; 2; 1� xÞ; j1� xj < 1: ð8Þ

Also, for complex z not a positive integer multiple of �1 or �i, we set

GðzÞ :¼ 1
4 cð1þ izÞ þ cð1� izÞ � cð1þ zÞ � cð1� zÞ
� �

; ð9Þ

where c ¼ G0=G is the logarithmic derivative of the Euler gamma function. Finally,

for any nonnegative integer k, power series coefficient extraction will be performed

throughout by ½tk�
P1

n¼0 ant
n ¼ ak. The notation will not be confused with the trun-

cated square brackets in bxc, which we use to denote the greatest integer not exceed-

ing the real number x.

2.2. MAIN RESULTS

Our signal result is the following identity for the generating function of the ulti-

mately periodic sequence of multiple polylogarithms fzxð3; f1; 3g
nÞ : 04 n 2 Zg.

PROPOSITION 1. For each real x satisfying 04 x4 1, the formal power series

Sðx; zÞ :¼
X1
n¼0

ð�1Þnz4nþ24nzxð3; f1; 3g
nÞ ð10Þ

defines an entire function of the complex variable z. Furthermore, if Y1, Y2 and G are

defined as in ð7Þ, ð8Þ and ð9Þ, then we have the identity

Sðx; zÞ ¼ GðzÞY1ðx; zÞY1ðx; izÞ �
Y1ðx; izÞY2ðx; zÞ

4Y1ð1; zÞ
þ
Y1ðx; zÞY2ðx; izÞ

4Y1ð1; izÞ
ð11Þ

for all pairs ðx; zÞ for which the right-hand side is defined.
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Proposition 1 has several interesting consequences, two of which are given by

Theorems 1 and 2 below. Our first theorem gives a multiple zeta value reduction

which seems to have escaped the extensive numerical and symbolic searches carried

out by [4] and [5].

THEOREM 1. For all nonnegative integers n,

zð3; f1; 3gnÞ ¼ 4�n
Xn
k¼0

ð�1Þkzð4kþ 3Þzðf4gn�kÞ

¼
Xn
k¼0

2p4k

ð4kþ 2Þ!
�
1

4

	 
n�k
zð4n� 4kþ 3Þ:

THEOREM 2 (Conjectured in [4] and [5]). For all nonnegative integers n,

zð2; f1; 3gnÞ

¼ 4�n
Xn
k¼0

ð�1Þkzðf4gn�kÞ
�
ð4kþ 1Þzð4kþ 2Þ � 4

Xk
j¼1

zð4j� 1Þzð4k� 4jþ 3Þ

�
:

We have also obtained cognate results for alternating unit Euler sums [4, 5] and mul-

tiple polylogarithms [5, 9, 16] at one-half. These results are proved in Section 4, in

which we settle two conjectures from [4] and as a consequence obtain reductions

for the arbitrary depth alternating unit Euler sums zðf1; 1gnÞ, zð1; f1; 1gnÞ,
zð1; f1; 1gnÞ, and zð1; 1; f1; 1gnÞ, where n is any nonnegative integer. The main result
from which these reductions are derived is Proposition 2 below.

Recall the generating function

AðzÞ :¼
X1
n¼0

znzðf1gnÞ ¼
Y1
j¼1

	
1þ

ð�1Þjz

j



¼

Gð1=2Þ
Gð1þ z=2ÞGð1=2� z=2Þ

ð12Þ

from [4].

PROPOSITION 2. For each real x satisfying 04 x4 1, the formal power series

Mðx; tÞ :¼
X1
n¼0

½t2nzxðf1; 1g
nÞ þ t2nþ1zxð1; f1; 1g

nÞ� ð13Þ

defines an entire function of the complex variable t. Furthermore, if we put z ¼

ð1þ iÞt=2, s ¼ ð1þ xÞ=2, and let Uðs; zÞ ¼ Y1ðs; zÞ � zY2ðs; zÞ, where Y1 and Y2 are

given by ð7Þ and ð8Þ respectively, then

Mðx; tÞ ¼
Uðs;�zÞUðs; izÞ

Að�zÞAðizÞ
ð14Þ

for all pairs ðx; tÞ for which the right-hand side is defined.
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From Proposition 2 we obtain the following generating function identities for alter-

nating unit Euler sums.

COROLLARY 1 (Conjectured in [4]). Let AðzÞ be as in ð12Þ. Then for all complex

numbers t, we have

X1
n¼0

½t2nzðf1; 1gnÞ þ t2nþ1zð1; f1; 1gnÞ� ¼ A
t

1� i

� �
A

t

1þ i

	 

:

COROLLARY 2 [Conjectured in [4]). Let the functions G and A be given by ð9Þ and

ð12Þ, respectively. Then

1þ
X1
n¼0

½t2nþ1zð1; f1; 1gnÞ þ t2nþ2zð1; 1; f1; 1gnÞ�

¼ 1
2 ð1þ iÞzAðzÞAð�izÞ

�
p cscðpzÞ � ip cschðpzÞ þ 4GðzÞ

�
; ð15Þ

holds for all complex numbers t and z satisfying z ¼ ð1þ iÞt=2 and such that the right-

hand side is defined.

Remark. It is routine to check that the right hand side of (15) and the corre-

sponding expression in equation (16) of [4] are equal. Our expression has the

advantage of being easier to express as a Maclaurin series.

From Corollaries 1 and 2 we obtain the following reductions for alternating unit

Euler sums:

THEOREM 3. Define a sequence of numbers c0; c1; . . . 2 Q½log 2; zð2Þ; zð3Þ; . . .� by

X1
m¼0

cm x
m ¼ exp

	X1
k¼1

bk
xk

k



;

where b1 ¼ � log 2 and

bk ¼
ð�1Þbðkþ1Þ=4c 2ð1�kÞ=2ð21�k � 1ÞzðkÞ; if 1 < k is odd;
ð�1Þ1þk=4 21�k=2zðkÞ; if k � 0mod 4;
0; if k � 2mod 4:

8<
:

Then for all nonnegative integers n we have

zðf1; 1gnÞ ¼ c2n and zð1; f1; 1gnÞ ¼ c2nþ1:

THEOREM 4. Let bk be as in Theorem 3. Define numbers c0m 2 Q½log 2; zð2Þ;
zð3Þ; . . .� by

X1
m¼0

c0m x
m ¼

	X1
k¼0

dk x
k



exp

	X1
k¼1

bk
xk

k



;
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where d0 ¼ 1 and

dk ¼
ð�1Þbkþ1=2c 22�3k=2ð2k�1 � 1ÞzðkÞ; if 0 < k is even;
0; if k � 1mod 4;
ð�1Þðkþ1Þ=4 2ð3�kÞ=2zðkÞ; if k � 3mod 4:

8<
:

Then for all nonnegative integers n we have

zð1; f1; 1gnÞ ¼ c02nþ1 and zð1; 1; f1; 1gnÞ ¼ c02nþ2:

Remark. Of course, one can express the numbers cm and c
0
m of Theorems 3 and 4

explicitly. Thus,

c0m ¼
Xm
k¼0

ckdm�k and cm ¼
XY

k51

1

jk!

	
bk
k


jk
;

where the sum is over all nonnegative integers j1; j2; . . . satisfying
P

k51 kjk ¼ m.

3. Multiple Zeta Values of Period 2

This section contains the proofs of our results pertaining to ultimately periodic mul-

tiple zeta values of period 2 and period weight 4, namely Proposition 1 and Theo-

rems 1 and 2. It is interesting to note that the proof of Propositions 1 and 2 relies

on a general result which also eliminates the need for computer algebra in the orginal

proof of the Broadhurst–Zagier formula in [5] (see Lemma 1 below).

3.1. PROOF OF PROPOSITION 1

Let Rðx; zÞ denote the right-hand side of (11). For each fixed x satisfying 0 < x4 1,

Rðx; zÞ is evidently an analytic function of z, apart from isolated singularities (pos-

sible poles) at the positive integer multiples of �1, �i. Let n be a positive integer

and let p 2 f1;�1; i;�ig. A straightforward calculation shows that

limz!pnðz� pnÞRðx; zÞ ¼ 0 follows from the identity

Y1ðx; nÞ þ nð�1Þ
nY2ðx; nÞ ¼ 0; 14 n 2 Z; ð16Þ

which in turn is a consequence of the identity [25, p. 254]

ð1þ aÞn
n!

2F1
�n;1þaþbþn

1þa

���� 1�y2
	 


¼
ð�1Þnð1þ bÞn

n!
2F1

�n;1þaþbþn
1þb

���� 1þy2
	 


for the Jacobi polynomials. Thus, for 0 < x4 1, the singularities of Rðx; zÞ are all

removable.

It now suffices to show that Sðx; zÞ and Rðx; zÞ both have Maclaurin series in x

which begin

z2xþ 1
8 z

2x2 þ 1
27 z

2
�
1� 2z4

�
x3 þ 1

64 z
2
�
1� 7

2 z
4
�
x4 þOðx5Þ; x! 0;
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and are both annihilated by the differential operator

D2
1D

2
0 þ 4z4; D0 :¼ x

d

dx
; D1 :¼ ð1� xÞ

d

dx
: ð17Þ

Checking these facts for Sðx; zÞ is a trivial exercise. Although in general Rðx; zÞ is

undefined when x ¼ 0 because Y2ð0; zÞ ¼ Fð1þ z; 1� z; 2; 1Þ diverges unless it termi-

nates, a short calculation employing the special case

Fð1þ z;1� z;2;xÞ

¼
Gð2Þ

Gð1þ zÞGð1� zÞ

X1
n¼0

ð1þ zÞnð1� zÞn

ðn!Þ2
�

�f2cðnþ 1Þ�cðnþ 1� zÞ�cðnþ 1þ zÞ� logð1�xÞgð1�xÞn; 04x< 1

of the formula 15.3.10 of [1, p. 559] verifies that Rðx; zÞ possesses a Maclaurin series

at x ¼ 0 that begins as stated.

The fact that ðD2
1D

2
0 þ 4z4ÞRðx; zÞ ¼ 0 is most easily seen by setting fðxÞ ¼ 1� x,

gðxÞ ¼ x, and t ¼ z2 in Lemma 1 below. Two solutions to the differential equation

ðD1D0 þ z
2Þy ¼ 0 are given by y ¼ Y1ðx; zÞ and y ¼ Y2ðx; zÞ, and thus changing

z to iz we see that two solutions of the differential equation ðD1D0 � z
2Þy ¼ 0

are y ¼ Y1ðx; izÞ and y ¼ Y2ðx; izÞ. The lemma then shows that each of the func-

tions Y1ðx; zÞY1ðx; izÞ, Y1ðx; izÞY2ðx; zÞ, and Y1ðx; zÞY2ðx; izÞ are annihilated by the

operator (17). &

LEMMA 1. Let K be a field of characteristic not equal to 2 and let D be a derivation

on K. For each k 2 K; define a derivation Dk :¼ kD. Let t be a constant, and suppose

that for some f; g; u; v 2 K the differential equations ðDfDg þ tÞu ¼ 0 and

ðDfDg � tÞv ¼ 0 hold. Then uv is annhilated by the differential operator ðD2
f D

2
g þ 4t2Þ.

Proof. First note that uD2
gvþ vD2

gu ¼ 0, for�
uD2

gvþ vD2
gu
�
f ¼ uDfDgvþ vDfDgu

� �
g ¼ ðutv� vtuÞg ¼ 0:

We now calculate D2
f D

2
gðuvÞ. By the Leibniz rule and our note above,

D2
f D

2
gðuvÞ ¼ D2

f

�
uD2

gvþ 2ðDguÞðDgvÞ þ vD2
gu
�
¼ 2D2

f ðDguÞðDgvÞ:

But

D2
f ðDguÞðDgvÞ ¼ DfðDguÞðDfDgvÞ þDfðDfDguÞðDgvÞ

¼ DfðDguÞðtvÞ þDfð�tuÞðDgvÞ

¼ t vDfDguþ ðDfvÞðDguÞ � ðDfuÞðDgvÞ � uDfDgv
� �

:

In the previous expression, the middle two terms cancel since

ðDfvÞðDguÞ ¼ ðfgÞðDvÞðDuÞ ¼ ðDfuÞðDgvÞ:
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Hence, we have

D2
f D

2
gðuvÞ ¼ 2t vDfDgu� uDfDgv

� �
¼ 2t vð�tuÞ � uðtvÞ½ � ¼ �4t2uv: &

3.2. PROOF OF THEOREM 1

Let x ¼ 1 in the identity (11) of Proposition 1 and then extract the coefficient of the

appropriate power of z. More explicitly, we note that

zð3; f1; 3gnÞ ¼ ð�1Þn4�n½z4nþ2�Sð1; zÞ: ð18Þ

But

Sð1; zÞ ¼ GðzÞY1ð1; zÞY1ð1; izÞ ¼ GðzÞQðzÞ;

where by Gauss’s 2F1 summation theorem and the infinite product formula for sine,

QðzÞ :¼ Y1ð1; zÞY1ð1; izÞ ¼
sinðpzÞ
pz

sinðpizÞ
piz

¼
X1
n¼0

ð�1Þnz4nzðf4gnÞ: ð19Þ

Since

GðzÞ ¼
X1
n¼0

z4nþ2zð4nþ 3Þ; jzj < 1; ð20Þ

the desired formula follows from (18), (3), and the formula for the coefficient in the

Cauchy product of power series. &

COROLLARY 3. For all non-negative integers n,

zð2; 1; f3; 1gnÞ ¼ 4�n
Xn
k¼0

ð�1Þkzð4kþ 3Þzðf4gn�kÞ

¼
Xn
k¼0

2p4k

ð4kþ 2Þ!
�
1

4

	 
n�k
zð4n� 4kþ 3Þ:

Proof. Apply duality [5, 22, 26] to Theorem 1. &

3.3. PROOF OF THEOREM 2

Differentiate both sides of (11) in Proposition 1 with respect to x, let x! 1�

(requires asymptotic formulas for the relevant hypergeometrics) and then extract

the coefficient of the appropriate power of z. More explicitly, we note that

x
d

dx
Sðx; zÞ ¼

X1
n¼0

ð�1Þnz4nþ24nzxð2; f1; 3g
nÞ;

and hence (letting prime denote differentiation with respect to the first argument)

zð2; f1; 3gnÞ ¼ ð�1Þn4�n½z4nþ2�S0ð1; zÞ: ð21Þ
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Differentiating (11) we get that

S0ðx; zÞ ¼GðzÞfHðx; zÞ þHðx; izÞg �
Y0
1ðx; izÞY2ðx; zÞ

4Y1ð1; zÞ
�

�
Y1ðx; izÞY

0
2ðx; zÞ

4Y1ð1; zÞ
þ
Y0
1ðx; zÞY2ðx; izÞ

4Y1ð1; izÞ
þ
Y1ðx; zÞY

0
2ðx; izÞ

4Y1ð1; izÞ
; ð22Þ

where

Hðx; zÞ :¼ �z2Fð1þ z; 1� z; 2; xÞFðiz;�iz; 1;xÞ: ð23Þ

Entries [15.3.10] and [15.3.11] of [1] provide the asymptotic formulas

Fð1þ z; 1� z; 2; xÞ ¼
2cð1Þ � cð1þ zÞ � cð1� zÞ � logð1� xÞ

Gð1þ zÞGð1� zÞ
þ

þOðð1� xÞ logð1� xÞÞ; x! 1�; ð24Þ

and

Fðiz;�iz; 1;xÞ ¼
1

Gð1þ izÞGð1� izÞ
þOðð1� xÞ logð1� xÞÞ; x! 1�; ð25Þ

respectively. If we now substitute the asymptotic formulas (24) and (25) into (23),

apply the reflection formula for the gamma function and the definition (19), there

comes

Hðx; zÞ ¼ �z2
sinðpzÞ
pz

�
sinðpizÞ
piz

2cð1Þ � cð1þ zÞ �cð1� zÞ � logð1� xÞ þ oð1Þ
� �

¼ �z2QðzÞ 2cð1Þ � cð1þ zÞ � cð1� zÞ � logð1� xÞ þ oð1Þ
� �

;

and hence as x! 1�,

Hðx; zÞ þHðx; izÞ

¼ QðzÞ z2ðlogð1� xÞ � 2cð1Þ þ cð1þ zÞ þ cð1� zÞÞ
�

�

�z2ðlogð1� xÞ � 2cð1Þ � cð1þ izÞ � cð1� izÞÞ
�
þ oð1Þ

¼ �4z2QðzÞGðzÞ þ oð1Þ: ð26Þ

We now substitute (26) into (22). Since Y2ðx; zÞ ¼ Oð1� xÞ and Y0
1ðx; zÞ ¼

Oðlogð1� xÞÞ as x! 1�, it follows that

S0ðx; zÞ ¼ � 4z2GðzÞQðzÞGðzÞ�

�
Y1ðx; izÞ

4Y1ð1; zÞ
�Fð1þ z; 1� z; 2; 1� xÞ þOð1� xÞ
� �

þ

þ
Y1ðx; zÞ

4Y1ð1; izÞ
�Fð1þ iz; 1� iz; 2; 1� xÞ þOð1� xÞ
� �

þ oð1Þ: ð27Þ
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We now let x! 1� in (27), obtaining

S0ð1; zÞ ¼ �4z2QðzÞG2ðzÞ þ 1
4p
2z2QðzÞ csc2ðpzÞ � csch2ðpzÞ

� �
: ð28Þ

In view of (21), the proof of Theorem 2 now follows on extracting the coefficient of

the appropriate power of z from both sides of (28).

Remark. It is possible to continue differentiating (22) and obtain generating

functions for the multiple polylogarithms zxð1; f1; 3g
nÞ and zxðf1; 3g

nÞ. One can

similarly differentiate Y1ðx; zÞY1ðx; izÞ and obtain generating functions for

zxð2; 1; f3; 1g
nÞ, zxð1; 1; f3; 1g

nÞ, and zxð1; f3; 1g
nÞ. Setting x ¼ 1=2 in all these gene-

rating functions and dualizing then allows one to obtain reductions for the alter-

nating unit Euler sums zðf�11; 1gnÞ, zð�11; f1; �11gnÞ, zð�11; f�11; 1gnÞ, and zð�11; �11; f1; �11gnÞ for all
nonnegative integers n. The key step is to observe that the derivatives

d

dx

	 
k
Fðz;�z; 1;xÞ

����
x¼1=2

ð04 k 2 ZÞ

can be expressed, via entry [15.1.25] of [1], in terms of gamma functions, and thereby

in terms of the generating function (12) for the sequence fzðf�11gnÞ : 04 n 2 Zg, each

term of which is reducible [4]. This procedure is cumbersome, however, and in the

next section we obtain the same results by a much more elegant method. In the pro-

cess we settle two additional conjectures from [4].

4. Alternating Unit Euler Sums of Period 2

This section contains the proofs of our results pertaining to ultimately periodic alter-

nating unit Euler sums of period 2, namely Proposition 2 and Theorems 3 and 4.

4.1. PROOF OF PROPOSITION 2

One first checks that Mðx; tÞ satisfies the differential equation

ð1� xÞ
d

dx

� �2
�ð1þ xÞ

d

dx

� �2
Mðx; tÞ ¼ t4Mðx; tÞ: ð29Þ

To solve the differential Equation (29), one could apply Lemma 1 directly with

fðxÞ ¼ 1þ x and gðxÞ ¼ 1� x. However, it is more convenient to make a change of

variable. With s ¼ ð1þ xÞ=2, z ¼ ð1þ iÞt=2 and Lðs; zÞ :¼Mðx; tÞ, (29) goes over into

ð1� sÞ
d

ds

� �2
s
d

ds

� �2
þ4z4

( )
Lðs; zÞ ¼ 0; ð30Þ

which we’ve already encountered (17). A routine computation using entry [15.1.25]

of [1] shows that
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Uð1=2; zÞ ¼ AðzÞ;
d

ds
Uðs; zÞ

����
s¼1=2

¼ 2zAðzÞ;

d2

ds2
Uðs; zÞ

����
s¼1=2

¼ �4zð1þ zÞAðzÞ;

d3

ds3
Uðs; zÞ

����
s¼1=2

¼ 8zð1þ zÞð2� zÞAðzÞ:

Using these relations, it is can be easily shown that the Wronskian determinant of the

four functions

Uðs; zÞUðs; izÞ; Uðs;�zÞUðs; izÞ; Uðs; zÞUðs;�izÞ; Uðs;�zÞUðs;�izÞ

at s ¼ 1=2 is equal to

�213z6
sinðpzÞ
pz

	 
2
sinhðpzÞ

pz

	 
2
:

Since the Wronskian is not identically zero, the four functions are linearly indepen-

dent. From the differential Equation (30) and Lemma 1 with fðsÞ ¼ 1� s and gðsÞ ¼ s,

it follows that there exist functions aðzÞ, bðzÞ, gðzÞ, dðzÞ such that

Mðx; tÞ ¼ Lðs; zÞ ¼ aðzÞUðs; zÞUðs; izÞ þ bðzÞUðs;�zÞUðs; izÞþ

þ gðzÞUðs; zÞUðs;�izÞ þ dðzÞUðs;�zÞUðs;�izÞ: ð31Þ

Now setting x ¼ 0 (which is the same as s ¼ 1=2) in (31), and performing the

operations

� ð1þ xÞ
d

dx
Mðx; tÞ

����
x¼0

¼ �s
d

ds
Lðs; tÞ

����
s¼1=2

;

�ð1þ xÞ
d

dx

� �2
Mðx; tÞ

����
x¼0

¼ �s
d

ds

� �2
Lðs; zÞ

����
s¼1=2

;

ð1� xÞ
d

dx
�ð1þ xÞ

d

dx

� �2
Mðx; tÞ

����
x¼0

¼ ð1� sÞ
d

ds
�s

d

ds

� �2
Lðs; zÞ

����
s¼1=2

yields the following system of equations:

1 1 1 1
�i 1 �1 i
�1 1 1 �1
i 1 �1 i

2
664

3
775

AðzÞAðizÞaðzÞ
Að�zÞAðizÞbðzÞ
AðzÞAð�izÞgðzÞ
Að�zÞAð�izÞdðzÞ

2
664

3
775 ¼

1
1
1
1

2
664

3
775:

Inspection via Cramer’s rule gives aðzÞ ¼ gðzÞ ¼ dðzÞ ¼ 0 and bðzÞ ¼ 1=ðAð�zÞAðizÞÞ:

It follows that

Mðx; tÞ ¼ Lðs; zÞ ¼
Uðs;�zÞUðs; izÞ

Að�zÞAðizÞ
;

wherever the right hand side is defined. As in the proof of Proposition 1, we find that

as a consequence of the Jacobi polynomial identity (16), the singularities (which in
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this case occur when z is an even positive integer multiple of 1 or i or an odd positive

integer multiple of �1 or �i) are all removable. Thus,Mðx; tÞ is an entire function of

t for each x satisfying 04 x4 1. &

4.1.1. Proof of Corollary 1: Set x ¼ 1 in Equation (14) of Proposition 2. In view of

the fact that Y2ð1; zÞ ¼ 0, we have Uð1; zÞ ¼ Y1ð1; zÞ ¼ sinðpzÞ=ðpzÞ. Thus,

Mð1; tÞ ¼
Uð1;�zÞUð1; izÞ

Að�zÞAðizÞ
¼
Y1ð1; zÞY1ð1; izÞ

Að�zÞAðizÞ

¼ AðzÞAð�izÞ �
Y1ð1; zÞY1ð1; izÞ

AðzÞAð�zÞAðizÞAð�izÞ
¼ AðzÞAð�izÞ: &

Remark. Broadhurst [12] has outlined a different proof of Corollary 1 using

iterated integrals.

4.2. PROOF OF THEOREM 3

By Corollary 1 we need to compute the Maclaurin series for Aðt=ð1� iÞÞAðt=ð1þ iÞÞ:

From Equation (12) of [4],

AðzÞ ¼ exp
X1
k¼1

ð�1Þkþ1akz
k

k

 !
;

where

ak ¼ Likðð�1Þ
k
Þ ¼

X1
n¼1

ð�1Þnk

nk
¼

� log 2; if k ¼ 1
zðkÞ; if k is even;
ð21�k � 1Þ zðkÞ; if k > 1 is odd:

8<
:

Hence

A
t

1� i

� �
A

t

1þ i

	 

¼ exp

X1
k¼1

½ð�1Þkþ1 � ik�akt
k

kð1� iÞk

 !
:

Simplifying the complex values in the sum we find that

A
t

1� i

� �
A

t

1þ i

	 

¼ exp

X1
k¼1

bk
tk

k

 !
;

where the sequence bk is as defined in the theorem. Expanding the exponential

completes the proof. &

Applying duality [5, 22, 26] to Theorem 3 shows that we have also obtained reduc-

tions for certain multiple polylogarithmic values at 1=2. Specifically, for all non-

negative integers n,

z1=2ðf3; 1g
nÞ ¼ zðf�11; 1g2nÞ; z1=2ð2; 1; f3; 1g

nÞ ¼ zð�11; f1; �11g2nþ1Þ;

z1=2ð1; 1; f3; 1g
nÞ ¼ zðf�11; 1g2nþ1Þ; z1=2ð1; f3; 1g

nÞ ¼ �zð�11; f1; �11g2nÞ:
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4.3. PROOF OF COROLLARY 2

For each real x satisfying 04 x4 1, form the formal power series

Tðx; tÞ :¼ 1þ
X1
n¼0

t2nþ1zxð�11; f�11; 1g
nÞ þ t2nþ2zxð�11; �11; f1; �11g

nÞ
� �

: ð32Þ

Then it is a routine computation to show that

Tðx; tÞ ¼ �
1þ x

t

	 

d

dx
Mðx; tÞ;

where Mðx; tÞ is as in Equation (13). Put

z ¼ ð1þ iÞt=2; s ¼ ð1þ xÞ=2; and Uðs; zÞ ¼ Y1ðs; zÞ � zY2ðs; zÞ;

where Y1 and Y2 are given by (7) and (8), respectively. From Proposition 2, it follows

that

Tðx; tÞ ¼ �
s

z

1þ i

2

	 

U

0

ðs; izÞUðs;�zÞ þUðs; izÞU
0

ðs;�zÞ

Að�zÞAðizÞ
; ð33Þ

wherever the right-hand side is defined, and where the prime denotes differentiation

with respect to s. As in the proof of Proposition 2, we find that for each x satisfying

04 x4 1, Tðx; tÞ defines an entire function of t.

We now compute the right hand side of (33) when x ¼ s ¼ 1. The obstacle to over-

come is the singularity of Y
0

1ðs; azÞ at s ¼ 1. (We will be taking a to be �1 or i as

needed.) Of course this function occurs twice in the generating function so that

the singularities cancel. In particular, from the definitions of the functions it is

immediate that

U
0

ðs; azÞ ¼ az� a2z2Fð1þ az; 1� az; 2; sÞ þOð1� sÞ; s! 1� :

By entry [15.3.10] of [1] it follows that

U
0

ðs; azÞ ¼ az�
ða2z2Þð2cð1Þ � cð1þ azÞ � cð1� azÞ � logð1� sÞÞ

Gð1þ azÞGð1� azÞ
þ

þOðð1� sÞ logð1� sÞÞ; s! 1� :

Similarly, from [15.3.11] of [1],

Uðs; azÞ ¼
1

Gð1þ azÞGð1� azÞ
þOðð1� sÞ logð1� sÞÞ; s! 1� :

Substituting these expressions (with a taken to be �1 or i as appropriate) into (33),

applying the reflection formula for the gamma function, and simplifying yields

Tðx; tÞ ¼ 1
2ð1þ iÞszAðzÞAð�izÞ

�
p cscðpzÞ � ip cschðpzÞ þ 4GðzÞ

�
þ

þOðð1� sÞ logð1� sÞÞ; s! 1� :

Letting s! 1� completes the proof of the corollary. &
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4.4. PROOF OF THEOREM 4

We now conclude the proof of Theorem 4. Changing variables from z to t in

Corollary 2, using (20) and the well-known Maclaurin series for cosecant gives

1þ
X1
n¼0

t2nþ1zð�11; f�11; 1gnÞ þ t2nþ2zð�11; �11; f1; �11gnÞ
� �

¼ A
t

1� i

� �
A

t

1þ i

	 

�

�
X1
n¼0

ð�1Þbðnþ1Þ=2c22�3nð22n�1 � 1Þzð2nÞt2n � ð�4Þ�nzð4nþ 3Þt4nþ3
� �

:

But this last expression is exactly
P1

k¼0 ckt
k
P1

j¼0 djt
j: The theorem now follows by

taking the Cauchy product and equating coefficients. &

Duality [5, 22, 26] applied to Theorem 4 provides evaluations for multiple poly-

logarithms at 1=2. For all nonnegative integers n,

z1=2ð3; f1; 3g
nÞ ¼ �zð�11; f�11; 1g2nþ1Þ;

z1=2ð2; f1; 3g
nÞ ¼ �zð�11; �11; f1; �11g2nÞ;

z1=2ð1; f1; 3g
nÞ ¼ �zð�11; f�11; 1g2nÞ;

z1=2ðf1; 3g
nþ1Þ ¼ zð�11; �11; f1; �11g2nþ1Þ:
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