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NGO VIET TRUNG

Introduction

Throughout this paper, A denotes a noetherian local ring with max-

imal ideal m and M a finitely generated A-module with d: =

DEFINITION. M is called a generalized Cohen-Macaulay (abbr. C-M)

module if

l(HUM)) < oo

for i = 0, •••, d — 1, where / denotes the length and Hτ

m(M) the ith

local cohomology module of M with respect to m.

The notion of generalized C-M modules was introduced in [6]. It has

its roots in a problem of D.A. Buchsbaum. Roughly speaking, this problem

says that the difference

I(q; M) := l(M/qM) - β(q; M)

takes a constant value for all parameter ideals q of M, where e(q; M)

denotes the multiplicity of M relative to q [5]. In general, that is not

true [30]. However, J. Stύckrad and W. Vogel found that modules satis-

fying this problem enjoy many interesting properties which are similar

to the ones of C-M modules and gave them the name Buchsbaum modules

[22], [23]. That led in [6] to the study of modules M with the property

I(M):= sup/(q;M) < oo

where q runs through all parameter ideals of M, and it turned out that

they are just generalized C-M modules.

The class of generalized C-M module is rather large. For instance,

most of the considered geometric local rings such as the ones of isolated

singularities or of the vertices of affine cones over projective curves are

Received February 15, 1983.

https://doi.org/10.1017/S0027763000000416 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000416


2 NGO VIET TRUNG

generalized C-M rings. So it would be of interest to establish a theory
of generalized C-M modules.

Although the theory of Buchsbaum modules has been rapidly devel-
oped by works of S. Goto, P. Schenzel, J. Stύckrad, W. Vogel (see the
monograph [20], little is known about generalized C-M modules. Besides,
it lacks something which connects both kinds of modules together. If one
is acquainted enough with the few references on generalized C-M modules
[6], [11], [18], one might have the notice that almost all properties of
systems of parameters (abbr. s.o.p.'s) of Buchsbaum modules also hold for
s.o.p.'s of generalized C-M modules which are contained in a large power
of the maximal ideal. For instance, if M is a generalized C-M module,
there exists a positive integer n such that

for all parameter ideals qcimn of M. So, with regard to the origin of
generalized C-M modules, one should try to explain the above phenomenon
in studying s.o.p.'s aly , ad of M with the property

Such s.o.p.'s will be called standard.
The aim of this paper is to show that standard s.o.p.'s carry important

informations on the structure of generalized C-M modules and that via
this notion, one can derive the theory of Buchsbaum modules from the
theory of generalized C-M modules.

Now we will describe the organization of this paper together with
its main results. The paper is divided in 6 sections.

In Section 1 we recall some basic facts on generalized C-M modules
which will be used in the sequence.

In Section 2 we establish the main properties of standard s.o.p.'s.
First, we can define standard s.o.p.'s of M very simply without assuming
before that M is a generalized C-M module. Consequently, we get a
surprising criterion stating that M is a generalized C-M module iff M
has a standard s.o.p. of this sense (Theorem 2.1). We can also characterize
standard s.o.p.'s by means of local cohomology (Theorem 2.5). From this
it follows that they are standard sequences in the sense of M. Brodmann
[3], [4], and special d-sequences in the sense of C. Huneke [14], [15]. It
should be mentioned that d-sequences enjoy many interesting properties
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COHEN-MACAULAY MODULES 3

and have been proved as very useful for different topics of Commutative

Algebra, see [13], [27], [29].

In Section 3 we study ideals of A which have the property that every

s.o.p. of M contained in them are standard. Such ideals will be called

M-standard. M being a Buchsbaum module just means that m is Λf-

standard. There are various characterizations of standard ideals (Pro-

positions 3.1, 3.2, Theorems 3.4, 3.10) which not only recover all known

characterizations of Buchsbaum modules but yield new ones too.

In Section 4 we use standard s.o.p.'s to study Hilbert-Samuel (abbr.

H-S) functions. First, inspired of the characterization of d-sequences by

means of their H-S functions [27], we give a polynomial bounding above

the H-S function of an arbitrary s.o.p. of a generalized C-M module M

and show that they coincide iff this s.o.p. is standard (Theorem 4.1).

Similarly, we can also estimate the H-S function of a submodule N of M

of finite colength relative to an ideal α of A with l(MjaM) < oo (Proposition

4.4). In particular, M and N will behave very well if l(M/aN) attains

some extreme value (Proposition 4.8). As a consequence, we are able to

extend results of J. Sally [17] and S. Goto [8] on C-M and Buchsbaum

rings with maximal embedding dimension for modules.

In Section 5 we show that if α is a standard parameter ideal of M

or if l(M/a2M) attains some extreme value (the module-version of

Buchsbaum rings with maximal embedding dimension), then the associated

graded module

Ga(M):= (§ anMlan+1M
71 = 0

is a homogeneous generalized C-M module and its local cohomology

modules can be computed explicitly (Theorem 5.4 and Proposition 5.11).

Moreover, we give a necessary and sufficient condition for an irrelevant

ideal of Gq(A), where q is a parameter ideal of M, to be Gq(M)-standard

(Theorem 5.7). Applying these results to Buchsbaum modules, we then

get the main results of S. Goto in [8] and [9].

In Section 6 we shall first see that there is a close connection be-

tween Ga(M) and the Rees module

RΛ(M):= ®anM
71 = 0

concerning the property of being a generalized C-M module (Proposition

6.1). If a is a standard parameter ideal of M or if l(Mja2M) attains some
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extreme value, then [Ra(M)]Q is a generalized C-M module, where Q

denotes the maximal graded ideal of Ra(M), and its local cohomology

modules can be computed explicitly (Theorem 6.2 and Proposition 6.5).

As a consequence, we get necessary and sufficient conditions for Ra(M)

to be a Cohen-Macaulay module in these cases, generalizing recent results

of S. Goto, Y. Shimoda, and P. Schenzel on this topic [7], [12], and [19].

It should be mentioned that special cases of Theorem 5.4, Proposition

5.11, and Theorem 6.2 are also obtained by M. Brodmann [4] and P.

Schenzel (private communication).

Beside the notations introduced before, we shall use the following

throughout this paper. Unless otherwise specified, au * ,cιd will be a

s.o.p. of M. For convenience, we put

q0 = 0 (the zeroideal)

q< = (au •• , α<) (i = 1, , d - 1)

c\d = (au , ad).

Moreover, we shall identify H°m(M) with the submodule U^iO^: mn of M
and denote by M the factor module M/H°m(M).
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§ 1. Basic facts

First, generalized C-M modules may be characterized in different ways.

LEMMA 1. [6, (3.3)]. The following conditions are equivalent:

( i ) M is a generalized C-M module.

(ii) I(M)< oo
(iii) There exists a s.o.p. au ,ad of M such that

supiXα?1, -",aT; M)<oo

where nu , nd run through all positive integers.

(iv) There exists a positive integer n such that

cit-iM: a, c (\t_xM: mn

for every s.o.p. au , ad of M and ί = 1, , d.

The meaning of Lemma 1.1 (ii) has been already mentioned in the

introduction of this paper. Lemma 1.1 (iii) is used to check whether a

given module is a generalized C-M module or not. To explain the mean-

ing of Lemma 1.1 (iv) we need the following notion of [6, (2.3)]:

DEFINITION. M is called an /-module if every s.o.p. au , ad of M

is a filter-regular M-sequence, i.e.

for i = 1, , d.

By Lemma 1.1 (iv), every generalized C-M module is an /-module.

Of course, /-modules themselves have many interesting properties.

LEMMA 1.2 [6, (2.5) and (2.11)]. The following conditions are equi-

valent:

( i ) M is an f-module.

(ii) Every s.o.p. a19 , ad of M is reducing, i.e.

(iii) Every s.o.p. au , ad of M is unmixed up to m, i.e. dim A/p =

d — i for all p e Ass (M/qίM)\{m} and i = 0, , d — 1.

(iv) Mp is a Cohen-Macaulay module with άimMp = d — dim Ajp for

all p e Supp (M)\{m}.
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Remark 1.3. The notion of reducing s.o.p.'s was introduced by M.

Auslander and D.A. Buchsbaum in [2, § 4]. There they showed for every

s.o.p. au - - , ad of M that

(1) I(q; M) = Kq^M: aJq^M) + Σ?-ί β(q; q^M: aJq^M).

(2) I(q;M) = l(qd-1M:aJqd-1M) iff atep for al l p e Ass (Mjq^M)

with dim A/jp >̂ d — i and i = 1, , d.

In most of practical situations, /-modules coincide with generalized

C-M modules by the following result:

LEMMA 1.4 [6, (3.8)]. Let A be a factor of a C-M ring. Then M is

an f-module iff M is a generalized C-M module (cf. also [32]).

In such situations, Lemma 1.2 (iv) provides a powerful criterion for

generalized C-M modules. For example, it is easily seen from this cri-

terion that the local rings of isolated singularities or of the vertices of

aflfine cones over projective curves are always generalized C-M rings.

Now we will give some basic properties of generalized C-M modules.

LEMMA 1.5 [6, (3.7)]. Let M be a generalized C-M module. Then

Moreover, there exists a positive integer n such that I(q; M) = I(M) for

every parameter ideal q <Ξ mw of M.

LEMMA 1.6. Let M be a generalized C-M module. Then M is a

generalized C-M module with

(i) WJM) = 0, HUM) * HUM) for ί ^ 1.
(ii)

Proof, (i) follows from the exact sequence

0 > Hl(M) > M > M > 0.

(ii) is a consequence of Lemma 1.5 and (i).

LEMMA 1.7. Let M be a generalized C-M module with d^>2. Let a

be part of a s.o.p. of M. Then M1 : = MjaM is a generalized C-M module

with

(i) imm) ^ KHi(M)) + l{m\M)) for i = 0, • , d - 2.
(ii)
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COHEN-MACAULAY MODULES 7

Moreover, equality holds in (i) and (ii) iff aHι

m(M) = 0 for all i = 0, ,

d- 1.

Proof. From the derived local cohomology sequence of the exact

sequence

0 >M/0M: a - % M > M, > 0

we can easily deduce that

KHKMJ) ^ WUM)) + l(Hi+\MI0M: a))

for i = 0, , d - 2. Note that 03f: a c ίf°m(M) by Lemma 1.1 (iv). Then

from the exact sequence

0 >0M: a >M > M/0M: a >0

we get JBΓJ^M/O*: a) = Hι

m(M) for i 2> 1. Hence ( i) is obvious. Now, using

Lemma 1.5 we have

^ Σ (d 7 2 )
i=o\ I )

= Σ
ί 0

Clearly, equality holds above iff the sequence

0 > Hi{M) > HUM,) > HΪWIQM : α) > 0

is exact for all i = 0, , d - 2. But that is the case iff H0

m(M/0M: a) = 0,

i.e. aH°m(M) = 0, and aHi(MIOM: a) = αJffί,(Λf) = 0 for ί = 1, , d - 1. So

we have proved (ii) and the statement about equality.

§ 2. Standard systems of parameters

DEFINITION. aί9 , ad is called a standard s.o.p. of M if

This definition of standard s.o.p.'s is different from the one given in

the introduction of this paper but leads to the same notion by the fol-

lowing result:

THEOREM 2.1. al9 , ad is a standard s.o.p. of M iff M is a gener-

alized C-M module with I(M) = I(q M).
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Properly speaking, Theorem 2.1 is a criterion for generalized C-M

modules. It is rather surprising how a simple condition on a s.o.p.

implies all the global properties of a generalized C-M module.

For the proof of Theorem 2.1 we shall need the following auxiliary

result:

LEMMA 2.2. Let au , ad be an arbitrary s.o.p. of M. Then

for all positive integers nλ <I mu , nd ^ md.

Proof By induction we may assume that nt — πii for i < d. Then

^ K«\ , alt-^M: aTl(an

λ\ , an

dtγ)M),

e(αίS , ay; (α?1, , σJir)M: aΠ(a?, , aγj?)M)

= nde(al\ , αjiϊ, α, (α?1, , α?iiι)M: ^'/(oΓS , α?iϊOAί)

— e\ai ) 9 ad-l 9 ad 9 \al > > ai-l ) 1 V 1 aί l\al i 9 a i - χ

for i = 1, , d — 1. Hence, applying Remark 1.3 (1) we get

-L \βl 9 ' ' ' 9 a d 9 1 V 1 ) ^ 1 \ a i 9 9 a d - l 9 a d 9

Proof of Theorem 2.1. (=Φ) By Lemma 1.1 (iii) and Lemma 1.5 we

only need to show that

for all positive integers nl9 '-,nd. First, using Lemma 2.2 and the

definition of standard s.o.p.'s we get equality for nu •••, nde{l, 2}. If

there exist positive integers nu , nd such that

we must have max{^, , nd) > 2. Without restriction we may assume

that

nd = max{/ίl5 , nd} > 2.

Then, by induction, we may further assume that

7(αΓ, , αgίi1, ad;M) = I{an

λ\ , α^-i1, α?" 1 M) = I(q M ) .

Hence, looking at the proof of Lemma 2.2, we can conclude that
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, an

diγ)M: aj(aΐ\ , an/_γ)M)

= l((aΐ\ , aT-V)M: <%*->/(<%*, , aT-Ί

Φ Γ , , αJίiS αd; (α?S •, α?iϊι)M: α?7(α?S , α?ϋOM) = 0

for i = 1, , d — 1. From the first equation we get

d — W 9 9 ad-l ) 1 V 1 ' ad

— \al 5 9 ad-l ) 1 V 1 ad 9

hence, applying Remark 1.3 (1),

/(α?s , ay; M) = /(α?1, , αjίi1, αd M) = /(q; M ) ,

a contradiction.

(4=) Since /(α?, , α£; M) = I(M) = I(q; M), applying Lemma 2.2 we

must have J(α?, , αj; M) = J(q; M), as required.

For reduction process we shall need the following consequences of

Theorem 2.1.

COROLLARY 2.3. au , ad ίs a standard s.o.p. of M iff aί9 , ad ίs

a standard s.o.p. of M and qMΓ)H°m(M) = 0.

Proof. Since H°m(M) is of finite length, we have e(q; M) = β(q M).

Thus,

/(q; M) - /(M/qM + H°m(M)) - e(q; M)

= l(MlqM) - Z(qAf + H°m(M)lqM) - e(q; M)

= I(q; M) - l(Ho

m(M)lqMf]Hl(M))

= 7(q; M) - Z(ff?π(M)) + l(qMΓ\H»m(M)).

Now, using the relation I(M) = Z(M) - l(H°m(M)) of Lemma 1.6 (ii), we

easily get the statement.

COROLLARY 2.4. Let M be a generalized C-M module with d^>2.

Then au 9ad is a standard s.o.p. of M iff a29 , ad is a standard s.o.p.

of M\aM and I(M\aM) = I(M).

Proof. By Lemma 1.2 (ii) and Lemma 1.7, we have

I(a2, .,ad)MlaM) = Z(q*-iM: aJM) - /(q; M ) .

Hence the statement can be easily derived from Lemma 1.7 (ii).

Now we shall show that standard s.o.p.'s may be characterized by

means of local cohomology (see Theorem 3.4 for further homological
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characterization).

THEOREM 2.5. al9 , ad is a standard s.o.p. of M iff

qHKM/qjM) = 0

for all non-negative integers i, j with ί + j < d.

Proof. Without restriction we may assume that Mis a generalized

C-M module. If d = 1, we have

I(a1;M) = l(0M:a1)

by Lemma 1.2 (ii). Therefore, ax is a standard s.o.p. of M iff 0 ^ : ^ =

0^: a\ or, equivalently,

n=l
: α? = U <V m* = H°n(M).

So we have proved the case d = 1. For c? > 1 we set Mj = M\aγM.

If αj, , αd is a standard s.o.p. of M, then α1? , ad is also a

standard s.o.p. of M1 and /(Mj) = /(M) by Corollary 2.4. By induction

we have

) = 0

for all ^ 1, i + j < d. Moreover, afiUM) - 0 for all i = 0, , d - 1

by Lemma 1.7. Hence, permuting au , ad we also get qH^M) = 0 for

ί = 0, , d - 1.

Conversely, if

qHUM^M) = 0

for all i + j < <i, then α2, , ad is a standard s.o.p. of Mx by induction

and J(Mi) = I{M) by Lemma 1.7. Hence au , ad is a standard s.o.p.

of M by Corollary 2.4. The proof of Theorem 2.5 is now complete.

In [3], [4], M. Brodmann calls a sequence bu ••-,&,- of elements of

m an m-standard M-sequence if bu * ,br is a filter-regular M-sequence

and

for all non-negative integers i, 7 with

i + j < max{n; l(Hι

m(M)) < 00 for t<n}.
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Hence, by Theorem 2.5, standard s.o.p.'s are m-standard sequences. That

is why we choose the name "standard".

Theorem 2.5 has some interesting consequences.

COROLLARY 2.6. Let au , ad be a standard s.o.p. of M. Then

( i ) al9 - , ad is a d-sequence of M, i.e.

q^M: ataj = qt^M: a]

for i = 1, . , d and j > ί.

(ii) aί9 - , ad is an absolutely superficial M-sequence, i.e.

[(q» + 1, q^M: αj

for all n ^ 0, i — 1, , d.

(iii) (q^M: a,) Π q(α«, , ad)
nM = q * . ^ , , α,)nM for all n ^ 0,

i = l, . - . ,d .

(iv) q^iM: αj = qi^M: qm /or αZZ m, n > 0, i = 1, , d.

(v) (qn+1, q,_!)M: α, = qwM + (q^.M: a,) for all n > 0, i = 1, , rf.

Proo/. By [27, Theorem 1.1, Corollary 1,2 (iii), and Acknowledge-

ment], conditions (i) to (iv) are equivalent to each other and to the

condition

for all i = 1, , d, and they imply (v). By Lemma 1.1 (iv), it is sufficient

to show that

qt-iM: α, ^ U qt^M: mn ,
71 = 1

which follows from the fact

a.HKMIq^M) = 0

of Theorem 2.5.

In particular, one can characterize standard s.o.p.'s by means of d-

sequences as follows.

PROPOSITION 2.7. al9 -'-,ad is a standard s.o.p. of M iff by every

permutation, a"1, , an

d

d is a d-sequence of M for all nίy , nd e {1, 2}.

Proof (=» By Theorem 2.1 and Lemma 2.2,

= I(q; M) £ J(α?S , a\*\ M) £
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Therefore, α?1, ,α2d is also a standard s.o.p., hence a d-sequence of M

by Corollary 2.6 (i).

(Φ) By [27, Theorem 1.1 (vii)] and Remark 1.3 (2), α?1, , an

d

d is a

reducing s.o.p. of M. Hence, using [27, Theorem 1.1 (vi)], we get

I(aψ, , <%<; M) = l((aψ, , <%

= /((α?1, , an

diV)M: adl(aζ*,

= I(α?S ••.,αSίτ1,α,;M).

Now, permuting α1? , ad, we can easily show that

Remark 2.8. There are many criteria for a1? , αd to be a d-sequence

of M [27, Theorem 1.1]. The simplest ones are the following:

(1) ( q ^ M : at) Γ\ qM = qt^M for i = 1, , d.

(2) q^iM: α? S q^M: q for i = 1, , rf.

(3) q ^ M : αf - U?-i <\t-iM: mn for £ = 1, . , d.

The following result shows, together with Theorem 2.1, that some

numerical invariants of al9 , ad relative to M will reach their maximal

value iff au , ad is a standard s.o.p. of M (see also Theorem 4.1 and

Corollary 4.2).

PROPOSITION 2.9. Lei M be a generalized C-M module. Then

< %(t ί ^W'JLM))

for all non-negative integers i9 j with ί + j < d. Equalities hold above by

every permutation of au , ad iff au , ad is a standard s.o.p. of M.

Proof. For j = 0 there is nothing to prove, For j > 0 we have the

following inequality

by Lemma 1.7 (i). Applying this inequality successively, we then get the

first statement. Moreover, by Lemma 1.7, equality holds above for a fixed

j < d and all i = 0, , d - j - 1 iff

aflϋMlq^M) = 0

for all / = 0, , d — j . Hence, using Theorem 2.5, we also get the second

statement.
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We conclude this section by establishing, explicitly, the ubiquity of

standard s.o.p.'s in a generalized C-M module, cf. Lemma 1.5.

PROPOSITION 2.10. Let M be a generalized C-M module. Let a^M)

denote the annihilator of Hi(M), i = 0, , d — 1, and set

( Z - l (d-l\

aM = Π at(M)( * ' •
i = 0

Then every s.o.p. of M contained in aM is standard.

Proof. Let au , ad be a s.o.p. of M contained in aM. By Theorem

2.5, to show that au , ad is a standard s.o.p. of M, it is sufficient to

show that

iMlM) 3 aM

for all non-negative integers i, j with i + j + d. For j = 0, that is imme-

diate. For j > 0, we have

by the proof of Lemma 1.7 (i). Using this relation successively, we get

because

{t-ί)-[ί+j-t)-[ί+j-t) \ t ) = { t

§ 3. Standard ideals

Throughout this section, M will be a generalized C-M module and α

an ideal of A with l(M[aM) < oo.

DEFINITION, α is called an M-standard ideal if every s.o.p. of M

contained in α is standard.

This notion extends the one introduced in [3], [4], where standard

ideals are, roughly speaking, ideals generated by standard s.o.p.'s, cf.

Corollary 3.3 below. The existence of standard ideals is guaranteed by

Lemma 1.5 or, explicitly, by Proposition 2.10. In particular, M being a

Buchsbaum module just means that m is M-standard.

First, we shall see that standard ideals may be also characterized

by means of d-sequences and weak sequences. The latter ones were

introduced in [27] as follows.
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DEFINITION. A sequence of elements bί9 ,br of A is called an α-

weak M-sequence if

(6,, , b^M: bt c (bu , b^M: a

for all i = 1, , r.

It should be mentioned that m-weak sequences are known as weak

sequences and play an important role in the theory of Buchsbaum modules

[22], [23].

PROPOSITION 3.1. The following conditions are equivalent:

( i ) a is M-standard.

(ii) Every s.o.p. of M contained in a is an a-weak M-sequence.

(iii) Every s.o.p. of M contained in a is a d-sequence of M.

Proof, (i) => (ii). Let al9 , ad be an arbitrary s.o.p. of M contained

in α. Let S be a generating set for a such that every d element subset

of S{J{al9 - , ad} forms a s.o.p. of M, where the existence of such a set

S can be easily shown as in [21, Lemma 2] or [25, Lemma 3]. Then, by

Corollary 2.6 (iv),
oo

q^M: at = \J q^M: mn = Π q<-iAf: a = q^M: a
Sn=l

for all i = 1, , d. (ii) =£> (iii) follows from [27, Proposition 2.2]. (iii) =̂>

(i) follows from Proposition 2.7.

For practical uses, the following characterization of standard ideals

is more convenient than Proposition 3.1 because it depends only on a

finite system of elements.

In order to simplify our statement, we call a finite generating set S

for α an M-base of α if every d element subset of S forms a s.o.p. of M,

see [21, Lemma 2] or [25, Lemma 3] for the existence of M-bases of a.

PROPOSITION 3.2. α is M-standard iff one of the following conditions

holds for all d element subsets {au , ad) of an M-base of a:

( i ) al9 - , ad is a standard s.o.p. of M.

(ii) α?1, , ad

d is an a-weak M-sequence for all nu , nd e {1, 2}.

(iii) α?1, , ad

d is a d-sequence of M for all nu , nd e {1, 2}.

Proof. That a being M-standard implies (ii) follows from Proposition

3.1. (ii) => (iii) is a consequence of [27, Proposition 2.2]. (iii) => (i) follows

from Proposition 2.7. Now suppose that (i) is satisfied. Then we have
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to show that every s.o.p. bl9 , bd of M contained in a is standard. If

d = 1, using Corollary 2.6 (iv) we have

0*: &! 3 0*: α = Π 0*: α = U 0*: m* 5 0,,: &1.

Thus, O^tδj ^> H°m(M). Hence 61 is a standard s.o.p. of M by Theorem

2.5. If c? > 1, we can find a generating set S' for α such that au ,

αώ_2, b and &1? , bd_u b are s.o.p.'s of M for all 6 6 S' and {α1? , αd_J

c S by the same method of [25, Lemma 3]. Using Corollary 2.6 (iv), we

first have

qd^M: b 2 q<*_iM: α = Π ^a-ιM\ a = \J qd^M: mn 3 q ^ M : 6

and then

qd.,M: b = Q qd-iM: mre = q^-iM: α d .
n = l

Therefore, by virtue of Lemma 1.2 (ii) and Theorem 2.1,

/(α,, , ad.» b; M) = /(q.^M: 6/q.,M) = /(q^.M: αJq.^M)

i.e. α1? , αd_!, 6 is a standard s.o.p. of M. It follows by Corollary 2.4

that al9 , α ^ is a standard s.o.p. of MjbM and I(MjbM) = I(M). Now,

by induction, we may assume that α is M/6M-standard. Then

1(6,, , &,_„ b; M) = I(M/6Λί) =

i.e. &!, •• ,6d-i? & is a standard s.o.p. of M too. Since the elements b

generate α, we can show, similarly as above, that

The proof of Proposition 3.2 is now complete.

Proposition 3.2 immediately leads to the following consequence which

justifies our notion of standard ideals from Brodmann's notion in [3], [4].

COROLLARY 3.3. Every ideal of A generated by a standard s.o.p. of

M is M-standard.

Next, we shall show that standard ideals may be characterized by

homological means, inspired from the so-called surjectivity criterion of

Buchsbaum modules [21, Satz 1]. We point out that the proof for [21,
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Satz 1] could not be extended for our case.

First, we recall some facts about Koszul cohomology.

Let K(S; N) denote the Koszul complex of an arbitrary A-module N

with respect to a generating set S of α. If S = {bu , br}, then K(S; N)

may be viewed as the complex of the exterior products generated over

N by r indeterminates Xu , Xr with the boundary map Xi—>bi, ί = 1,

• , r. Let H.(S; N) and H'(S; N) denote the homology and cohomology

of K(S; N), respectively. Then

does not depend on the choice of S and will be denoted by H%a; N),

i = 0, , r. It is well-known that

for all i = 1, , d.

THEOREM 3.4. α is M-standard iff the natural homomorphism

is surjectίve for i = 0, , d — 1.

Proof. (=» Let S be an M-base of α. Then

0M:a = Π
a<=S

by Corollary 2.6 (iv). Hence

Ψo: H\a; M) = 0M: a >H°m(M) = \J 0M:mn

n = l

is surjective. Thus, we may assume that d > 1, and, we only need to

show that ψt is surjective for ί = 1, , d — 1. Note that M = MIH°m(M).

Then we have the commutative diagram

Consequently, φt is surjective if at and φt are surjective.

Assume that S = {au , ar). Then at is surjective if every (r — i)th

cycle e of K(S; M) is the natural image of some (r — ϊ)th. cycle e of
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K(S M). Write

m(u) e M, where (u) runs through all sets {ult , ur_τ) of integers between

1 and r. Let m{u) be elements of M whose images in M are m(M). Let

(v) = {ϋj, , Vr-i-i} be a set of integers with i <̂  ι;x < < iV-*_i ^ r

and {̂ , , ίί+1} the complement of (u) in {1, , r). Put

) Σ

Then n(t,) e H°m(M) because β is a (r — i)th cycle of K(S; M). Since

fΓiWΓKα^, . . . , α £ i + 1 ) M = 0

by Corollary 2.3, we must have n{v) — 0. That means

is a (r — i)th cycle of K(S; M), as required.

To show that ψi is surjective we consider the exact sequence

0 > MI0M: ax - ^ > M > M\axM >0 .

Note that 0*: ax = IJ»=i 0^: mn by Corollary 2.6 (iv). Then M\§M\aλ = M

and we get the following commutative diagram

W-\a) M\axM) > H%a; M)

\φi-ι

Since α is M/α^-standard by Corollary 2.3, by induction we may assume

that φί_1 is surjective. Further, since a^HKM) = 0 by Theorem 2.5, from

the commutative diagram

HUM)-^^ HUM)

HUM)

we can deduce that Tt is zero. Hence βt is surjective and so is ψι too.

So we have proved the necessary part.

We will show that every s.o.p. au , ab of M contained in α
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is a d-sequence of M, which then implies that α is M-standard by Prop-

osition 3.1. By Remark 2.8 (2) it suffices to show that

qt_tM: a\ c q^M: q

for i = 1, , d. First, we have aH°m(M) = 0 because <p0 is surjective.

From this and Lemma 1.1 (iv) it follows that

0*: a\ g U QM' mn g O . α g 0^: q.
n = \

Hence the case i = 1 is immediate. For i > 1 we consider the following

exact sequences

W~\a^ -..,ay,M)^L W~\a^ , a%,\ M) ̂ U H*-\a£9 , a^l M),

j = i -f 1, .. ,9 d [2, Proposition 1.1]. Note that for n large, αj, , an

d is

a standard s.o.p. of M by Lemma 1.5, hence a cί-sequence by Corollary 2.6

(i). Then

by [13, § 5] (which was proved for rings but could be easily extended for

modules). Hence 7) is surjective and so is

y> - °r?+1: ff'-Xαϊ, , αS; M) •£Γ<-1(flί, , α?; M ) .

Thus, we have the following commutative diagram

W\au , ad; M) ή^"°r\ w~\au , αt; M)

hmr?+i r3

Now let ^j e qt.iM: a\ arbitrary. Then

ί-l

ΣlaJmj
j l

= -ΣlaJmj

for some ra, € M. Clearly, /nl3 , mi define a cycle of 1 ^ ! , , at_u α ; M)

= Σ

By virtue of the above diagram, we can find a cycle of K(al9 , α*_i, α ;̂ M)
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such that

(1) / is the image of some (d — i — l)th cycle of K(au —,ad; M),

(2) The image of e - f in H\~\M) is zero.

From (1) we can deduce that a0nt e q ^ M for all j = 1, , d, i.e. nt e

q*_iM: q. From (2) we can deduce that there exist integers n such that

the image of e — / i n ϋΓ(α?, , α£; ̂ ) is a boundary. From this it follows

that

Note that by induction we have

qj_1M: a) 5Ξ qj_1M\ q c: qj_1M: qί_1 ^ q^-^M: a)-

and hence qj.-iM: a) = q; _iM: q ^ for j = 1, , i — 1. Then α1? , at_x

is a d-sequence of M by [27, Theorem 1.1 (v)]. So we may assume that

every subsystem of parameters of M of i — 1 elements contained in q is

a o?-sequence of M and therefore a q-weak M-sequence by [27, Proposition

2.3]. Now, by virtue of the following Lemma 3.5, we have

rrii — nte (α?, , άϊ^M: (ar -a^^71'1 c q^_iM: q .

Hence, mf e q ^ M : q, as required. The proof of Theorem 3.4 is now

complete.

The following auxiliary result is of independent interest because it

establishes the monomial property of certain kind of sequences of elements

of A.

LEMMA 3.5 (cf. [9, Theorem 4.7]). Suppose that bu , br is a system

of elements in some ideal B of A such that by every permutation, 6?1, , bn

r

r

is a h-weak M-sequence for all positive integers nlf , nr. Then

(bΐ, . , b?)M; (br- bry~' = (bu , br)M + £ (bl9 ,hj9 , br)M: B

for all n>2.

Proof It is sufficient to show that

(6?, , 6?)M: (br -bry~' c (bu .. ., br)M + £(bu , b, , br)M: B .

The case r — 1 is immediate. For r > 1 let m be an arbitrary element

of (ft?, , bΐ)M: (br- br)
n-\ Then, by induction,
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bΓ'm 6 (6f, b2f • , 6 r ) M + Σ (6Γ, &«,•••, &„ , W M : 6 .
.7=2

Thus, there exist elements mj e (ί>ί, b2, , bj9 , &r)M: 6 such that

r

ij modulo (&2, , 6 r)M.2]
J = 2

Now we want to show that

b.ntj e bl[{b» '-,ί>p - ,br)M: B] + (62, , 6 r ) M .

First, we can find elements njy n] e M such that

b^nij = 6f n̂

6̂772̂  = bin]

modulo (&2, , bj9 , 6r)M. From this it follows that

b j Π j - b r f j e i b z , . - . , b j , - . . , b r ) M : b ΐ

c (62, . - • , » „ . , 6 r )M: b c (62, , ^,, . . , br)M: 6,.

Hence

nj e (bl9 •• , B j , . , b r ) M : b) c ( 6 1 ? . . . , & „ . . . , 6 r ) M : B .

Thus, since

ro - f > i e (62, , 6r)M: 6? = (62, , br)M: B ,

m e ΣJ=i (6i, '",bj9 - -, br)M\ B, as required.

Theorem 3.4 has many interesting consequences.

COROLLARY 3.6 (cf. [23, Theorem 1]). α is M-standard if the natural

homomorphίsm

M) >H*m{M)

is surjectίve for ί = 0, , d — 1. If a is generated by a regular A-sequence,

the converse also holds.

Proof. The first statement is easily seen from the following com-

mutative diagram

Exti(A/α, M) > H*(a; M).

HUM)
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For the second statement we only need to note that if a is generated by

a regular A-sequence, then Exti(A/α, M)~>Hί(a; M).

COROLLARY 3.7 (cf. [23], Corollary 1.1]). Suppose that there exists a

non-negative integer r < d such that H\XX(M) = 0 for i Φ r, d. Then a is

M-standard iff aHr

m(M) = 0.

Proof. It is sufficient to prove the sufficient part. First, we have

£T(α; M) ς* H%a; M/(au , ar)M) = (au , ar)M: al(au . . . , ar)M

HUM) s H°m(MI(au , αr)M) = Q (βi, , «r)^: ctn/(au , α r)M
W = l

for some regular M-sequence al9 , ar in α. Since aHr

m(M) = 0, we must

have

(α,, , αr)M: α = U («i, ? αr)M: αw,

hence iJ'(α; M) ^

Further, we can show that there exists a practical reduction process

to check where a given ideal is M-standard.

First, we note that by Corollary 2.4, α is M/αM-standard for every

element aea which forms part of a s.o.p. of M, porvided that a is M-

standard. However, the existence of such an element a does not imply

(even in the case depth M > 0) that a is M-standard, see [31]. But we

still have the following non-zerodivisor characterization of standard

ideals in case depth M > 0:

COROLLARY 3.8 (cf. [24, Satz 6.5] or [31, Theorem]). Suppose that

depth M > 0. Then a is M-standard iff a is M/aM-standard for some

non-zerodivisor aea of M with one of the following two properties:

(i) aea2.

(ii) aHl(M) = 0 for all i = 1, , d - 1.

The case depth M = 0 can be transferred to the case depth M > 0

by the following result:

COROLLARY 3.9 (cf. [25, Theorem 4]). a is M-standard iff the following

conditions are satisfied:

(i) a is M-standard.

(ii) (al9 , ad)M(zHKM) = 0 for every d element subset {au , ad}

of some M-base of a.
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The proofs for Corollaries 3.8 and 3.9 (based on Theorem 3.4) are

similar to the ones for [24, Satz 6.5], [25, Theorem 4]. Hence we omit

them.

For the remainder of this section, let R = 0~=o Rn be a noetherian

graded ring such that Ro is a local ring. Note that with respect to the

theory of graded modules, R behaves as though it were local. Then we

say that a graded structure over R will have some property (C) which

can be only formulated over local rings if (C) holds for the corresponded

structure over RP, where P denotes the maximal graded ideal of R. So we

can use the notions of (homogeneous) generalized C-M modules, standard

s.o.p.'s, standard ideals, etc. over R.

Let E be a finitely generated graded i?-module with d:= άimE ^> 1

and I a graded ideal contained in the ideal R+ of elements of positive

degree of R with 1{EJIE) < oo. Put

Nt:= {n;m(E)]n Φ 0}

for i = 0, : , d — 1. Then under certain assumption on Nu we can give

a criterion for I to be a ίJ-standard ideal.

THEOREM 3.10. Suppose that E is a generalized C-M module with

max Ni <L min Ni + 1 + 1,

i = 0, , d — 2. Then I is a E-standard ideal iff

IHUE) = 0

for i = 0, , d - 1.

For the proof of Theorem 3.10 we shall need the following

LEMMA 3.11. Let au , ad be a system of homogeneous parameters

of E of positive degree. Then, by the assumption of Theorem 3.10, there

exists a graded homomorphίsm

φ): H^EIqjE) >H?>(E)

of degree t3:= — Σ(=1 deg (at) which is injective in degree > minNί+j — t3

for all non-negative integers ί, j with ί + j < d.

Proof. We go by induction on j . For j = 0 there is nothing to prove.

For j > 0 we consider the exact sequence
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0 > E/qj^E: dj > Efaj^E >E/qjE > 0 .

Note that by Lemma 1.1 (iv), q^E: aJq^.E £ H^E/q^E) is of finite

length. Then the natural homomorphism

E: a,)

is an isomorphism. Hence we have an exact sequence

with άega = 0 and degβ = — deg(α^). Put

where the existence of φ)t\ follows from the induction hypothesis. Then

φ) is a graded homomorphism from H^E/qjE) to Hp+j(E) of degree ts =

ίj-i — deg(αj). To show that φ) is injective in degree > minNi+j; — tj9

we only need to show that [Hί

P(Elqj_1E)]n = 0 for n > miniV ί+j — tj.

Note that

miniVi+J. - tj ^ maxiV,^.! - 1 - tj_, + deg(α, )

^ maxiV4+i_1 — ^ _!.

Then [ίfJ,+i"1(-E)]n+ti_1 = 0 by the definition of Ni+j_u hence so is

[HF(ElqjE)]n as a submodule of [iϊ^+ j~1(£)]? ί + ί y_1 by the induction hypo-

thesis on ψj^.

Proof of Theorem 3.10. It suffices to show the sufficient part. Sup-

pose that IHP(E) — 0 for i — 0, , d — 1. Then we want to show that

every homogeneous s.o.p. al9 , ad of E contained in I is a d-sequence

of E, which then implies that 7 is a ίJ-standard ideal by Proposition 3.1.

By Remark 2.8 (2), we only need to show that

c\i-iE:aϊ c qt^Eiq

for i = 1, , d. First, by Lemma 1.1 (iv), we have

Hence the case ί = 1 immediately follows from the fact qHP(E) (= IHP(E)

= 0. Now let ί > 1. Since I contains only elements of positive degree,

from Lemma 3.11 we can easily see that via the homomorphism ψ\_u

= 0
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for t

for ί < min
Then
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ίiβl. It remains to show that

[q^E: al]t £ q^E: q

ti_x. Let m̂  be an arbitrary element of such [q î-E: al]t.

for some nij e E. Thus, m1? , mt define a cycle of ^(0^ , at_u αj; J?)

e =

with

deg (e) = ί — 2 deg (α,) = ί + ί^i < min N,.,.
yi

Note that by the proof for the sufficient part of Theorem 3.4, we have a
surjectϊve homomorphism of degree 0 from H^iE) onto H\~\E). Then
H\~\E) = 0 in degree < miniV^j. Hence there exist integers n such that
the image of e in K(aι, , α? 2?) is a boundary. From this it follows
that

Now, proceeding as at the end of the proof for the sufficient part of
Theorem 3.4, we get

mte{an

u ,aU)E: (ar : q ,

as required. The proof of Theorem 3.10 is now complete.
From Theorem 3.10 we immediately get the following consequence

which generalizes a well-known criterion for graded Buchsbaum rings.

COROLLARY 3.12 (cf. [8, Proposition 3.1]). Suppose that there exist
integers tQ9 , td^ with tt <I tί+1 + 1, ί = 0, , d — 2, such that

[WP{E)]n = 0

for n Φ ti9 i = 0, , d — 1. Then R+ is an E-standard ideal.

§ 4. Hilbert-Samuel functions

Throughout this section, M will be a generalized C-M module.
In [27, Theorem 4.1] we showed that the Hilbert-Samuel (abbr. H-S)
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function l(M/qn+1M) of M relative to a parameter ideal q = {au , ad)

is bounded above by a polynomial of the form

Σ
n + d — ίπ in + d

where ê (q M ) may be expressed explicitly in terms of al9 « , α d , and

t h a t they coincide iff au •• ,α ( Z is a d-sequence of Λf. Now we shall

show a similar but stronger result for generalized C-M modules.

THEOREM 4.1. Let au , ad be an arbitrary s.o.p. of M. Then

KMl^M) ^(n + d W M) + έ Σ (n + d 7 ι) (d 7 £ 7 ^(iϊiW)

/or α/Z n > 0, w /iere ^ " " ^ ^ Λ:^ 0 if i Φ d and ( l j ) : = 1. Equality

holds for some fixed n iff the following conditions are satisfied:

(i) c\n+1MΓ\H°m(M) = 0.

(ii) au - , ad is a standard s.o.p. of M.

Proof. We first consider the case depth M > 0. Let Mx denote the

factor module M\axM- Then we have the following exact sequence:

0 >qt+1M;a1/qtM >M/qtM-^> M/qt+ιM >MJqt+1Mί >0

for all t ^ 0. From this sequence we get

(1) Z(qrM/qi+1M) ^

By induction on d (we include the case d = 0 which is trivial), we may

assume that

Since e(α2, , α 4 ; Λf,) = e(q; M) and, by Lemma 1.7 (i),

KHUMJ) £ l(Hί(M)) +

we get
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/(q'Aί/qt+1M) £ (l + d ~ X)β(q; M)

(3) + Σ " Σ ' C +, d 7 ι 7 x ) ( d 7 f 7 2 ) [ί(Hί(M»

(we omit a detailed calculation here and below). Thus,

Z(M/q»+1M) = Σ Z(q'M/qί + 1M) ^ Σ ^ "t d 7 X)e(q; M)
o \ a — 1 /

)e(q;M) + h£( )(7

In particular, according to (3), equality for some n ^ 0 will imply

KM/qM) = e(q;M) + Σ Σ (1 ~ ί ~ J) ( d 7 l" 7 X) «ffi
i=i ^=o \α — i — 1/ \ j — 1 /

by Lemma 1.5. Hence au • • •, aa is a standard s.o.p. of M

For the case depth M = 0, we pass to M (depth M > 0) as follows:

I(qn+1M + H°m(M)lqn+1M)

(5) = (n + d)β(q; M) + έ Σέ Σ ( 7 ) ( 7
=i j=o \ a — i / \ j — 1

because e(q;M) = e(q; M), H°n(M) = 0, H&M) = H'W(M) for j = 1, . . . ,

d — 1. From this proof we can easily see that equality in (5) implies

the conditions (i) and (ii).

Conversely, assume that (i) and (ii) are satisfied. Then using (5),

we may assume that depth M > 0. By Corollary 2.6 (v), we have

q'^Mia, = q'M

for all t ^ 0. Hence (1) is an equality. By induction, we may also assume
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that (2) is an equality. Further, since by Theorem 2.5 axH
j

m{M) = 0 for

all j = 0, , d — 1, we have

for j = 0, , d — 2 by Lemma 1.7. Hence (3) is an equality too. Thus,

(4) is an equality, as required.

From Corollary 2.3 and Theorem 4.1 we immediately get the following

consequence which generalizes the main result of [18].

COROLLARY 4.2. aί9 , ad is a standard s.o.p. of M iff

= (n + d)e(q; M) £ Σ
ί i j o

/or αZZ n ̂  0.

Now we will use Theorem 4.1 to study the H-S function of an arbitrary

submodule N of M with l(M/N) < oo relative to an ideal α of A with

Z(M/αM) < oo.

We shall need the following notion of [27]:

DEFINITION. au , ad is called iV-independent if every homogeneous

form in d indeterminates over M vanishing at aί9 , ad has all its

coefficients in N.

If au , ad is a standard s.o.p. of M, one can use the following

result to check whether al9 , ad is iV-independent:

LEMMA 4.3 [27, Corollary 3.4]. Let aί9-' ,ad be a d-sequence of M.

Then the following conditions are equivalent:

( i ) al9 - , ad are ~N-independent.

( ϋ ) (\d_xM\ ad c N by every permutation of aί9 , ad.

(iii) l(qnMlquN) = (n + ̂  ~ λ\ l(M/N) for some (or all) n>l.

Moreover, we call al9 , ad a minimal reduction of α relative to N

if al9 , ad e a\a2 and their initial forms in Ga(A) forms a homogeneous

s.o.p. of Ga(N). In this case, we have

e(q; N) = e(a; N).

It is well-known that minimal reductions always exist if the residue field

k: = Ajm is infinite, a hypothesis which never cause us any problem

because we can replace A by the local ring A[w]m[>], where u is some

indeterminate. See [16].
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Our result concerning the H-S function of N relative to a may be

formulated as follows.

PROPOSITION 4.4. Let N and a be as above. Then

l(M/anN)

7
j —

(n d - 7 Λ ) l i - M I N + H * ( M ) )

for all n^l. If k is infinite, equality holds for some fixed n iff for every

or some minimal reduction al9-—,ad of a relative to N, the following

conditions are satisfied:

( i ) qnN = anN.

(i i) al9 , ad is a standard s.o.p. of M.

(iϋ) [cfd-iM + H°m(M)]: ad £ N+ H°m(M) by every permutation of au

(iv) qn

Proof. Without restriction we may assume that k is infinite. Then

there exists a minimal reduction au , ad of a relative to N. We have

l(M/anN) ^ l(M/qnN) = l(M/qnM + H°m(M)) + l(qnM + H°m(M)/qnM)

+ l(qnMlqnN + qnH°m(M)) + l(qnN + qnH0JM)/q\ ) .

By Theorem 4.1, it is easy to verify that

l(M/qnM + H°m(M)) = l(MlqnM) ^ (n + d ~ ^β(α; M)

(2)

+ ±df(n + d-i-l\ίd-i-
i = l j - l \ d — I J \ J — 1

Further, we have

l(qnM + Hl(M)lqnM) + l(qnN + qnH°m(M)lq«N)

(3) = l(Hl(M)lq«Mn Wm(M)) + Z(q»tfo

m(M)/q»iVn qnH«m(M))

^ l(H°m(M)lqnNΓ) qnH°m(M)) £

Moreover, since qn is generated by ί n ~t _ T J monomials of degree TZ

i n αj, , α d ,

(4) l(q«M/qnN + q ^ ^ M ) ) ^ ( ^

Hence, summing up, we get
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l(MlanM)
d~ ^(α; M) + ± g (n + d - ι' " *) (d 7 ' 7 ^Wla'M)

i=i;=o\ d — 1 / \ — 1 /

d " ^ ^ + # ^ M »

Equality holds above iff we have equalities in (1) to (4). Clearly,

(1) is an equality iff (i) is satisfied. By Theorem 4.1, (2) is an equality

iff (ii) is satisfied. (3) is an equality iff

(5) qnMf] H°m(M) = qnH°m(M) and qnNf] qnH°m(M) = 0 .

By Lemma 4.3, (4) is an equality iff (iii) is satisfied, provided that aly

• , ad is a standard s.o.p. of M. Thus, to prove the last statement of

Proposition 4.4, we only need to show that (5) is equivalent to (iv) under

the assumption that (ii) and (iii) are already satisfied. It suffices to show

that (iv) implies

c\nMC\ H°m(M) = qnH°m(M).

Since al9 -- , α d are (N + Ho

m(M)IH°m(M))-indepenάent by Lemma 4.3, we

first have

qnMΓ\ Hl(M) = qn(N + H°m(M)) Π HUM).

Hence, applying (iv), we get qnMΠ H°W(M) = qnH°m(M), as required. The

proof of Proposition 4.4 is now complete.

COROLLARY 4.5. Suppose that the inequality of Proposition 4.4 is an

equality for some n^il. Then a is a standard ideal of M.

Proof. By Theorem 3.4, we may assume that k is an infinite field.

Then there exists a generating set S for α such that every d element

subset of S forms a minimal reduction of a relative to JV. Hence, apply-

ing Proposition 3.2 and Proposition 4.4, we get the statement.

From Proposition 4.4 we get the following estimation of the H-S

function of M relative to α:

COROLLARY 4.6 (cf. [26, Lemma 1.1]). Let r >̂ 0 and s ^ 1 be arbitrary

integers. Then

l(M/ans+rM)

in + d - l \ / ( M / α r M + HUM))
\ a — 1 /
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for all n >̂ 1. Moreover, if r > s, the inequality is proper.

Proof For the first statement, we only need to replace α and N of

Proposition 4.4 by as and arM. If r > s, equality can not happen. Other-

wise, we have

q*-iΛf g ( q ^ M + ffίtfM)): αd c α'M + fl

for every minimal reduction al9 , ad of as relative to arM by Proposi-

tion 4.4 (iii). Since we may assume that k is infinite, there exists a

generating set S for αs such that every d element subset of S forms a

minimal reduction of as relative to arM. Hence we must have

asM c arM + H°m(M) c masM

which then implies that asM = H°m(M), a contradiction to the assumption

Corollary 4.6 has the following interesting consequence which may

be used to study the relationship between degree, genus, and local

cohomology of a protective curve.

COROLLARY 4.7. Let M be a two-dimensional generalized C-M module.

Let H(ri) = l(MlaMn+ί) denote the Hilbert-Samuel polynomial of M with

respect to a. Then

H(ή) + l(Hl(M)) - l(H°m(M)) ^ 0

for all integers n. Moreover, if n < 0, the inequality is proper.

Proof. Put

H(ri)ι= n(n + 1le0 + ne1 + e2.

Note that

l(M/arM + H°m(M)) = l(MjarM) - l(arM + H°m(M)/arM)

= l(MlarM) - l(Ho

m(M)larMΓ\H°m(M))

= H(r) - l(Hl(M))

for r sufficiently large. Then, using Corollary 4.6, we have

(n + ΐ)^L±Άe0 + re, + e2 -
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for arbitrary s, n 2> 1. From this it follows, by elementary computation,
that

(r-s)(r -s + ΐ)e + ( r __ g ) β + β + Z ( H i ( M ) ) _ ; ( t fθ( M ) ) ^ 0.

Since r — s can take any value, we get the statement.

For n — 1, the inequality of Proposition 4.4 yields

l(M/aN) £ e(a; M) + I{M) + dl(M/N + H°m(M)).

From this it follows, for M — A and N = a = m, that

Z(m/m2) ^ e(m; A) + I(A) + d - 1

which gives a bound for the embedding dimension of generalized C-M

rings, cf. [1], [17], [26]. If this bound is attained, we call A a local ring

of maximal embedding dimension. J. Sally [17] and S. Goto [8] have

found that C-M and Buchsbaum local rings of maximal embedding dimen-

sion behave well. So we want to extend their results for generalized

C-M modules.

Our starting point is the following:

PROPOSITION 4.8. Let k be an infinite field. Then

l(M/aN) = e(α; M) + I(M) + dl(M/N)

iff for some or every minimal reduction au , ad of a relative to JV, the

following conditions are satisfied:

( i ) c\N=aN.

(ii) au - - , ad is a standard s.o.p. of M.

(iii) qa.-ίM: ad c= N by every permutation of au , ad.

Proof. (=̂ >) By the inequality of Proposition 4.4, we must have

H°m(M) c N. Hence, by the conditions for equality of Proposition 4.4, we

only need to show (ii). Since au , ad is already a standard s.o.p. of M,

by Corollary 2.3, it suffices to show that qMΠH°m(M) = 0. Note that

al9 - -, ae are (iV/iϊ^M^-independent by Lemma 4.3. Then we have

qMΠH°m(M) = qNf]H°m(M) = 0

by Proposition 4.4 (iv).

By Corollary 2.6 (iv), we have

Hl{M) = 0*: ad c q^.M: ad c JV.
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Hence the conclusion follows from Proposition 4.4 by using Corollary 2.3.

COROLLARY 4.9. Suppose that

l(M/aN) = e(a; M) + I(M) + dl(MIN).

Then the following statements holds:

α tf) = ( n + d

d ~ X)β(α M)

for all n JΞ> 0.

(ii) a is a standard ideal of M and N.

Proof Without restriction we may assume that k is infinite. Note
that H°m(M) C N. Then (i) can be easily deduced from Proposition 4.4.
Since there exists a generating set S for α such that every d element
subset of S forms a minimal reduction of α relative to N, a is M-standard
by Proposition 4.8 (ii) and Proposition 3.2. To show that α is iV-standard,
we only need to show that every minimal reduction al9 , ad of α relative
to N is a standard s.o.p. of N. Note that qN = aN by Proposition 4.8 (i).
Then

I(q; N) = l(MlqN) - l(M/N) - e(q; M)

= l(M/aN) - l(M/N) - e(a; M)

To compute I(N) we consider the exact sequence

0 >N >M >M/N >0.

Note that

Hl(N) = iVΠ HUM) = Hl{M).

Then from the above exact sequence we get the exact sequence

0 _ > MIN — > Hι

m(N) — • Hl(M) -^ 0.

Thus, since H{

m(N) s Hι

m(M) for i ^ 2, using Lemma 1.5 we get

= Σ f ̂  T λ) l(Hi(N)) = Σ (d 7 τ) KHi(M)) + (d- ϊ)l(M/N)
ί=o \ I I i-o \ I I

= I(q; N).
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Hence au , ad is a standard s.o.p. of N, as required.

In particular, if

l(M/a2M) = e(a; M) + I(M) + dl(MlaM),

Corollary 4.9 (i) gives an explicit formula for l(M/an+1M) (by replacing

N by aM), which recovers all known results on H-S functions of C-M and

Buchsbaum local rings of maximal embedding dimension, cf. [8] and [17].

It should be pointed out that there do not exist generalized C-M

non-Buchsbaum rings of maximal embedding dimension. This fact follows

from the following consequence of Corollary 4.9 (ii):

COROLLARY 4.10. Suppose that

l(MlmN) = e(m; M) + I(M) + dl(M/N).

Then M and N are Buchsbaum modules.

EXAMPLE. Let al9 , ad be a standard s.o.p. of M, then

l(M/aN) = e(a; M) + I(M) + dl(M/N)

for any module N =2 qM + Σί=x (au , at, , ad) M:ai and any ideal α

such that q cz α <^qN: N. For, we have qN = aN, hence e(q; N) = e(α; iV)

or, equivalently, e(q; M) = e(a; M) which we really need in the proof of

Proposition 4.8 for the above equality instead of the assumption that

al9 - , ad is a minimal reduction of a relative to N.

% 5. Associated graded modules

In this section, we will study when the associated graded module

Ga(M): = ®anMlan+ίM
71 = 0

of M relative to an ideal a of A with l(M/aM) < co is a graded gener-

alized C-M module over Ga(A).

We shall denote by α* the initial form of an element a of A in Ga(A),

i.e. the image of a in anjan+1 where n is the largest integer such that

aean.

We start with the following result which is originally due to S. Goto

[10, §3]:

LEMMA 5.1. Let al9 , ad be a minimal reduction of a relative to M.

Let nu , nd be arbitrary positive integers. Then
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1 \ a i 9 9 a d 9 ^ α l - ί ^ / / ^ •*• \ a i 9 9 a d 9 1 V 1 )

Equality holds iff

d

anMΠ (αj1, , an/)M = Σ α?*αn'niM

/or αZZ λi ^ 0, where we set am = A if m < 0.

Proof We have

l(Ga(M)l(a*n\ , αΓd)Gα(M)) = fl / ( ^ - ^ / έ ^"-"'Af +

^ Σ l(anMlanMΠ (α?1, , αSd)M + αn+1M)

= Σ z((βϊS , dT)M + cfMKaζ1, , α2ώ)M + αTC+1M)
71 = 0

= Z (M/Γ) ((α?1, , σ5d)Λί + αn+1M)) = l(MI(at\ , αSd)M).
\ / w=0 /

Note that

e(α*wi, , a*nd; Ga(M)) = n^- nde(a*, , α*; Ga(M))

= n r - nde(a; M) = e(αJS , αSd; M) .

Then we get

(1) I(ar\ • , αΓώ Gα(M)) ^ I(a^, , αj- M ) ,

which will be an equality if

(2) α*MΠ (αϊ1, , α^)M - g o?'αn-n*M.

Conversely, assume that (1) is an equality. Then we must have

anMΓ) (α?1, , an/)M g Σ αΓ^" W i M + απ+1iW

for all λi JΞ> 0. Hence

α^ilίίl (α?1, , af)M = Σ α^α^'^M + αn+1MΠ (α?1, , o

2] α^αn-n ίM + αn + 2M
ί l

m-n + l \ί
c n

Wl = 7l +

which then implies (2), as required.
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From Lemma 5.1 we can conclude that the property of being a

generalized C-M module is transferred from Ga(M) to M.

COROLLARY 5.2 [10, Proposition 3.1]. Suppose that Ga(M) is a gener-

alized C-M module. Then so is M with I(M) £ I(Ga(M)).

Proof. Without restriction we may assume that k is an infinite field.

Then we can find a minimal reduction aί9 , ad of α relative to M. By

Lemma 5.1, we have

for all positive integers nί9 , nd. Hence M i s a generalized C-M module

with I(M) <: I(G£M)) by Lemma 1.1 (iii) and Lemma 1.5.

In general, it is hard to find conditions for the converse of Corollary

5.2. We can only prove this converse if a is generated by a standard

s.o.p. of M or if l(Mja2M) attains some extreme value.

First, we will exhibit some properties of cϋ-sequences (hence of standard

s.o.p.'s) related to this topic.

LEMMA 5.3 (see e.g. [27, §3]). Let aί9-- 9ad be a d-sequence of M.

Then

( i ) Gq(M)l(a*, , af)Gq(M) ^ Gq(M/qtM)9 ί = 1, • , d - 1.

(ii) Gq(M) = Sq(M)lqSq(M), where Sq(M) denotes the symmetric module

of M with respect to q.

Now we are ready to investigate the associated graded module Gq(M)

of a standard parameter ideal q of M. We will denote by P the maximal

graded ideal of Gq(A).

THEOREM 5.4 (cf. [4, (10.1)] and [9, Theorem 1.1]). Let al9 , ad be a

standard s.o.p. of M. Then Gq(M) is a generalized C-M module with

WP(Gq(M)) = Hi(M)(i)

for ί = 0, , d — 1, where H\n{M) is considered as a graded module con-

centrated in degree 0 (the integer in the round brackets denotes the shifting

degree), and [Hd

P{Gq(M))]n = 0 for n> -d.

Proof. Note that qMf]H°m(M) = 0 by Corollary 2.3. Then

[Gq(M)]n = qnM + H°m(M)lqn+1M + H°m(M) ~ qnMlqnMf]H°m(M) + qn+ίM

iM = [Gq(M)]n
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for all n > 0. Hence we have the exact sequence

(1) 0 > Hl{M) • Gq(M) • Gq(M) > 0 .

Now, it is clear that we only need to prove the statement for M, i.e. we

may assume that depth M > 0. In this case, using Corollary 2.6 (v), we

have

BWio: α*L = qnM Π (qn+2M; ai)lqn+1M = 0

for all n ^ 0. Therefore, af is a non-zerodivisor of Gq(M). Hence

H°P(Gq(M)) — 0. Moreover, we have the exact sequence

(2) 0 — • GSM) ^ - > GSM) —+ GSM)lafGSM) — • 0.

Note that by Lemma 5.2 (i),

Gq(M)la*Gq(M) ^ G^M/^M).

If d = 1, GlMja.M) = M/aM Hence from (2) we get

α*

for all n >̂ 0. Since every element of Hι

P(Gq(M)) is annihilated by some

power of αf, we must have [ίfp(Gq(M))]n = 0 for all n ^ 0. So we have

proved the case d = 1. If c? > 1, by induction we may assume that

for ί = 0, , d - 2, and [fffr^G^M/dM))], = 0 for n > 1 - d. Then from

(2) we can deduce that

[HUGq(M))]n - ^ > [HUG,(M))]n+1

and, therefore, [iiMGq(M))]n = 0 for all n > - i , i = 1, , d. For n =

— i, i = 1, , d — 1, we may assume, by induction, that there exist

isomorphisms <̂ _i and ε ^ which make the following diagram commutative:

0 > Hτ

m'\M) > H^\MlaxM) • H*m(M) > 0

where the short exactness of the lower sequence follows from the fact

= a.HUM) = 0 of Theorem 2.5, and 3* is the induced isomor-
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phism. It remains to show, for the induction proof, that the diagram

[h

(4) l
HUM)

is commutative. For that we consider the following cubic diagram:

i
Hί(Mla2M)

where the top face is derived from the commutative diagram

GIM) > G,(Af)laϊG,(M)

αf, a*)Gq(M)

by using Lemma 5.3 (i). The commutativity of the left face has been
shown in (3) by replacing αx by α2. By induction we may also assume
that the front and right faces are commutative (the assumption depth
M > 0 does not cause us any problem because (1)). That the bottom
face is commutative is immediate. Thus, since a is surjective by virtue
of (3), we can conclude that the back face, i.e. (4), is commutative too.
So we have proved that

For n = 1 — ί, we consider the commutative diagram

0 — > [H

0 -> HUM)

Then we can see that ,.; = 0. For n < 1 — i, we have
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by (2) and the induction hypothesis on M\axM. Hence

[HUGq(M))]n ^ [H^GjίM))]^ = 0,

as required. The proof of Theorem 5.4 is now complete.

Theorem 5.4 has some interesting consequences. First, we can show

that the property of being a standard s.o.p. is reserved between M and

Gq(M) in the following sense:

COROLLARY 5.5. al9 , ad is a standard s.o.p. of M iff a?, , a$ is

a standard s.o.p. of Gq(M).

Proof. (=» follows from Corollary 3.12 and Theorem 5.4. For «=)

we know, by Corollary 5.2, that M i s a generalized C-M module with

I(M) £ I(Gq{M)) = I(af, . . ., α*; Gq(M)) == I(q; M) £ I(M).

Therefore, we must have I(q; M) = I(M).

Moreover, we have the fo] lowing property of powers of standard

parameter ideals:

COROLLARY 5.6 (cf. [9, Corollary 1.2]). Let aί} , ad be a standard

s.o.p. of M. Then

(α?1, , ά5*)MΓi qnM = | ] a^'^M

for all positive integers nu , nd and n ^ 0.

Proof By Lemma 1.5 and Theorem 5.4, we have I(Gq(M)) = I(M).

By Corollary 3.3 and Corollary 5.5, α?ni, , αf1* and a\\ - -, an

d

d are

standard s.o.p.'s Gq(M) and M9 respectively. Hence

I{a*n\ - -,aΓd; Gq(M)) - /(α?1, , a\Λ\ M),

which then implies the statement by Lemma 5.1.

Now, we will give a criterion for an irrelevant graded ideal of Gq(M)

to be Gq(M)-standard.

THEOREM 5.7. Let aί9 , ad be an arbitrary s.o.p. of M. Let a Ξ2 q

be an ideal of A. Let α* denote the ideal of Gq(A) generated by the initial

forms of the elements of a. Then α* is Gq(M)-standard iff the following

conditions are satisfied:

(i) al9 - - , ad is a standard s.o.p. of M.

(ii) qd_1M: ad c; qd_xM: a by every permutation of au , ad.
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Proof. (=>) (i) follows from Corollary 5.5. For (ii) it suffices to show

that αiϊJt(ilί/qd_1M) = 0. Since ad is a standard s.o.p. of Mjc\d_xM by

Corollary 2.4, we have

by Theorem 5.4. But

O/M/q^M) s; G,(M)/(α*, , a^

by Lemma 5.3 (i). Hence, from the fact that

a*H°P(Gq(M)Ka*, ., a^)Gq(M) = 0

(αf, , af is a α*-weak Gq(M)-sequence by Proposition 3.1), we can easily

conclude that aH°m(M/qd_ίM) = 0.

(4=) From (i) and Theorem 5.4 we get H°P(Gq(M)) ^ H°m(M), where

H°m(M) is considered as a graded module concentrated in degree 0. Thus,

if d = 1, we have a*HP(Gq(M)) = 0 because aH°m(M) - 0 by (ii). Hence

α* is Gq(M)-standard by Theorem 2.4. For d > 1, we first consider the

case depth M > 0.

In this case, af is a non-zerodivisor of Gq(M). Further, by induction,

we may assume that α* is Gq(M/α1M)-standard. Note that

M) = Gq(M)/a*Gq(M)

by Lemma 5.3 (i) and that

afHP{G<ίM)) = 0

by Theorem 5.4. Then α* is Gq(M)-standard by Corollary 3.8.

For the case depth M — 0, we first note that

Gq(M)IHP(Gq(M)) ^ GSM)

by the proof of Theorem 5.4. By Corollary 2.3, au - ,ad is still a

standard s.o.p. of M. Moreover, using Corollary 2.6 (iv), we also have

: ad c \J q^M: mn = q^M: ad c qd^M' a

Hence α* is Gq(M)-standard by the above proof for the case depth M < 0.

Now, by Corollary 3.9, it remains to find a Gq(M)-base S for α* such

that for every d element subset {/l5 ,/d} of S,
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Of course, we may assume that the residue field k is infinite. Since

a*IPa* = α/mα® q/mq, we can find a Gq(M)-base S for α* such that every

element feS has the form ί>* + e* for some b e α, ce q\mq. Let bf + cf,

• , b$ + ct be d elements of S. Note that

for all i = 1, , d, n large. Then cf, , cj also form a s.o.p. of Gq(M).

From this it follows that

(cf, , ci)G,(A) = (α*, , αJ)Gq(M).

Hence we can write

°t = Σ c* A + rf«

for some units ctj of A and ê  e mq, ί = 1, , d, such that det (α^) is a unit

of A. Now, by Lemma 5.3 (ii), we will represent Gq(M) as Sq(M)jqSq(M).

If we denote by A[X] the polynomial ring over A in d indeterminates

Xu , Xd, then Sq(M) is defined to be the factor of M[X] = M®A A[X]

by the submodule F generated by all elements m^ + + mdXd such

that a1m1 + + admd = 0. Hence

M[X]/qM[X] + F.

Put

Yt = Σ ciJXJ + di + bi,
. 7 = 1

i = 1, , d. Then A[X] = A[YU , 7d]. Further, using (ii) we can

easily verify that

Let g be an arbitrary element of (6f + cf, , 6J + c*)G,(M) Π H°P(Gq(M)).

Note that H°P(G£M)) ^ H°m(M\ Then we can find a representative Λ of

£ in (Yj, •••, Yd, q)M[X] Π ffP). Since Yx, ••-, Yd may be considered

as indeterminates over A, we must have h e qMΠiϊm(M) = 0 by Corollary

2.3. Hence g = 0, as required. The proof of Theorem 5.7 is now complete.

Remark 5.8. From the above proof one can easily verify that the

conditions of Theorem 5.7 may be replaced by the condition
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) = 0

for all non-negative integers i, j with i + j < d and every permutation

of al9 -'',ad. In particular, that is always satisfied if α is a standard

ideal of M.

Concerning the theory of Buchsbaum modules we have the following

interesting consequences:

COROLLARY 5.9. M is a Buchsbaum module iff so is Gq(M) for every

parameter ideal q of M.

Proof. Straightforward.

COROLLARY 5.10. M is a quasί-Buchsbaum module, i.e. mH)n{M) — 0

for i — 0, , d — 1, iff G^M) is a Buchsbaum module for some parameter

ideal q of M.

Proof. (=>) follows from Theorem 5.7 and the fact that every s.o.p.

of M contained in large powers of m is standard and m-weak [20]. For

(<=) we first note that al9 , ad is a standard s.o.p. of M by Corollary

5.5. Thus, we can apply Theorem 5.4 to show that mHι

m{M) = 0 by using

the fact PH*P(Gq(M)) = 0, i = 0, ., d - 1.

Now we will study Ga(M) in the case Z(M/α2M) attains some extreme

value (the module-version of Buchsbaum rings with maximal embedding

dimension).

PROPOSITION 5.11 (cf. [8, Theorem 1.1]). Suppose that M is a gener-

alized C'M module and

l(M/a2M) = e(a; M) + I(M) + dl(MjaM).

Then Ga(M) is a generalized C-M module with

H*Q(G£M)) =

for i = 0, , d - 1, and [Hd

Q(Ga(M))]n = 0 for n > 1 - d, where Q denotes

the maximal graded ideal of Ga(A). Moreover, the ideal α* of Ga(A) gener-

ated by the initial forms of the elements of a is Ga(M)-standard.

Proof. Without restriction we may assume that the residue field k

is infinite. Let al9 , ad be a minimal reduction of α relative to aM.

Then qαM = a2M by Proposition 4.8 (i). Hence we have the following

exact sequence of Gq(A)-modules:
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0 > f; q'M/q'αM > © a'Mja'^M • ( © tfctM/q'+'ilfV-l) • 0.
t = 0 ί = 0 \ί = 0 /

By Lemma 4.3, from Proposition 4.8 (ii) and (iii) we get

© q'M/q'αM s (MI<xM)[Xu • • , Z t f ] ,
ί = 0

which is a C-M module over Gq(A) whose dth local cohomology module

concentrated in degree <^ — d. Thus, from the above exact sequence we

can deduce that

for / = 0, , d — 1, and

[H%(Gu(M))]n =

for n > —d. On the other hand, we also have the exact sequence

0 > © qιaMlqt+1M > © q'M/q'^M • © q'M/q'aM > 0 .

From this it follows that

for i = 0, , d — 1, and

) ] = [H%(Gq(M))]n

for n> —d. But by Proposition 4.8 (ii), α1? •• , α d is a standard s.o.p.

of M. Hence we can estimate the local cohomology modules of Gq(M)

by Theorem 5.4. Note that

WQ{Ga(M)) = \\mH\a*\ --^aΓ; G£M)) = H

i = 0, , d, where a?, -,af may be understood both as elements of

Ga(A) and Gq(A). Then from the above relations we can easily derive

the formulas for H^G^M)) as required. The fact that α* is Ga(M)~

standard follows from Corollary 3.12.

Similar to Corollary 5.6 of Theorem 5.4, we have the following

consequence:
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COROLLARY 5.12. Let M and a be as in Proposition 5.11. Let aί9 ,

ad be a minimal reduction of a relative to M. Then

(α?1, , an/)Mf] anM = £ α ? ^ 7 1 " 7 2 ^

for all positive integers nί9 , nd and n ^ 0.

§ 6. Rees modules

Let α be an ideal of A with l(M/aM) < oo. Then we call the graded

module

i?0(M):= © α n M

over the Rees algebra i?Q(A) the Rees module of M relative to α. It is

also known under the name arithmetical blowing-up [3], [4],

It is well-known that Ga(M) = RQ(M)/aRa(M) and that aRa(M) may

be identified with the positively graded part of Ra(M) by an isomorphism

of degree —1. From these facts we can show that concerning the pro-

perty of being a generalized C-M module, there is a close relationship

between Ga(M) and R£M).

We shall denote by Q the maximal graded ideal of G£A).

PROPOSITION 6.1. The following conditions are equivalent:

( i) M and R£M) are generalized C-M modules.

(ii) Ga(M) is a generalized C-M module.

Proof, (i) => (ii). From the exact sequences

0 > aRa(M)( -1) > R£M) > M > 0

0 • aRa(M) > R£M) > G£M) • 0

we can easily deduce that first, aRa(M) and then Ga(M) is a generalized

C-M module.

(ii) => (i). That M is a generalized C-M module follows from Corollary

5.2. To show that Ra(M) is a generalized C-M module, we may assume,

without loss of generality, that A is a complete local ring. Then A is

a factor of a regular ring, hence so is Ra(A). By Lemma 1.2 (iv) and

Lemma 1.4, it suffices to show:

(1) dim Ra(A)/P = d + 1 for any minimal prime divisor P of Ra(M).

(2) [Ra(M)]p is a C-M module for every prime ideal p Φ Q of

Supp(i?Q(M)).
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For (1) we identify Ra(A) with the subring A[aT] of A[T] (T is an
indeterminate) generated over A by all elements aT, aea. It is easy to
see that

Ann (Ra(M)) = Ann (M)A[T] Π A[aT],

where Ann denotes the annihilator. From this it follows that

i?α(A)/Ann (Ra(M)) = Ra(A/Ann (M)) .

Therefore, since dim A/p — d for any minimal prime ideal over Ann (M)

by Lemma 1.2 (iv), dim Ra (A)/P = d + 1 for any minimal prime ideal P

over Ann (jRfl(Af)) by [28, § 1].

For (2) we set p = PΓ\ A. If α £ p, we have [A[αΓ]]p = AP[Γ]. Hence

[i?Q(M)]p = M^T7]. Since by Lemma 1.2 (iv), Mp is a C-M module, so is

[RQ(M)]P as a localization of [Ra(M)]p. If α <Ξ p, i.e. p = m, there exists

some element aea such that aT e P because P Φ Q = (m, aT)A[aT]. Since

αcαA[αT, (αΓ)"1],

[Bβ(M)]/α[Λβ(M)]P = [fiβ(M)]P/α[Λβ(M)]P = [Ga(M)]P ,

which is a C-M module by Lemma 1.2 (iv). Moreover, since 0^ is unmixed

up to m by Lemma 1.2 (iii), using a module-version of [28, Proposition 1.1

(iii)], we can show that a is a non-zerodi visor of [Ra(M)]P. Hence [Ra(M)]P.

is a C-M module, as required. The proof of Proposition 6.1 is now

complete.

Now, we want to study Ra(M) in the case a = q is a standard

parameter ideal. Note that in this case, Rq(M) = Sq(M), which follows

from property of G?-sequences, see [13], [14], [27], [29], Then the following

result also holds for symmetric modules:

THEOREM 6.2 (cf. [4, (11.1)]). Let au , ad be a standard s.o.p. of M.

Then Rq(M) is a generalized C-M module with

= Hi(M)

0 W-\M){n)

for i = 1, , d, where Wm{M) is considered as a graded module over

R,(M) concentrated in degree 0, and [Hd

Q

+1(Rq(M))]n = 0 for n ^ 0.

Proof. For brevity we set M* = J?q(M). Since by Corollary 2.3,

qMΠH°m(M) = 0, we have
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H°Q(M*) = φ q«MΓ\H°m(M) =
71 = 0

To estimate HQ(M*), i >̂ 1, we consider the exact sequences

0 > qΛf *(-1) • M* > M > 0

0 > qM* > M* > Gμ(M) > 0 .

From the first sequence we get

(1) [H^M*)]n s [WQ{M*)]n+ί

for n Φ — 1. Using Theorem 5.4, from the second sequence we get

(2) TOqM*)L S [H'Q(M*)]n

for 72 ̂  — i, 1 — ΐ, and the exact sequences

(3) 0 —-•

(4) [ff^W*)li-* > ff

Since H^M*) is an artinian module, [i?"̂ (Af *)]π = 0 for n large enough.

Hence, from (1) and (2) we get [iΓρ(M*)L = 0 for n ^ 0. Now let

/ = 1, , d - 1. Note that by Theorem 5.4 and Proposition 6.1 Hl

Q(M*)

is of finite length. Then [H^iM*)^ = 0 for τι small enough. Hence,

using (1), (2) and (3) we get [fl^M*)]n = 0 for rc ^ 1 - ί. Now, from

(1), (2) and (4) we can conclude that

for / - 2 ^ n ^ 1. Thus, H*Q(M*) is the direct sum of H]-\M)(n), i - 2

n >̂ 1. The proof of Theorem 6.2 is complete.

Remark 6.3. By the statement of Theorem 6.2 we always have

H\(RIM)) = 0, and, if d ^ 2, H2

Q(R,(M)) = 0.

The following consequence of Theorem 6.2 is the content of SchenzeΓs

paper [19] which generalizes similar result of Goto and Shimoda in the

theory of Buchsbaum rings [7], [12].

COROLLARY 6.4. Let q be an arbitary parameter ideal of M. Then

Rq(M) is a C'M module iff the following conditions are satisfied:

(i)

(ii) q
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Proof. (=>) First, we have H°m(M) = [H°Q(Rq(M)]0 = 0. For i > 0, we

consider the exact sequences

0 • qi?q(M)(-1) > R,(M) • M > 0

0 > qRq(M) • Rq(M) • Gq(M) > 0 .

Since Hι

Q{RJiM)) = 0, i = 0, , d, it is easily seen that

for i = 1, , d — 1. Thus, by Corollary 3.12, αf, , αf is a standard

s.o.p. of Gq(M). Hence, by Corollary 5.5, α1? •• , α d is a standard s.o.p.

of M, which then implies (ii). Moreover, we can compare the above

formula for ίί^(Gq(M)) with the one of Theorem 5.4 and immediately get

(i)

(<ίz) By Corollary 3.7, q is a standard parameter ideal of M. Hence,

by Theorem 6.2, Rq(M) is a C-M module.

Theorem 6.2 may be also applied to study the Rees modules of the

module-version of Buchsbaum rings with maximal embedding dimension.

PROPOSITION 6.5. Suppose that M is a generalized C-M module with

d > 2 and

l(M/a2M) = e(a; M) + I(M) + dl(M/aM).

Then Ra(M) is a generalized C-M module with

Hl(Ra(M)) = Hl(M) Θ

H\(Ra{M)) = HUM)

WQ(Ra(M))= 0 H]-\M)(ή)

for 2^i^d, and [Hd

Q

+\Ra(M))]n = 0 for n ^ 0.

Proof. Without restriction we may assume that the residue field k

is infinite. Let aί9 —-,ad be a minimal reduction of α relative to M

(hence to aM too). Then, by Proposition 4.8 (i),

qanM = an+1M

for all n>l. By Proposition 4.8 (ii) and Corollary 2.3, <\MΓ\H°m(M) = 0.

By Corollary 2.6 (iv) and Proposition 4.8 (iii),

Hl{M) = 0*: ad c q ^ M : ad c αilf.
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Using these facts, it is easy to see that

H°Q(Ra(M)) = HUM) Θ ff°m(M)(-l).

To estimate H%(Ra(M)), i I> 1, we first consider the exact sequence

0 > aRa(M)(-ΐ) > Ra(M) > M > 0 .

Then we have

n = [HUaRa(M))]n-i

f o r n Φ 0. N o t e t h a t aRa(M) = Ra(aM) = Rq(aM) a n d t h a t a19 - >,ad i s

a standard s.o.p. of aM by Corollary 4.9 (ii). Then we can apply Theorem

6.2 to aM and get

WQ(aRa{M)) = © W-\aM){n)

for i = l, ••-,(*, and [#£+I(αi?α(M))]n = 0 for n ^ 0. Since

Hι

m(M) for i > 1, from the above relations we can easily derive the formulas

for HQ(RXM)) of Proposition 6.5 except the following ones:

= HUM)

for i > 1. But these formulas are easily seen from the zero-graded part

of the derived local cohomology sequence of the exact sequence

0 • aRa(M) > Ra(M) > Ga(M) > 0

by using the above formula of H^aR^M)) and the one of Hl

Q{Ga{M)) of

Proposition 5.11.

Remark 6.6. (1) By the statement of Proposition 6.5 we always have

H2

Q(Ra(M)) = 0 and, if d ^ 3, H%(R£M)) = 0.

(2) If d = 1, we get another formula for H\(Ra(M)) than the one of

Proposition 6.5. Namely, using the same method as in the proof of

Proposition 6.5, we can show that in this case,

HQ

Q(Ra(M)) = Hl(M) Θ

H\{Ra{M)) = 0

[H%(R£M))]n = 0 for 72 ^ 0 .

From Proposition 5.6 and Remark 6.6 we immediately get the following

interesting consequence:
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COROLLARY 6.7. Let M and a be as in Proposition 6.5 Then Ra(M)

is a C-M module iff Hi(M) = 0 for ί Φ 2, d.
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