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1. T h e Need for a Mult i -Scale Analysis 

Today, large astronomical plates are digitised with fast scanners, leading to images with about 
10 9 pixels. This amount of information permits astronomers to apply various computer vision 
techniques to get inventories of the objects on the plates. 

Many kinds of vision models have been implemented. The most classical one is based on the 
detection of the edges; we have applied this (Bijaoui et al. 1978) to astronomical imagery. We 
choose the Laplacian of the intensity as the edge line. As this function is the sum of the second 
partial derivatives of a noisy function, we need to smooth and to threshold it. The results are 
independent of large scale variations, such as the ones due to sky background. No previous 
background mapping is necessary; this permits real time analyses. The resulting procedure is very 
fast, requiring small memory sizes. Many false detections exist if we do not want to miss 
threshold objects. The accuracy of the magnitudes is not sufficient. However, the main 
disadvantage lies in the difficulty of getting an available object classification: astronomical 
sources are not recognized from their edges, but from their intensity profiles. 

Many reduction procedures have been built using a model in which the image is the sum of 
a slowly variable background with superimposed small scale objects (Stobie 1986; Slezak et al. 
1988b). The first step needs to build a background mapping (Bijaoui 1980). For that purpose 
we need to introduce a scale: the background is defined in a given area. Many statistical 
estimators derived from the local histogram of intensity are used: mode, median, result from a 
model , etc. 

The resulting background map is subtracted. Each pixel which has a significant intensity is 
considered to belong to a real object. A cross-correlation with the star profile is done in order 
to optimize the detection of these objects. A threshold is computed from the distribution of the 
intensity pixels. An image labelling is performed (Rosenfeld 1969), producing positions, 
magnitudes and pattern parameters. 

Generally, this procedure leads to quite accurate detection and recognition. The computations 
are fast and require little memory. The model works very well for sparse fields; but for richer 
ones, a detection may correspond to many objects. The background map is done at a given scale: 
larger objects are removed. The smoothing is only adapted to the star detection, not to extended 
objects. The analysis does not take into account the wings of the objects. The classification 
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allows us to separate stars from galaxies but not to recognize the galaxy type. 
A n improvement of the previous model is done with the introduction of a radial profile for 

each source (Le Fèvre et al. 1986; Slezak et al. 1988a). An astronomical object is associated with 
a point-like structure; we have thus only to detect the local maxima. The radial profile of the 
object contains the main information on the source. The method is similar to the previous one 
up to the image labelling, which is replaced by a maxima detection followed by the determination 
of the radial profile. The quality of the measurements is increased, and the derived pattern 
parameters permit a gain in the separation between stars and the galaxies. 

The defects of this procedure lie in the impossibility to describe complex structures. The 
method is adapted to quasi stellar sources on a slowly varying background. 

In fact, the vision models we have used on many set of images failed to accomplish complete 
analysis because they are based on a single scale for the adapted smoothing and for the 
background mapping. The observation of sky images furnishes many examples for which we see 
a small star embedded in a larger structure, itself embedded in a larger one, and so on. A 
multiscale analysis allows us to get a background adapted to a given object and to optimize the 
detection of different size objects. This is the reason why we became interested in the use of the 
Wavelet Transform. 

2 . The Continuous Wavelet Transform 

Morlet-Grossman's (Grossmann & Morlet 1985) definition of the continuous wavelet transform 
for a ID s ignal / (x) € L2(R) is: 

where ζ designs the conjugate of ζ, y(x) is the analyzing wavelet, a (> 0) is the scale parameter 
and b is the position parameter. This is a linear transformation which is convenient for numerical 
computations, statistical analysis and astronomical understanding of the results. The wavelet 
transform is covariant under translations: the analysis does not depend on the origin of the 
coordinate frame. It is the general property of convolution operators. It is also covariant under 
dilatations: this is the property which gives its originality to the wavelet transform. W e get a 
mathematical microscope the properties of which do not change with the magnification. Our 
vision model thus decomposes the image into the scale space, allowing us to detect objects of 
different sizes. 

W e can restore fix) from its transform by the formula: 
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where: 

The wavelet function must have a null mean (ψ(ν) = 0) . This transform is a set of pass-band 
filterings. 

In the Fourier space, we get: 
W(a,v) = ylaf(v)y*(av) . 

When the scale a varies, the filter ty*(av) is only reduced or dilated, keeping the same pattern. 
The Fourier space is scanned with a filter the band of which is proportional to the frequency. 

3 . The Discrete Wavelet Transform 

Litüewood-Paley's decomposition (Littlewood & Paley 1931) furnished a nice approach for this 
frequency scan. W e start from a signal which is perfectly observed in the frequency band 
[-V£,V£], The Shannon sampling step is 1. By low and high pass filterings, we separate the 
information into two parts. The sampling step is now 2 for the two resulting signals. W e iterate 
on the low frequency part, leading to two signals sampled with a step 4 , and so on. By this 
analysis, the information is well described by the successive high frequency parts. These 
correspond to the discrete wavelet transform with a special wavelet function, the difference of two 
sine cardinal ones. 

The discrete wavelet transform is generally not performed by a simple discretization of the 
continuous transform. The classical algorithm (Mallat 1989) is a generalization of Litüewood-
Paley 's decomposition, but it is performed in direct space. It corresponds also to an extension 
of the classical Haar Transform. 

The discrete wavelet transform can be processed by many algorithms (Bijaoui 1991). The 
constraints we put on the transform result from the chosen strategy. For stars, and generally 
astronomical sources are quite isotropic sources, no direction is privileged. Thus we choose an 
isotropic wavele t W e need to connect fields from different scales. The redundancy is not 
critical, but we need it to restore an image from the transform. Finally, we need also to have a 
fast algorithm. These constraints led us to use the Algorithme à trous (Bijaoui 1991; 
Holdschneider et al. 1989), which results from the difference between two B-spline interpolations. 
B3(x) is close to a Gaussian function and the results are quasi-isotropic. With B5(x) the 
discrepancy to the Gaussian is very faint, and the interpolation and the wavelet can be considered 
as isotropic. 

This algorithm computes a new image for each dyadic scale. W e can reduce the sampling 
scale by scale, in the case of a pyramidal algorithm. 
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4. A Mult iscale Vision Mode l 

After applying the wavelet transform on the image, we have to extract, measure, and recognize 
the significant structures. The wavelet space is a 3D one. An object has to be defined in this 
space. 

In the first step, we do an image segmentation scale-by-scale in the wavelet space. An object 
could be defined from each labelled fields without taking into account the interscale relationships, 
called neighbourhoods. W e can restore an image of these objects from the known wavelet 
coefficients, but this restoration does not use all the information. 

Secondly, we link the labelled fields from one scale to the following one. That leads to 
building a tree of neighbourhoods, from the largest scale to the smallest one. After this operation 
we can say if a large scale field contains smaller ones, which contain still smaller ones, and so 
on. 

The image is a set of connected trees, corresponding to different objects. W e could define an 
object as one tree, but must beware of reducing the number of objects in too high a manner. A 
small star may belong to a small nebula, the tree corresponds to the nebula, and we do not 
consider the star if we take into account only the connected tree. This is the reason why we 
define an object as a subtree resulting from the image segmentation in the wavelet space. 

Let us consider now an object, such as it was defined. It corresponds to a field D in the 
wavelet space. It is fully determined from its wavelet coefficients w0

(i)(k,l). W e have to restore 
an intensity distribution ci0)(k,l)y such that its wavelet transform has the same coefficients in D. 
The restoration algorithm is an extension of the classical Van Cittert 's deconvolution algorithm 
(Burger & Van Cittert 1932). 

This algorithm provides an image for each object. It is easy to compute from each of them 
any kind of parameters: mean position, total intensity, pattern parameters, etc. 

5. Conclus ion 

While w e have not done enough experiments to claim that the resulting measurements would be 
more accurate than the ones derived from other models, the vision model resulting from the 
wavelet transform allows us to detect, to measure and to recognize an object as complex as 
available. The procedure does not introduce any prior information on the stellar profile or on the 
scale of the background variations; this is very important for automated procedures. 

Finally, our experiments show that the quality of the detection is very good with this 
procedure. A n experiment on the SA57 field gives a dispersion of less than 0.08 for the 
magnitudes of about 2 3 - 2 4 (compared to careful interactive processing). Using a very different 
approach, Coupinot et al. (1992) also obtained accurate measurements from the wavelet transform. 
The main disadvantage lies in the amount of data used. The algorithm à trous leads to an 
increase in the data by the number of scales. In our experiments we used 4 - 5 scales, but this 
increase is too high for large astronomical images. W e thus are now examining a way to reduce 
this data amount with a pyramidal transform. 

The wavelet information is kept only on a few coefficients; this leads not only to data 
compression but also to data fusion. This last operation is essential for the comparison of many 
images observed under different conditions (Bijaoui & Giudicelli 1991). 

This vision model may be improved using the stellar profile. In the wavelet space, we can 
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recognize the wavelet images connected to star-like objects. This procedure is more complicated 
and we have used it only for image restoration (Starck & Bijaoui 1993). 
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