DIVISORIAL PRIME IDEALS IN PRÜFER DOMAINS

BY
MARCO FONTANA* JAMES A. HUCKABA AND IRA J. PAPICK

Abstract

Given a Prüfer domain R and a prime ideal P in R, we study some conditions which force P to be a divisorial ideal of R. This paper extends some recent work of Huckaba and Papick.

1. Introduction. Let R be an arbitrary Prüfer domain and $P \in \operatorname{Spec}(R)$. In this paper we study some conditions which force P to be divisorial, i.e., $P=P_{v}$. This work expands upon a recent paper of Huckaba and Papick [5]. In particular we generalize [5, Proposition 3.10] and [5, Proposition 3.11]. Unexplained terminology and unreferenced facts about Prüfer domains may be found in [3].
2. Some sufficient conditions for \boldsymbol{P} to be divisorial. Let R be an arbitrary Prüfer domain with quotient field K, and P a nonzero prime ideal of R. It is known that if P is maximal, then P is divisorial if and only if P is invertible [5, Corollary 3.4]. Hence, we shall concentrate on nonzero, non-maximal prime ideals of R.
Let P be a nonzero, non-maximal prime ideal of R. We know that P^{-1} is a subring of K [5, Theorem 3.8] and in particular $P^{-1}=\left(P:_{K} P\right)$ [5, Proposition 2.3], as well as $P^{-1}=R_{P} \cap\left(\bigcap_{\alpha} R_{M_{\alpha}}\right)$, where $\left\{M_{\alpha}\right\}$ is the set of maximal ideals of R not containing P [5, Theorem 3.2]. Hence we have the following inclusion of rings:

$$
R \subseteq P^{-1} \subseteq S \equiv K \cap\left(\bigcap_{\alpha} R_{M_{\alpha}}\right) .
$$

We shall prove that if $P^{-1} \mp S$, then P is divisorial. However, first let us consider a somewhat novel result which is at the opposite extreme of our Prüfer setting.

Proposition 2.0. Let R be an arbitrary integral domain with quotient field K and $(0) \neq P \in \operatorname{Spec}(R)$. If P^{-1} is not a subring of K, then P is divisorial.

Proof. Since P^{-1} is not a subring of K, then $\left(P:_{K} P\right) \nsubseteq P^{-1}$. Let $J=\left(R: P^{-1}\right)$. Recall that $J=P_{v}$ [5, Lemma 2.1]. To complete the proof we will show that

[^0]$J=P$. It suffices to prove that $J \subseteq P$. Let $r \in J$. Since $r P^{-1} P \subseteq P$ and $P P^{-1} \nsubseteq P$, it follows that $r \in P$. Hence, $J=P$.

We are now prepared to state our main result.
Theorem 2.1. Let R be a Prüfer domain with quotient field K, and P a nonzero, non-maximal prime ideal of R. If $P^{-1} \leftrightarrows S=K \cap\left(\cap R_{M_{\alpha}}\right)$, where $\left\{M_{\alpha}\right\}$ is the set of maximal ideals of R not containing P, then P is divisorial.

Before we establish Theorem 2.1, a lemma is needed.
Lemma 2.2. Same notation as the theorem. Then $P^{-1} \neq S$ if and only if there exists a finitely generated ideal I of R such that $I \subseteq P$ and $I \nsubseteq M_{\alpha}$ for each α.

Proof. Recall that $P^{-1}=R_{P} \cap S$, and use [4, Corollary 2].
Proof of Theorem 2.1. Since R is a Prüfer domain, it suffices to show that P is an intersection of finitely generated ideals of R. Let I be a finitely generated ideal of R such that $I \subseteq P$ and $I \nsubseteq M_{\alpha}$ for each α. For $a \in R \backslash P$, we claim that $P \subseteq(I, a)$. It is enough to check this assertion locally. For $M \in\left\{M_{\alpha}\right\}$, we obviously have $R_{M}=(I, a) R_{M}=P R_{M}$. If $M \notin\left\{M_{\alpha}\right\}$, then $P R_{M} \subseteq a R_{M}=(I, a) R_{M}$ in the valuation ring R_{M}. Finally, we wish to show that $P=\bigcap\{(I, r): r \in R \backslash P\}$. Since P is non-maximal, it will suffice to show for M maximal with $P \subseteq M$, and $r \in M \backslash P$ that $r \notin\left(I, r^{2}\right)$. This follows since $r \notin\left(r^{2}\right) R_{M}=\left(I, r^{2}\right) R_{M}$.

Corollary 2.3. Same notation as the theorem. If $P \nsubseteq \cup M_{\alpha}$, then P is divisorial.

Proof. Let $a \in P \backslash \cup M_{\alpha}$ and set $I=(a)$. The desired conclusion follows from Lemma 2.2 and Theorem 2.1.

Corollary 2.4. Same notation as the theorem. If P is the radical of an invertible ideal I, then P is divisorial.

Proof. Apply Lemma 2.2 and Theorem 2.1.
Corollary 2.5 [5, Proposition 3.10]. Same notation as the theorem. If P is contained in all but a finite number of maximal ideals, then P is divisorial.

Proof. Use Corollary 2.3 and Theorem 2.1 to obtain the result.
Before stating our final corollary, we need some terminology. A domain R has property (\#) if $\bigcap_{M \in V_{1}} R_{M} \neq \bigcap_{M \in V_{2}} R_{M}$ for any two distinct subsets V_{1} and V_{2} of $\operatorname{Max}(R) ; \operatorname{Max}(R)$ being the set of maximal ideals of R.

Corollary 2.6. Let R be a Prüfer domain having each overring satisfy property (\#). If P is a nonzero, non-maximal prime ideal of R, then P is divisorial.

Proof. This follows immediately from [4, Theorem 3], Lemma 2.2, and Theorem 2.1.

Corollary 2.7. Same notation as the theorem. If $P=P R_{P}$, then P is divisorial.

Proof. The fact that $P=P R_{P}$, implies that P is comparable with all ideals of R, and in particular, P is contained in each maximal ideal of R. Hence P is divisorial by Corollary 2.5.

Remark 2.8. There exists a nonzero, non-maximal prime ideal P of the ring of entire functions $R(R$ is a Bézout domain) such that P is not divisorial. In fact, $P^{-1}=R$ [5, Example 3.12].
3. The ideal transform of \boldsymbol{P}. In this final section we study an interesting special case arising from the previous section. More specifically, let R be a Prüfer domain and P a nonzero, non-maximal prime ideal of R. Recall the ideal transform of $P, \quad T(P)=\bigcup_{n=1}^{\infty}\left(R:_{K} P^{n}\right)$, and note that $T(P)=$ $R_{P_{0}} \cap\left(\bigcap_{\alpha} R_{M_{\alpha}}\right)$, where $P_{0}=\bigcap_{n=1}^{\infty} P^{n}$ and $\left\{M_{\alpha}\right\}$ is the set of maximal ideals of R not containing P [3, Exercise 11, p. 331]. Hence, since $P^{-1}=R_{P} \cap\left(\bigcap_{\alpha} R_{M_{\alpha}}\right)$ [5, Theorem 3.2], we have the following tower of rings:

$$
R \subseteq P^{-1} \subseteq T(P) \subseteq S
$$

Note that if $P^{-1} \neq T(P)$, it is immediate from Theorem 2.1 that P is divisorial. It is our intent to study when $P^{-1} \neq T(P)$, and as one consequence of our efforts we will give a different proof of the fact that P is divisorial in this setting.

Lemma 3.0. Let R be a Prüfer domain and P a nonzero, non-maximal prime ideal of R. Then, P is a prime ideal of P^{-1}. (Recall that P is an ideal of P^{-1}, since $P^{-1}=\left(P:_{K} P\right)[5$, Proposition 2.3].)

Proof. Since $P \in \operatorname{Spec}(R)$, we know that $P R(x) \in \operatorname{Spec}(R(x))$, where $R(x)=$ $R[x]_{U}, U=\{f \in R[x]: c(f)=R\}$ [1, Theorem 4]. Also, $R(x)$ is a Bézout domain, as R is a Prüfer domain [1, Theorem 4 and p. 558]. Hence the overring $P^{-1}(x)$ is a quotient ring of $R(x)$. Notice that $P\left(P^{-1}(x)\right) \neq P^{-1}(x)$ [3, Proposition 33.1(4)]. Hence, $P R(x)\left(P^{-1}(x)\right)=P\left(P^{-1}(x)\right)$ is a prime ideal of $P^{-1}(x)$. Whence, there exists a $Q \in \operatorname{Spec}\left(P^{-1}\right)$ such that $P\left(P^{-1}(x)\right)=Q\left(P^{-1}(x)\right)[1$, Theorem 4]. Therefore $P=Q$ [3, Proposition 33.1(4)], and so P is a prime ideal of P^{-1}.

We are now ready to analyze when $P^{-1} \Phi T(P)$.
Theorem 3.1. Let R be a Prüfer domain and P a nonzero, non-maximal prime ideal of R. If $P^{-1} \leftrightarrows T(P)$, then
(a) $P^{-1} \subseteq T(P)$ is a minimal extension, i.e., there are no rings properly between P^{-1} and $T(P)$.
(b) P is an invertible maximal ideal of P^{-1}.
(c) P is a divisorial ideal of R.
(d) $T(P)=\bigcap_{\alpha} R_{\mathrm{O}_{\alpha}} \equiv S^{\prime}$ where $\left\{Q_{\alpha}\right\}$ is the set of prime ideals of R not containing P.
(e) P^{-n} is never a ring for $n>1$.

Proof. (a). Let us suppose A is a ring satisfying $P^{-1} \subseteq A \nsubseteq T(P)$. Since $T(P)$ and A are intersections of localizations of R at certain prime ideals of $R(R$ is a Prüfer domain), there exists a prime ideal Q in R such that $A \subseteq R_{\mathrm{O}}$ and $T(P) \nsubseteq R_{Q}$. We claim $P \subseteq Q$, for if $P \nsubseteq Q$ there exists $Q^{\prime} \in \operatorname{Spec}(T(P))$ such that $T(P)_{Q^{\prime}}=R_{Q}$ [6, Exercise 16(c), p. 149]. This contradiction establishes our claim. Hence $A \subseteq R_{Q} \subseteq R_{P}$, and so $A \subseteq R_{P} \cap\left(\bigcap_{\alpha} R_{M_{\alpha}}\right)=P^{-1}$ [5, Theorem 3.2]. Therefore $A=P^{-1}$, and the proof is complete.
(b) Assume P is not a maximal ideal of P^{-1}. (Recall by Lemma 3.0 that P is a prime ideal of P^{-1}.) Since $P^{-1} \leftrightarrows T(P)$ is a minimal extension, we know that $P_{P}^{-1}=T(P)_{P^{-1} \backslash P}\left[2\right.$, Théorème 2.2]. However $P_{P}^{-1}=R_{P}$, since $R \subseteq P^{-1} \subseteq R_{P}$, and so $T(P) \subseteq R_{P} \cap\left(\bigcap_{\alpha} R_{M_{\alpha}}\right)=P^{-1}$, a contradiction. Hence P is a maximal ideal of P^{-1}.

To show that P is invertible in P^{-1} we will assume to the contrary. Thus the inverse of P with respect to P^{-1} equals P^{-1}, i.e., $\left(P^{-1}: P\right)=P^{-1}$ [5, Corollary 3.4]. However, $\left(\mathrm{P}^{-1}: P\right)=\left(R: P^{2}\right) \equiv P^{-2}$. Thus, $P^{-1}=P^{-2}$. So, since $P^{-n}=$ $\left(R: P^{n}\right)=\left(\left(R: P^{n-1}\right): P\right)$, we can conclude by induction that $P^{-n}=P^{-1}$ for each positive integer n. Therefore $P^{-1}=T(P)$, the desired contradiction.
(c) As P is a non-maximal prime ideal of R, we see by (b) that $P^{-1} \neq R$, and thus $P_{v} \neq R$. Therefore, $P=P_{v}$, as P_{v} is an ideal of P^{-1} [5, Lemma 2.1].
(d) Since $T(P) \subseteq \bigcap_{\alpha} R_{\mathrm{O}_{\alpha}} \equiv S^{\prime}$ [6, Exercise 16(d), p. 149], it suffices to show $S^{\prime} \subseteq T(P)$. Assume otherwise. As in part (a), there exists a prime ideal $Q \in \operatorname{Spec}(R)$ such that $T(P) \subseteq R_{Q}$ and $S^{\prime} \nsubseteq R_{Q}$. Hence $P \subseteq Q$, and so $T(P) \subseteq$ $R_{\mathrm{Q}} \subseteq R_{P}$. Whence, $T(P) \subseteq R_{P} \cap\left(\bigcap_{\alpha} R_{M_{\alpha}}\right)=P^{-1}$, a contradiction. Therefore, $T(P)=S^{\prime}$.
(e) Suppose P^{-n} is a ring for some $n>1$. Then $P^{-n}=R_{P} \cap\left(\bigcap_{\alpha} R_{M_{\alpha}}\right)=P^{-1}$ [5, Theorem 3.2], and by induction $P^{-1}=T(P)$. This contradiction completes the proof.

Remark 3.2. (a) Let R be an arbitrary integral domain with quotient field K, and $P \in \operatorname{Spec}(R)$. Note that if P^{-1} is a subring of K, then $P^{-1}=\left(P:_{K} P\right)$ [5, Proposition 2.3]. Hence P is an ideal of P^{-1}, but P need not be a prime ideal of P^{-1} [5, Example 2.5]. However, if R is a Prüfer domain, then Lemma 3.0 shows that $P \in \operatorname{Spec}\left(P^{-1}\right)$.
(b) The converse of Theorem 3.1 (b) is valid, i.e.; under the assumptions of Theorem 3.1, if P is an invertible maximal ideal of P^{-1}, then $P^{-1} \nsubseteq T(P)$. To see this notice that $P^{-1} \subsetneq\left(P^{-1}:_{K} P\right)=P^{-2} \subseteq T(P)$.
(c) The converse of Theorem 3.1(c) is not generally true. Let R be a valuation domain, and P a nonzero, non-maximal prime ideal of R such that $P=P^{2}$. Then $P^{-1}=T(P)$, yet $P=P_{v}$ (Corollary 2.5).
(d) The converse of Theorem 3.1(d) is not generally true. Let R be a valuation domain and P a nonzero, non-maximal prime ideal of R such that P is unbranched, i.e., $P=\bigcup_{Q \in \operatorname{Spec}(R)}^{\mathrm{O} \subseteq \mathrm{P}} Q$. Observe that $P^{-1}=R_{P}$ [5, Corollary 3.6] and $S^{\prime}=\underset{\substack{Q \subsetneq P \\ Q \in \operatorname{Spec}(R)}}{ } R_{Q}=R_{P}$. Therefore,

$$
P^{-1}=R_{P} \subseteq T(P) \subseteq S^{\prime}=R_{P},
$$

and so $T(P)=S^{\prime}$, yet $P^{-1}=T(P)$.
(e) The converse of Theorem 3.1(e) is obviously true.

References

1. J. T. Arnold, On the ideal theory of the Kronecker function ring and the domain $D(x)$, Can. J. Math., 21 (1969), 558-563.
2. D. Ferrand and J. Olivier, Homomorphismes minimaux d'anneaux, J. Alg. 16, (1970), 461-471.
3. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc. New York, 1972.
4. R. Gilmer and W. Heinzer, Overrings of Prüfer domains II, J. Alg. 7, (1967), 281-302.
5. J. A. Huckaba and I. J. Papick, When the dual of an ideal is a ring, Manuscripta Math. 37, (1982), 67-85.
6. M. Larsen and P. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.

Istituto Matematico Università di Roma 00185 Roma (I)

Department of Mathematics
University of Missouri
Columbia, MO 65211

[^0]: Received by the editors April 5, 1983
 AMS(MOS) subject classification: 13A17, 13FO5
 Key words and phrases: divisorial, ideal transform, Prüfer domain.

 * This work was supported in part by a Nato Senior Fellowship and by a grant from the University of Missouri-Columbia.
 (C) Canadian Mathematical Society, 1984.

