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1. - Introduetion.

Shock-waves represent one of the most important mechanisms for creating
and heating a plasma. In classical non-dissipative gas dynamics, the formation
of a shock is indicated by the progressive steepening of a finite-amplitude com-
pressive wave front to the point where it becomes multivalued and consequently
without physical meaning. This difficulty is avoided by the inclusion of dis-
sipative effects, usually in the form of heat flow and viscosity. The dissipative
mechanisms become more effective as the wave front steepens, and the result
is a steady wave profile for which the non-linear and dissipative effects are
counterbalanced. The scale length for the dissipative transition zone or wave
profile is the mean-free-path; the actual thickness may range from one to
several mean-free-paths, or even more for very weak shocks. Given the strength
of the shock, the state on one side of the shock may be computed from the
state on the other side directly from the laws of conservation of mass, mo-
mentum and energy (Hugoniot relations). Accordingly, the nature of the par-
ticular dissipative mechanism affects only the shape of the shock profile but.
not the end states. '

In a plasma without magnetic field, the conventional theory yields es-
sentially the same results. The inclusion of the additional dissipative mech-
anism of electrical resistivity again results in a thickness of the order of a

- mean-free-path or larger. The presence of a magnetic field complicates matters
congiderably, but the essential features are not changed.

The interesting probléms are concerned with high-temperature plasmas

(') The work presented in this paper is supported by the U. S, Atomic Energy
Commission under contract AT(30-1)-1480.
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where the mean-free-path is often extremely large compared to the scale of
observed phenomena (collisionless plasmas). In such a case we could not ob-
serve a shock-wave attributable to conventional dissipative mechanisms. For-
tunately the conventional theory (that is, the conventional modification of the
stresses and heat flow in a magnetic field) is inapplicable when the gyro-radius
is smaller than the mean-free-path. When the mean-free-path is eliminated
ag a significant reference length, we might naturally expect the Debye length
or the gyro-radius to take its place. The significant length parameter (at least
for a certain range of shock strengths) actually turns out to be the speed of
light divided by the plasma frequency, a value which is roughly intermediate
between the ion and electron gyro-radii. The problem is to exhibit an irre-
versible mechanism which is effective at this scale of length. In this con-
nection it is crucially important to recognize that irreversibility has not been
eliminated by removing the collision term in the Boltzmann equation, but
merely concealed. We shall see in Section 2 how the fundamental irreversible
mechanism described by GIBBS may still be relied upon.

In addition to the problem of demonstrating the existence of shocks on
a scale much smaller than the mean-free-path, it is neecessary to solve the com-
plete shock transition problem in a high temperature plasma explicitly even
to find the correct relations between the constant states on either side of the
shock transition. Specifically, in the absence of collisions, there is no reason
why the state after the shock should be in thermal equilibrium: the ion and
electron temperatures can be different. Conservation of mass, momentum and
energy can only predict the mean temperature. It is this feature which re-
quires study of the entire transition problem in order to even compute the
end state (which is obtained in a conventional shock, by use of the conser-
vation equations alone). On the other hand, a single extra piece of information
e.g., that the electron orbits are approximately adiabatic, serves to determine
the end states uniquely, cf. [1]. For some purposes, knowledge of the oscil-
lating fine structure within a shock may be valuable without detailed knowledge
of the ultimate damping length. This, we shall see, is a simpler problem.

The theories summarized here are steady and one-dimensional. This is in
contrast to other « collisionless » shock theories [2] which require the inter-
vention of turbulent three-dimensional non-steady waves to effect the tran-
sition from one state to another. The accessory hypotheses of the two types.
of theory are incompatible (although it is conceivable that each could be cor-
rect in a different parameter range). The basic premise of the steady theory
is that the solution (which has only been obtained approximately, thus far)
is stable. The fluctuating theory is based on a number of ad hoc premises of
which the most prominent is the existence of random waves of exactly the
correct amplitude to provide the requisite interaction. Neither theory is more
than semiquantitative as yet in predicting a shock thickness. The stea.dy~
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state theory is farther advanced in examining the fine structure of a possible
shock. There is no experiment which- can yet be interpreted as yielding an
unambiguous collisionless shock thickness.

2. — The irreversible mechanism (*).

We consider a one-dimensional steady problem in which the fluid flow is
taken parallel to the axis of the space variable. The shock configuration is
one in which the (uni-directional) magnetic field is perpendicular to the fluid
flow. To be properly called a shock the solution should connect a constant
state at infinity on one side with another constant state at infinity on the
other. Such a transition is necessarily irreversible as a direct consequence of
the conservation laws. The problem is to exhibit a mechanism for irreversi-
bility in the absence of collisions. :

Irreversibility arises in a dynamical system from a loss of information,
specifically of initial order. A system appears to be irreversible when states
which are initially close together subsequently become arbitrarily far apart.
Thus a fully determinate system may appear to behave randomly when ob-
served on a macroscopic scale. Mathematically, this situation may be de-
scribed by saying that the theorem of continuous dependence ‘on the initial
state becomes increasingly irrelevant as time progresses. The classical mech-
anism of intermolecular collisions is particularly efficient in destroying initial
order. A slight change in the initial position or velocity of a molecule can make
it miss or hit another molecule, and hence affect its subsequent history grossly.
Although this is a very efficient mechanism, it is by no means necessary to
rely on such essentially discrete encounters to obtain irreversible behavior.
In «Landau » damping, the essential irreversible mechanism lies in the fact
that a slight deviation in initial velocity can produce a large deviation in po-
sition at some later time. The present shock problem is more subtle since it
can be proved that two particles which start close together will never become
separated by more than a bounded distance, no matter what their velocities
are. Nevertheless, in traversing the shock, two particles which are originally
close in both position and velocity can suffer entirely different histories. For
‘example, some ions will go through the potential barrier represented by the
first crest of an oscillating shock front, while others may be reflected on the
first approach and only penetrate the second time. Since the time required

(*) This mechanism was proposed in [1] as a substitute for Landau’s damping which
disappears for waves propagating perpendicular to B. Both are special cases of Gibbs’
irreversibility mechanism.
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for the return of a reflected ion is large compared to the transit time throagh
the crest, this distinction represents a radical difference in history of the two.
types of ion. Specifically, a circle in velocity space (Fig. 1a) on which the dis-
tribution function is constant
at minus infinity (it is assumed
to be isotropic) will develop
y BN an «ear » or extreme distortion
m H 4 \ after passage through the first
w N\ % M wave of the electromagnetic
disturbance (Fig. 1b). Presum-
ably, on passing through the
suecessive potential barriers of
an approximately periodic wave
train, more and more ears will
develop, (Fig. 1¢) and the dis-
tribution function will wulti-
mately become very wild and
converge weakly on a different
isotropic state at a higher en-
tropy (Fig. 1d). In other words
e) d) any macroscopic or averaged
Fig. 1. property will behave irrever-
sibly. What has been confirmed
by a combination of analysis and numerical computation is the develop-
ment of the first ear and the concomitant partial irreversible shock transition
(see Section 7). g

3. — One-fluid theory.

If the equations of mass and momentum of the total fluid (ions and elec-
trons) are supplemented by the ad hoc assumptions of an adiabatic equation
of state and Ohm’s law for a perfect conductor, the system is mathematically
equivalent to that of a conventional gas flow with adiabatic exponent y = 2.
The steady-flow problem has as solutions either the constant state throughout
(no shock) or a discontinuous front separating two constant end states. The
gas-dynamical analogue holds even for the time-dependent problem [3] and
thus yields familiar results such as the steepening of a compression wave, the
broadening of a rarefaction wave, and the distortion of a symmetric compres-
sive pulse, first as the forward side steepens into a shock, second as the
broadening rarefaction tail eats into and weakens the shock [4].
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4. - Two-fluid adiabatic theory.

In this theory we adopt an ad hoc adiabatic equation of state for both
electrons and ions and use both sets of momentum equations, thereby elimi-
nating the necessity of a special assumption regarding Ohm’s law [1, 5, 6].
No shock is obtained. But, in contrast to the one-fluid theory, non-trivial
steady one-dimensional flows are found. There is a family of periodic waves
and, as a limiting case, a solitary wave or pulse in which both end states are
identical. The length scale in these solutions is given by the ratio of the
speed of light to the plasma frequency,

L = Vm_juoner
and the actual wavelength is increased above this by a factor of the order
of 1//M*—1 for weak shocks (M is the Mach number).

We can use these solutions to indicate the region of validity of the more
primitive one-fluid theory and to project to a possibly more exact theory. For
the former, one can verify that Ohm’s law is satisfied (yielding the simpler
theory) when the gradients are smaller than those of the stationary pulse so-
lution for a given amplitude disturbance. Thus, a pulse which is wide (con-
sidering its amplitude) will start to steepen on one side and flatten on the
other. The simple theory breaks down after the wave steepens sufficiently,
and the subsequent behavior is complex. One cannot conclude anything about
the stability of the two-fluid pulse from this one-fluid analysis, except that it
is clear that an initial pulse which starts sufficiently far from the steady two-
fluid pulse solution will not converge to it.

As to predictions regarding more accurate theories, one could guess that
the periodic solutions are plausible indications of a fine structure within a
gshock. One should keep in mind the possibility of a smooth transfer from the
start of a pulse to an approximately periodic wave of diminishing amplitude
converging on the final state behind the shock [1].

To justify the use of adiabatic relations, one should restrict the parameters
to guarantée that both the ion and electron orbits are approximated by the
guiding center theory. This requires that a Larmor period be completed while
the field seen by a particle varies only little, and this, in turn, is easily seen
to require that the shock be weak, M ~1. This is an unfortunate restric-
tion, We return to this point later.

5. - Refined two-fluid theories.

A number of fluid-like theories have been attempted using approximations
to the stress tensor suggested by moment equations resulting from the exact
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particle equations [6-9]. Thus far, the only solutions obtained are periodic
waves or some modification of a pulse. For example, in [6] and [8] « pulses »
“are found with more than one peak. This might be interpreted as a tendency
to transfer from the pulse to a periodic solution. An argument is given in [7]
based on even and odd behavior of the variables, which argument can probably
be extended to an arbitrary moment approximation to the particle distri-
bution function. In brief, if a compressive shock solution exists, then the
equations must also admit the mirror-image rarefaction shock. What is more
likely is that no shock solutions exist and both end states are always the same.
Even so, it may be possible to rescue such moment approximations. In anal-
ogy with the approximation of an irreversible system by a reversible dynam-
ical system of a finite but large number of degrees of freedom, one must take
a fixed time (i.e., space) interval and then let the number of degrees of free-
dom (moments) approach infinity. While this is, of course, a rash extrapola-
tion from the evidence at hand, taking a sufficient number of moments might
yield a transfer from a pulse to a decaying periodic wave, followed eventuallj7
by a remote regeneration and return to the initial state. In such a case the
first half of the solution could be considered an irreversible transition on any

physically interesting scale.

6. — Zero-temperature solution.

In the limit of zero temperature, the problem is completely solved (at least,
for not too large Mach number) [1, 5, 10] (*). As is shown in [1], the adiabatic
two-fluid theory is identical to the exact self-consistent formulation in this
limit. One obtains the same periodic and pulse solutions. ’ For large Mach
number the problem is not solved, but it is easy to see that no shock (as defined
above) can occur. It is important to realize that although this result is exact
and exhibits no shock, it is a priori evident that the relevant irreversible
mechanism is absent at zero temperature, so no shock can be expected.

By a perturbation about zero temperature [11], a pulse solution can be
obtained in which the density and magnetic field approach a constant state
but other quantities are periodic. This can properly be interpreted as an irre-
versible transition but it is not yet a shock. -

7. - Finite temperature, mass-ratio expansion.

By making substantial use of the fact that the electrons are much lighter
than the ions, it is possible to approach the full-dress particle equations; see [12],
and for a brief account, [1]. To the order of approximation taken, a transi-

(*) Also: M. H. MITTLEMAN (private communication).
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tion is found from the start of a pulse to a periodic wave of smaller amplitude
but the ultimate decay is not accessible in this theory. The particle orbits
in this theory are exactly what one would expect from the basic dissipative
mechanism; the distribution function becomes very distorted after passing
through the first wave. The fine structure has approximately the same wave-
length as in the elementary adiabatic theory.

<
8. — Weak shock solution.

A recent result (private communication, C. S. GARDNER and G. MORI-
KAWA) seems to cast doubt on some of the foregoing, or at least invites its
reconsideration. In a formal expansion in the neighborhood of M =1 (small
amplitude but not linear), one recovers the pulse and periodic waves as exact
solutions to lowest order in this expansion. However, the length scale is larger
than the previous one by a factor

where

This agrees with the zero-temperature exact solution since \ﬂ = 0 in that
case. However, it implies that the temperature must be very low (8 < .001)
for this limiting theory to be wvalid.

The validity of the adiabatic two-fluid theory is now suspect. One expects
it to become valid for M near unity; but it breaks down (for finite §) in exactly
this limit. One can hope for some gross features of the simple theory to be
valid for stronger shock and finite . Occasionally theories seem to be better
than their justification or derivation, but this cannot be counted on!

This also creates an apparent discrepancy with the mass-ratio expansion
of CATHLEEN MORAWETZ [12]. This is not strictly a contradiction since the
latter theory is a priori valid only for finite strength shocks (*).

9. — Conclusions.

The significance of even the simplest one-fluid adiabatic theory still has
to be spelled out. There is no region of overlap between it and the known
solutions of the two-fluid adiabatic theory including the linearized time-de-

(*) The charge separation field is taken to be large of the order of V' 171,;71;» More
precisely, it has the order (M —'l)\/ m./m_. This is large for a fixed strength as the
mass- ratio increases, but is not large for weak shocks and fixed mass ratio.

30 - Supplemento al Nuovo Cimenlo.
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pendent piston problem solved by C. S. GARDNER (Section 7 of Ref. [1]; see
also [13]). What is needed is the solution of a representative non-linear time-
dependent problem to bridge the gaps between the steepening of the one-fluid
theory, the spreading of the linearized theory, and the steady non-linear solu-
tions. Recent numerical computations for this non-linear time-dependent two-
fluid problem (K. W. MORTON, unpublished) yield approximately periodic wave
trains in some circumstances, and, in other circumstances, stable jump dis-
continuities which develop during the motion. When these results are com-
plete they should greatly clarify the situation.

The correct fine structure of a possible shock could probably be found
from an examination of higher order terms in the expansion in powers of the
strength, mentioned above in Section 7. Although continuation of this ex-
pansion may even lead to a shock, there is reason to disbelieve this since (from
the phase mixing concept, as in Landau’s damping) the irreversibility may
enter non-analytically in the parameter (M-1). Even without a strict shock
solution, one might in this way reconcile the different length scales in the
Gardner and Morawetz theories. Alternatively, it might be possible to reflne
the latter theory to extend its validity to the realm of weak shocks, but this
seems to be quite difficult. On the whole the latter theory is probably the
most relevant at this time because of the range of parameters involved.

A continuing study of the stability of the simplest two-fluid solutions would
seem to be called for if only to decide on the need for introducing the more
difficalt and more primitive turbulent-type theories [2].
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