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ABSTRACT 

Predictability in orbital behaviour of artificial sate
llites depends on several factors: the accuracy required, the 
particular dynamical models formulated, the sets of variables 
chosen to describe them, the numerical or analytical techni
ques used and, specially, the specific trajectories to be 
established. In this paper we address the problem of predic
tability for highly eccentric satellites with (J2 + J-2)-per-

turbation, by using numerical techniques to integrate the 
equations of motion when expressed in different sets of re
gular variables. 

INTRODUCTION 

The predictions of the orbital motion of an artificial 
satellite involves a great difficulty which comes not only 
from the fact that the real problem is indeed complicated but 
also from the complexity of'the mathematical model chosen to 
represent it. In particular, this turns out to be specially 
evident when we deal with satellites whose orbit has high 
eccentricity, say 0.9 or more. In these cases, the usual 
treatments of the problem can hardly provide the required 
accuracy even for the simplest force models. That is special
ly true when we aim to obtain long-term predictions, which 
turn out to be particulary bad at the perigee. 

In the light of these facts, and in order to manage with 
this kind of problems, we have to think of using either non
standard numerical methods to integrate the equations of mo
tion, or special sets of variables providing better condition
ed equations for the numerical integration through standard 
codes. 
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As for the variables we can use, we find several sets 
among which we can mention here the universal variables.wide
ly used by NASA, and the so-called regularizing ones, which 
include as a particular case the linearization methods,either 
in the version of coordinates or in that of elements. 

Just to remind the reader, let us say that the lineari
zation methods provide harmonic oscillator form to the equa
tions of motion with the advantages it involves when we in
tegrate them numerically, such as the favorable propagation 
of the truncation error. On the other hand, the aim of the 
methods of elements is that the transformed dependent vari
ables are constant or linear functions of the independent 
variable along a Keplerian motion. 

It is controversial to say which set of variables is 
the best, if there is one. However, in the loght of our 
experience, we would say that regularizing variables behave 
better than the non-regularizing ones since the latter req
uire more evaluations of derivatives and computing time to 
get a prescribed accuracy, by numerical integration, and \ 
give rise to a faster growth of numerical errors. All these 
facts favour regularization methods, specially when we are 
involved in long-term predictions. 

In what follows we will concentrate on the comparison 
of the results obtained when using Cartesian coordinates and 
other two sets of regularizing variables: the Kustaanheimo-
Stiefel (KS) variables and the Burdet-Ferrandiz (BF) ones. 

KS transformation and the time element associated with 
them are widely described in the well known book by Stiefel 
and Scheifele (1971) and we will only remind the reader that 
it reduces the Kepler motion to four harmonic oscillators 
with all the frequencies being equal to one, by introducing 
the energy integral into the equations of motion and using 
the eccentric anomaly as independent variable. 

As for BF variables, they are a set of 8 redundant can
onical variables, the coordinates being the direction co
sines of the particle and the inverse of its distance. They 
were first used by Burdet (1969) and reintroduced by 
Ferrandiz (1988), but in a Hamiltonian framework, obtaining 
equations of motion similar to ones derived by Burdet.These 
variables also allow us to reduce the Kepler problem to four 
harmonic oscillators with unit frequencies by introducing 
the integral of the angular momentum into the equations of 
motion and using the true anomaly as independent variable. 

The homogeneous Hamiltonian of the problem when expres
sed in BF variables has the following expression 

cl.i|p|1|x|l.i,2,.!-$.j|.».01 

where x is the direction vector of the particle, p stands 
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for the conjugate momenta of x, z = 1/r, W - z V (V perturb
ing potentical), c is the magnitude of the angular momentum 
and p = -h (h energy). 

The time element associated with BF variables was intro
duced by the first two authors in a Spanish-Portuguese meet
ing held in June 89, by defining two functions e,E of the 
canonical BF variables through the expressions 

. _ fa0 &0 «' 2P0 

e sin E - — — zpz = - - y — , e cos E = 1 - — . 

The time element is thus defined by the generalized Kepler 
equation 

% - I = t-t H (E - s - e sin E), 
0 (^0y 

s being the true anomaly. 
Finally, the equation for the time element in conserva

tive cases is given by 

u + 1 u - (c 2 + 2W)z 

(V2p"0)
3 c u 2 - 2p Q (c 2 + 2W) 

9W 

3z 

where ()' stands for derivative with respect to s. 

To obtain the corresponding equation for the time ele
ment in non-conservative cases it suffices to add up the fol
lowing expression 

[ — 5 i (E-s-e sin E) H e sin E 
C-/2p0)

5 (>[2p0)
3 

x V + 'Cc2 * 2W) -,9po > 
z{M2 - 2pQ(c

2 + 2W)} 3s 

to the previous equation. 

RESULTS 

A first idea about the good behaviour of these sets of 
regularizing variables can be obtained from Ferrandiz et al. 
(1990) and from the results presented by the authors during 
the NATO ASI held in Cortina D'Ampezzo in August 90. Such 
results are summarized in the plots shown in figures 1 to 
5, and refer to the problem of an artificial satellite with 
J2-perturbation whose orbit is equatorial, has an eccenticity 
e = 0.95 and a perigee height of approximately 0.05 E.R. (300 
Km). However, we should point out that the results obtained 
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with these data do not differ much from the ones obtained 
when we vary the inclination of the orbit in a wide strip 
around the equator and the location of the perigee. 

In these plots we have used logarithmic scale in the ver
tical axis, representing 

10 
BF + t.e. 

* v v v V V V V y T T t - - * -•v-V:»-:*Cans 

10 15 

Revolutions 

KS + t.e. 

20 25 

Figure 1 

errors versus number of revolutions. There will appear two 
kinds of errors which will be referred to as 

Trajectory error ( e x ) , which means the difference bet
ween the position given by a reference orbit, which we 
obtained by numerically integrating and requiring high 
enough accuracy, and the one obtained with the current 
numerical integration. Positions are compared for 
equal values of the independent variable, that is to 
say 

e 
z 

l x r e f ^ - x c a l ^ l 

Position error (e), which apart from the previous error 
also includes an estimation of the error due to the in
tegration of the equation of time ( e t ) . If we define 
(et) to be 

= t ref (S) t c a l (S)|.|velocity|, 

which means the linear approximation of that error, the posi
tion error is then e ez + V 
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Figures 1 and 2 have been obtained by using a Runge-
Kutta-Fehlberg (R-K-F) (7)8 code, with variable stepsize, to 
integrate the equations when expressed in Cartesian coordina
tes (Carts.), KS coordinates (KSc.) and BF coordinates (BF) 
together with the equation of time. Although BF coordinates 
provide a more accurate solution for the spatial coordinates 
(Fig. 1), the errors in the integration of the equation of 
time lead to similar results for the three sets of variables 
(Fig. 2). However, the computation of time from the corres
ponding elements gives rise to a considerably different beha
viour, which turns out to be favourable for BF + t.e. (time 
element) (Fig. 3). 

The use of regular elements associated with the KS tra
nsformation instead of the coordinates does not change their 
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behaviour significantly when integrating very eccentric orb
its (in accordance with Stiefel and Scheifele, p.95).Figure 4 
shows the errors obtained by using: a) KS coordinates toge
ther with the equation of time (KSc. + t), b)KS coordinates 
together with the equation of the time element (KSc. + t.e.), 
c)KS elements together with t.e. equation (KSel. + t.e.) and 
choosing an Adams-Bashforth-Moulton (A-B-M) code of order 8, 
with 144 steps per revolution. 

This is not the case for BF coordinates, so Figure 5 
clearly shows the improvement got when, in BF variables, we 
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substitute the equation of time by the corresponding time 
element equation. 

As a general comment, about the former results let us 
say that, for the same number of evaluations of derivatives, 
the use of BF variables together with their time element cle
arly improves the accuracy provided by KS methods: e.g. for 
A-B-M code the accuracy is improved in a factor greater or 
equal to 102, reaching in some cases 103. 

The next step in our study consists in carrying out an 
analogous comparison but considering now that the perturbing 
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now that the perturbing potential also includes the J^^-term. 

The results obtained in this case refer to a satellite with an 
eccentricity e « 0.9, an inclination I = 10° and a perigee of 
approximately 0.05 E.R. (300 Km.). 

By using an R-K-F code to integrate the equations when 

10E+10mi • < • _ _ _ _ _ 
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expressed in Cartesian coordinates, KS coordinates and BF 
coordinates together with their corresponding time element 
equation, figures 6 and 7 show trajectory and position errors, 
respectively, after 20 revolutions. 

Again, BF coordinates provide a more accurate solution 
for the spatial coordinates (Fig. 6), whereas, in this case, 
the error in the integration of the equation of the time ele
ment lead to similar results for the three sets of variables, 
perhaps slightly more favorable for BF + t.e. (Fig. 7). 

By means of an A-B-M code with 600 steps per revolution, 
figures 8 and 9 show the effect of the time error on the 
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coordinates, KS coordinates and BF coordinates together with 
their corresponding time element equation. 

These plots clearly show the much worse behaviour of 
Cartesian coordinates with respect to the other two sets of 
regular variables, which behave in this case of (J,* J22^~ 
perturbation in a similar way. 

Finally, figure 12 represents the relative error in 
energy versus number of revolutions when using the above men
tioned three sets of variables and an R-K-F code has been 
chosen as integrator. 
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Figure 11. 

361 

https://doi.org/10.1017/S0252921100066240 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100066240


The plots in this figure show once again that the pre
servation of integrals, although useful, is not a good enough 
way to check the reliability of the solution obtained by num
erically integrating. So, apart from that, we have checked 
by means of the stabilization of a number of significant 
digits of several points of the solution distributed along 
each revolution and backwards integration. 
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