ALGEBRAS DENSE IN L^{2} SPACES: AN OPERATOR APPROACH

MICHAも WOJTYLAK
Instytut Matematyki, Uniwersytet Jagielloński, Kraków
e-mail: Michal.Wojtylak@im.uj.edu.pl

(Received 19 April, 2004; accepted 15 September, 2004)

Abstract

Let μ be a finite positive Borel measure defined on a σ-algebra of subsets of a set \mathcal{X}. Using operator techniques we provide several criteria for finitely generated algebras to be dense in the space $L^{2}(\mu)$.

2000 Mathematics Subject Classification. Primary 47A58. Secondary 41A65, 47B25.

Introduction. It turns out that methods from operator theory can be useful in approximation theory. Fuglede in [2] showed that the polynomials are dense in $L^{2}\left(\left(\mathrm{x}_{1}^{2}+\cdots+\mathrm{x}_{n}^{2}\right) \mu\right)$ provided that the multiplication operators $\mathbb{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right] \ni p \mapsto$ $\mathrm{x}_{j} p \in \mathbb{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ are jointly essentially selfadjoint in the closure of polynomials in $L^{2}(\mu)$. Putinar and Vasilescu proved in [6] that the algebra generated by the polynomials and the function $1 /\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)$ is dense in $L^{2}(\mu)$.

An inspiration for this paper was an example in [8]. Stochel and Sebestyén showed that if an algebra of functions on \mathbb{R} contains polynomials and a function $1 / p$ where p is a nonzero polynomial and for some polynomial q, the rational function q / p is nonconstant and bounded then this algebra is dense in $L^{2}(\mu)$. In Theorem 7 we generalize this fact in many ways:

- $(\mathbb{R}, \mathfrak{B}(\mathbb{R}), \mu)$ is replaced by an abstract finite measure space
- a result from domination theory enables us to deal with algebras generated by a finite set of functions (instead of algebras with only two generators)
- the algebra of polynomials is replaced by the algebra generated by the coordinates of an abstract measurable mapping $\boldsymbol{\phi}: \mathcal{X} \rightarrow \mathbb{R}^{n}$,
- the condition of boundedness is abandoned and a weaker μ-quasianalyticity condition is introduced.
As a consequence we get also the aforementioned result from [6]. Section 3 with Theorem 15 is a complement of Theorem 7. The situation where all the coordinates of the mapping $\boldsymbol{\phi}$ are of μ-quasianalytic type is considered therein. Theorem 18 is the most general result of this paper; Theorems 7 and 15 are in fact its consequences. However, the main ideas, examples and proofs are in Sections 3 and 4.

1. The multiplication operator and quasianalyticity. If Z is a topological space then the symbol $\mathfrak{B}(Z)$ will denote the σ-algebra of all Borel subsets of Z. In the whole paper we will assume that $(\mathcal{X}, \mathfrak{M}, \mu)$ is a finite measure space, i.e. \mathcal{X} is a nonempty set, \mathfrak{M} is a σ-algebra of subsets of \mathcal{X} and μ is a positive finite measure defined on \mathfrak{M}. We will deal with the complex Hilbert space $L^{2}(\mu):=L^{2}(\mathcal{X}, \mathfrak{M}, \mu)$.

Let \mathcal{H} be a (complex) Hilbert space. By an operator in \mathcal{H} we mean a linear mapping $T: \mathcal{D}(T) \rightarrow \mathcal{H}$, where the domain $\mathcal{D}(T)$ of T is a linear subspace of \mathcal{H}. By $\mathcal{N}(T)$ we denote the kernel of T. If T is closable then \bar{T} stands for the closure of T.

Let \mathcal{D} be a dense linear subspace \mathcal{H}. We will denote by $\boldsymbol{L}(\mathcal{D})$ the algebra of all operators T in \mathcal{H} such that $\mathcal{D}(T)=\mathcal{D}$ and $T(\mathcal{D}) \subseteq \mathcal{D}$. By $I_{\mathcal{D}}$ we understand the identity operator on \mathcal{D}. We say that $T_{1}, \ldots, T_{n} \in \boldsymbol{L}(\mathcal{D})$ commute pointwise if $T_{i} T_{j} f=T_{j} T_{i} f$ for all $f \in \mathcal{D}, i, j=1, \ldots, n$.

Let S_{1}, \ldots, S_{n} be selfadjoint operators in \mathcal{H} and let E_{1}, \ldots, E_{n} be their spectral measures, respectively. We say that S_{1}, \ldots, S_{n} spectrally commute if for all $i, j=1, \ldots, n$ and for all $\sigma, \tau \in \mathfrak{B}(\mathbb{R})$, we have $E_{i}(\sigma) E_{j}(\tau)=E_{j}(\tau) E_{i}(\sigma)$. In such case there exists a joint spectral measure of the system $\left(S_{1}, \ldots, S_{n}\right)$, i.e. a spectral measure E on \mathbb{R}^{n} satisfying

$$
\begin{equation*}
\int \mathrm{x}_{j} d E=S_{j}, \quad j=1, \ldots, n \tag{1.1}
\end{equation*}
$$

where $\mathrm{x}_{j}(x):=x_{j}$. Conversely, if the condition (1.1) holds, then S_{1}, \ldots, S_{n} are spectrally commuting selfadjoint operators.

Let $(\mathcal{X}, \mathfrak{M}, \mu)$ be a finite measure space and let $\phi: \mathcal{X} \rightarrow \mathbb{R}$ be a measurable function. We define the operator M_{ϕ} in $L^{2}(\mu)$:

$$
\begin{aligned}
\mathcal{D}\left(M_{\phi}\right) & :=\left\{f \in L^{2}(\mu): \phi \cdot f \in L^{2}(\mu)\right\} \\
M_{\phi} f & :=\phi \cdot f, \quad f \in \mathcal{D}\left(M_{\phi}\right)
\end{aligned}
$$

M_{ϕ} is a well-defined selfadjoint operator.
Let us define the following set of mappings:
$\mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n}, \mu\right)=\left\{\boldsymbol{\phi}: \mathcal{X} \rightarrow \mathbb{R}^{n} \mid \boldsymbol{\phi}\right.$ is measurable, $\left.\forall_{\sigma \in \mathfrak{M}} \exists_{\tau \in \mathfrak{B}\left(\mathbb{R}^{n}\right)} \mu\left(\sigma \Delta \phi^{-1}(\tau)\right)=0\right\}$,
where $A \triangle B:=(A \backslash B) \cup(B \backslash A)$. (According to [13] we would say that $\phi^{-1}\left(\mathfrak{B}\left(\mathbb{R}^{n}\right)\right.$) is essentially all of \mathfrak{M}.) A result similar to the following Proposition, but in the context when $\phi: \mathcal{X} \rightarrow \mathcal{X}$, appears in [13, Lemma 1].

Proposition 1. Let $\boldsymbol{\phi}: \mathcal{X} \rightarrow \mathbb{R}^{n}$ be measurable. Consider the following conditions:
(i) ϕ is μ-a.e. injective and bimeasurable, i.e. there exists $Y \in \mathfrak{M}$ such that $\mu(\mathcal{X} \backslash Y)=0,\left.\phi\right|_{Y}$ is injective and $\boldsymbol{\phi}(\sigma \cap Y) \in \mathfrak{B}\left(\mathbb{R}^{n}\right)$ for $\sigma \in \mathfrak{M}$;
(ii) $\phi \in \mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n}, \mu\right)$;
(iii) $\left\{f \circ \boldsymbol{\phi}: f \in L^{2}\left(\mu \circ \boldsymbol{\phi}^{-1}\right)\right\}$ is dense in $L^{2}(\mu)$, where $L^{2}\left(\mu \circ \boldsymbol{\phi}^{-1}\right):=L^{2}\left(\mathbb{R}^{n}, \mathfrak{B}\left(\mathbb{R}^{n}\right)\right.$, $\mu \circ \boldsymbol{\phi}^{-1}$).
Then (i) \Rightarrow (ii) \Leftrightarrow (iii).
Proof. To prove (i) \Rightarrow (ii) it is enough to take $\tau=\boldsymbol{\phi}(\sigma \cap Y)$. Assume now (ii). The condition (iii) is fulfilled, since $\chi_{\sigma}=\chi_{\phi^{-1}(\tau)}=\chi_{\tau} \circ \phi(\mu-$ a.e.) and the characteristic functions are linearly dense in $L^{2}(\mu)$.

Now let us assume (iii). Observe that the operator $U: L^{2}\left(\mu \circ \boldsymbol{\phi}^{-1}\right) \ni f \mapsto f \circ \phi \in$ $L^{2}(\mu)$ is a unitary isomorphism, so for every $g \in L^{2}(\mu)$ there exists $f \in L^{2}\left(\mu \circ \boldsymbol{\phi}^{-1}\right)$ such that $g=f \circ \phi$ (μ-a.e.). Take $\sigma \in \mathfrak{M}$. Then there exists $f \in L^{2}\left(\mu \circ \boldsymbol{\phi}^{-1}\right)$ such that $\chi_{\sigma}=f \circ \boldsymbol{\phi}(\mu$-a.e. $)$. It is now easy to notice that $\chi_{\sigma}=\chi_{\tau} \circ \boldsymbol{\phi}(\mu$-a.e. $)$ where $\tau=f^{-1}(1) \in$ $\mathfrak{B}\left(\mathbb{R}^{n}\right)$. Since $\chi_{\tau} \circ \boldsymbol{\phi}=\chi_{\phi^{-1}(\tau)}$, the proof of (iii) \Rightarrow (ii) is completed.

Notice that the unitary isomorphism appearing above might be used to reduce the proofs of Theorems 7 and 15 to the case when $\mathcal{X}=\mathbb{R}^{n+1}, \phi=\operatorname{id}_{\mathbb{R}^{n+1}}\left(\mathcal{X}=\mathbb{R}^{n}\right.$, $\phi=\mathrm{id}_{\mathbb{R}^{n}}$ respectively). However, this reduction is implicitly made in Proposition 2 and we will not repeat it later.

The implication (i) \Rightarrow (ii) of Proposition 1 will be used in applications. However, injectivity is not a necessary condition for a function to be in $\mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n}, \mu\right)$. For example if $\mathcal{X}=\mathbb{R}, \mathfrak{M}=\left\{\cup_{k \in K}[k, k+1) \mid K \subseteq \mathbb{N}\right\}$ then ϕ defined by $\phi(x):=[x]$ belongs to $\mathcal{M}(\mathcal{X}, \mathbb{R}, \mu)$.

The following Proposition gives us a way of proving that a linear subspace is dense in $L^{2}(\mu)$. We slightly extend the method presented by Fuglede in [2] by introducing an abstract space $(\mathcal{X}, \mathfrak{M}, \nu)$ and a mapping $\boldsymbol{\phi}$.

Proposition 2. Let $(\mathcal{X}, \mathfrak{M}, \nu)$ be a finite measure space, and let $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{n}\right) \in$ $\mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n}, \nu\right)$ be such that $\phi_{j} \in L^{2}(\nu)$ for all $j=1, \ldots, n$. If a closed linear subspace \mathcal{K} of $L^{2}(\nu)$ reduces each operator $M_{\phi_{j}}(j=1, \ldots, n)$ and if $1 \in \mathcal{K}$, then $\mathcal{K}=L^{2}(\nu)$.

Proof. Let E be the spectral measure given by the formula:

$$
E(\sigma) f=\chi_{\sigma} f, \quad \sigma \in \mathfrak{M}, f \in L^{2}(\nu)
$$

Let $j \in\{1, \ldots, n\}$. It is well known that $M_{\phi_{j}}=\int \phi_{j} d E$. On the other hand the measure transport theorem gives us

$$
\int_{\mathcal{X}} \phi_{j} d E=\int_{\mathbb{R}^{n}} \mathrm{x}_{j} d\left(E \circ \boldsymbol{\phi}^{-1}\right) .
$$

Hence $M_{\phi_{1}}, \ldots, M_{\phi_{n}}$ are spectrally commuting selfadjoint operators and $E \circ \boldsymbol{\phi}^{-1}$ is their joint spectral measure. In consequence, if \mathcal{K} reduces every $M_{\phi_{j}}$ then

$$
P\left(E\left(\boldsymbol{\phi}^{-1}(\tau)\right)=\left(E\left(\boldsymbol{\phi}^{-1}(\tau)\right) P, \quad \tau \in \mathfrak{B}\left(\mathbb{R}^{n}\right)\right.\right.
$$

where P stands for the orthogonal projection from $L^{2}(\nu)$ onto \mathcal{K}. Take $\sigma \in \mathfrak{M}$. Since $\phi \in \mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n}, \nu\right)$, there exists $\tau \in \mathfrak{B}\left(\mathbb{R}^{n}\right)$, such that $\chi_{\sigma}=\chi_{\phi^{-1}(\tau)}$ (ν-a.e.). We have

$$
\mathcal{K} \ni P\left(E \circ \phi^{-1}\right)(\tau) 1=\left(E \circ \phi^{-1}\right)(\tau) P 1=E\left(\phi^{-1}(\tau)\right) 1=\chi_{\sigma} .
$$

Since the characteristic functions are linearly dense in $L^{2}(v)$, the proof is complete.

We introduce the set $\mathcal{Q}(A)$ of quasianalytic vectors of an operator A (in the whole paper $1 / 0:=+\infty$):

$$
\mathcal{Q}(A):=\left\{f \in \bigcap_{k=1}^{\infty} \mathcal{D}\left(A^{k}\right) \mid \sum_{k=1}^{\infty}\left\|A^{k} f\right\|^{-1 / k}=+\infty\right\}
$$

A real function $\phi \in \bigcap_{k=1}^{\infty} L^{2 k}(\mu)$ is said to be of μ-quasianalytic type if

$$
\sum_{k=1}^{\infty}\left(\int \phi^{2 k} d \mu\right)^{-1 /(2 k)}=+\infty
$$

Observe, that ϕ is of μ-quasianalytic type if and only if $1 \in \mathcal{Q}\left(M_{\phi}\right)$. It is clear that real μ-a.e. bounded functions are of μ-quasianalytic type. If $|\psi| \leq|\phi|$ and ϕ is of μ-quasianalytic type then ψ is of μ-quasianalytic type as well.

Let $\psi_{n}, \ldots, \psi_{n}$ be real measurable functions on \mathcal{X} and let $\mathbb{N}=\{0,1,2, \ldots\}$. The set

$$
\mathbb{C}\left[\psi_{1}, \ldots, \psi_{n}\right]:=\operatorname{lin}\left\{\psi_{1}^{\alpha_{1}} \cdots \psi_{n}^{\alpha_{n}} \mid \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}\right\}
$$

is the complex algebra with unit generated by the functions $\psi_{1}, \ldots, \psi_{n}$. In this notation $\mathbb{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ stands for the algebra of all complex polynomials in n real variables; by $\mathbb{R}[x]$ we will denote the set of all real polynomials in a single real variable. If \mathcal{D} is an algebra of functions on \mathcal{X}, which are square-integrable with respect to the measure μ, then we will not distinguish between functions from \mathcal{D} and their equivalence classes in $L^{2}(\mu)$ and we will write $\mathcal{D} \subseteq L^{2}(\mu)$. By $\mathcal{D}(\mu)$ we understand the closure of \mathcal{D} in $L^{2}(\mu)$. For $\phi \in \mathcal{D}$ we define a densely defined operator in the Hilbert space $\mathcal{D}(\mu)$ via $X_{\phi}:=M_{\phi} \mid \mathcal{D}$. Observe that $X_{\phi} \in \boldsymbol{L}(\mathcal{D})$.

Lemma 3. Assume that $(\mathcal{X}, \mathfrak{M}, \nu)$ is a finite measure space. Let $\psi_{1}, \ldots, \psi_{n}$ be real measurable functions on \mathcal{X} such that $\mathcal{D}:=\mathbb{C}\left[\psi_{1}, \ldots, \psi_{n}\right] \subseteq L^{2}(\nu)$ and let $k \in\{1, \ldots, n\}$. If ψ_{k} is of ν-quasianalytic type then $X_{\psi_{k}}$ is essentially selfadjoint in $\mathcal{D}(\nu)$.

Proof. The operator $X_{\psi_{k}}$ is symmetric and commutes pointwise with $X_{\psi_{j}}$ $(j=1, \ldots, n)$. From [11, Proposition 2] obtain $X_{\psi_{j}}\left(\mathcal{Q}\left(X_{\psi_{k}}\right)\right) \subseteq \mathcal{Q}\left(X_{\psi_{k}}\right), j=1, \ldots, n$. Since $1 \in \mathcal{Q}\left(X_{\psi_{k}}\right)$ we have that

$$
\begin{equation*}
\operatorname{lin} \mathcal{Q}\left(X_{\psi_{k}}\right) \supseteq \operatorname{lin}\left\{X_{\psi_{1}}^{\alpha_{1}} \cdots X_{\psi_{n}}^{\alpha_{n}} 1 \mid \alpha_{0}, \ldots, \alpha_{n} \in \mathbb{N}\right\}=\mathcal{D} \tag{1.2}
\end{equation*}
$$

Now we can use Nussbaum's criterion for essential selfadjointness (cf. [3, Theorem 2]), which completes the proof.

Since $\mathcal{D}\left(\mathcal{X}_{\psi_{k}}\right)=\mathcal{D}$ the inclusion in (1.2) is in fact an equality. We can obtain a stronger result here, namely $\mathcal{Q}\left(X_{\psi_{k}}\right)=\mathcal{D}$ because every linear combination of $X_{\psi_{1}}^{\alpha_{1}} \cdots X_{\psi_{n}}^{\alpha_{n}}\left(\alpha_{0}, \ldots, \alpha_{n} \in \mathbb{N}\right)$ commutes pointwise with $X_{\psi_{k}}$. Note that $\mathcal{Q}\left(A_{0}\right)$ need not be a linear space ([7]).
2. Log-convex sequences. We will call a sequence $\left(a_{k}\right)_{k=1}^{\infty} \subseteq[0,+\infty) \log$-convex if $a_{k}^{2} \leq a_{k-1} a_{k+1}$ for $k>1$.

Let us state now some simple facts about divergent sequences and functions of μ-quasianalytic type:

Proposition 4. (a) If $\left(b_{k}\right)_{k=1}^{\infty} \subseteq[0,+\infty)$ and $c>0$ then $\sum_{k=1}^{\infty} b_{k}=+\infty$ if and only if $\sum_{k=1}^{\infty} c^{1 / k} b_{k}=+\infty$.
(b) Assume that $\left(a_{k}\right)_{k=1}^{\infty}$ is log-convex and $n \in \mathbb{N} \backslash\{0\}$. Then $\sum_{k=1}^{\infty} a_{k}^{-1 / k}=+\infty$ if and only if $\sum_{k=1}^{\infty} a_{k n}^{-1 / k n}=+\infty$.
(c) If $a_{k}=\left\|A^{k} f\right\|$, where $A \in \boldsymbol{L}(\mathcal{D})$ is symmetric and $f \in \mathcal{D}$, then the sequence $\left(a_{k}\right)_{k=1}^{\infty}$ is log-convex.
(d) If $\phi \in \bigcap_{k=1}^{\infty} L^{2 k}(\mu)$ is real, then for all $n \in \mathbb{N} \backslash\{0\}$

$$
\sum_{k=1}^{\infty}\left(\int \phi^{2 k} d \mu\right)^{-1 /(2 k)}=+\infty \quad \Longleftrightarrow \quad \sum_{k=1}^{\infty}\left(\int \phi^{2 n k} d \mu\right)^{-1 /(2 n k)}=+\infty
$$

Proof. (cf. [11, Section 1]) Point (a) is in fact obvious, since $c^{1 / k} \rightarrow 1(k \rightarrow \infty)$. To prove point (b) observe that by induction we can obtain $a_{k} \leq a_{0}^{1 /(k+1)} a_{k+1}^{k /(k+1)}$ for $k \in \mathbb{N}$.

The case when $a_{l}=0$ for some $l \in \mathbb{N}$ is trivial, assume now the contrary. Due to point (a) we can also assume, without loss of generality, that $a_{0}=1$ and so the sequence $\left(a_{k}^{-1 / k}\right)_{k=0}$ is decreasing. This completes the proof of (b). Point (c) is simple to prove and true even for paranormal operators; see [9] for consequences. Point (d) results straightforwardly from (b) and (c).

The following Lemma has been inspired by [10, Proposition 47].
Lemma 5. Let $(\mathcal{X}, \mathfrak{M}, \mu)$ be a finite measure space and let $\rho \in L^{2}(\mu), \rho \geq 0$. If \mathcal{D} is an algebra contained in $L^{2}(\mu)$ then \mathcal{D} is contained in $L^{2}(\rho \mu)$. Moreover, if $\psi \in \mathcal{D}$ is of μ-quasianalytic type then it is also of $\rho \mu$-quasianalytic type.

Proof. From Hölder's inequality we get

$$
\int|\phi|^{2} \rho d \mu \leq\left(\int\left|\phi^{2}\right|^{2} d \mu \int \rho^{2} d \mu\right)^{1 / 2}, \quad \phi \in \mathcal{D}
$$

So $\phi \in L^{2}(\rho \mu)$.
Let $\psi \in \mathcal{D}$ be of μ-quasianalytic type. Then, by the Schwarz inequality, we have

$$
\left(\int \psi^{2 k} \rho d \mu\right)^{1 /(2 k)} \leq\left(\int \psi^{4 k} d \mu\right)^{1 /(4 k)}\left(\int \rho^{2} d \mu\right)^{1 /(4 k)}
$$

which together with Proposition 4(a) and (d) gives us that ψ is of $\rho \mu$-quasianalytic type.
3. Finitely generated algebras: domination methods. The following Theorem (formulated in a slightly different form) was proved in [4]. See also [10, Theorem 10] for a result which is explicitly stronger than the Theorem below; also many consequences can be found in [10]. Even for $n=1$ Theorem 6 is not trivial.

Theorem 6. Assume that \mathcal{D} is a dense linear subspace of \mathcal{H}. Let $A_{0}, \ldots, A_{n} \in \boldsymbol{L}(\mathcal{D})$ ($n \geq 1$) be symmetric operators in \mathcal{H} such that:
(i) the operators A_{i}, A_{j} commute pointwise for $i, j=0, \ldots, n$;
(ii) A_{0} is essentially selfadjoint;
(iii) there exists $c>0$, such that $\left\|A_{j} f\right\|^{2} \leq c\left(\|f\|^{2}+\left\|A_{0} f\right\|^{2}\right)$ for $f \in \mathcal{D}, j=1, \ldots, n$. Then $\bar{A}_{0}, \ldots, \bar{A}_{n}$ are spectrally commuting selfadjoint operators.

Now we will formulate one of the main results of this paper.
Theorem 7. Let $(\mathcal{X}, \mathfrak{M}, \mu)$ be a finite measure space. Assume that:
(a1) $\phi=\left(\phi_{0}, \ldots, \phi_{n}\right) \in \mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n+1}, \mu\right)$;
(a2) there exists $c>0$ such that $\phi_{j}^{2} \leq c\left(1+\phi_{0}^{2}\right) \mu$-a.e. for $j=1, \ldots, n$;
(a3) $p \in \mathbb{R}[\mathrm{x}] \backslash\{0\}$ and the algebra $\mathcal{D}:=\mathbb{C}\left[\phi_{0}, \phi_{1}, \ldots, \phi_{n}, 1 /\left(p \circ \phi_{0}\right)\right]$ is contained in $L^{2}(\mu)$;
(a4) the function $\frac{q \circ \phi_{0}}{p \circ \phi_{0}}$ is of μ-quasianalytic type for some $q \in \mathbb{R}[\mathrm{x}] \backslash\{\lambda p: \lambda \in \mathbb{R}\}$.
Then \mathcal{D} is dense in $L^{2}(\rho \mu)$ for every $\rho \in L^{2}(\mu), \rho \geq 0$. In particular $\mathcal{D}(\mu)=L^{2}(\mu)$.
Observe that the condition (a4) is implied by the following one:
(a4') p is a nonconstant polynomial, $1 /\left(p \circ \phi_{0}\right)$ is μ-a.e. bounded.

In particular, if $\xi \in \mathbb{R} \backslash \overline{\phi_{0}(\mathbb{R})}$, then the condition (a4') holds with $p(x):=x-\xi$.
Note also that (a2) is equivalent to: There exists $d>0$ such that $\left|P_{j}\right| \leq d\left(1+\left|\phi_{0}\right|\right)$ μ-a.e. for $j=1, \ldots, n$.

Theorem 7 does not exclude the case when $n=0$. In such situation we have only one function $\phi_{0} \in \mathcal{M}\left(\mathcal{X}, \mathbb{R}^{1}, \mu\right)$ and the condition (a2) disappears.

Proof of Theorem 7. Lemma 5 gives us that $\mathcal{D} \subseteq L^{2}(\rho \mu)$ and that the function $\frac{q \circ \phi_{0}}{p \circ \phi_{0}} \in \mathcal{D}$ is of $\rho \mu$-quasianalytic type. Hence, the operator $X_{\frac{q \rho \phi_{0}}{} \frac{\phi_{0}}{0 \phi_{0}}}$ is essentially selfadjoint in $\mathcal{D}(\rho \mu)$ (see Lemma 3). We will show now that the ${ }_{\text {Oporator }}^{\text {pop }} X_{\phi_{0}}$ is essentially selfadjoint in $\mathcal{D}(\rho \mu)$.

Notice that, with $X_{\phi_{0}}^{0}:=I_{\mathcal{D}}, p\left(X_{\phi_{0}}\right)=X_{p \circ \phi_{0}}$ and $X_{\frac{1}{p o \phi_{0}}} p\left(X_{\phi_{0}}\right)=I_{\mathcal{D}}$. Thus the operator $p\left(X_{\phi_{0}}\right)$ has the trivial kernel and a dense (in $\mathcal{D}(\rho \mu)$) range. Consequently, $\mathcal{N}\left(p\left(X_{\phi_{0}}\right)^{*}\right)=\{0\}$ and

$$
\begin{equation*}
\left(\left(p\left(X_{\phi_{0}}\right)\right)^{-1}\right)^{*}=\left(\left(p\left(X_{\phi_{0}}\right)\right)^{*}\right)^{-1} \tag{3.1}
\end{equation*}
$$

Since q / p is a nonconstant meromorphic function with a finite number of poles (due to (a3) and (a4)) there exists $z \in \mathbb{C} \backslash \mathbb{R}$ such that $q(z) / p(z) \in \mathbb{C} \backslash \mathbb{R}$. Let us take a vector $f \in \mathcal{N}\left(z-X_{\phi_{0}}^{*}\right)$. Then

$$
q\left(X_{\phi_{0}}^{*}\right) f=q(z) f, \quad p\left(X_{\phi_{0}}^{*}\right) f=p(z) f .
$$

Because $p\left(X_{\phi_{0}}^{*}\right) \subseteq\left(p\left(X_{\phi_{0}}\right)\right)^{*}$ the operator $p\left(X_{\phi_{0}}^{*}\right)$ has the trivial kernel as well. Moreover, we have

$$
\left(p\left(X_{\phi_{0}}^{*}\right)\right)^{-1} f=\frac{1}{p(z)} f
$$

Since $X_{\frac{q p \phi_{0}}{p \phi_{0}}}=\left(p\left(X_{\phi_{0}}\right)\right)^{-1} q\left(X_{\phi_{0}}\right)$ and

$$
\left(p\left(X_{\phi_{0}}^{*}\right)\right)^{-1} q\left(X_{\phi_{0}}^{*}\right) \subseteq\left(\left(p\left(X_{\phi_{0}}\right)\right)^{-1} q\left(X_{\phi_{0}}\right)\right)^{*},
$$

we obtain:

$$
X_{\frac{p, \phi_{0}}{p \phi_{0}}}^{*} f=\left(\left(p\left(X_{\phi_{0}}\right)\right)^{-1} q\left(X_{\phi_{0}}\right)\right) f=\frac{q(z)}{p(z)} f .
$$

The operator $X_{\frac{q+\infty \phi_{0}}{p \phi_{0}}}$ is essentially selfadjoint, hence $f=0$ and consequently $\mathcal{N}\left(z-X_{\phi_{0}}^{*}\right)=\{0\}$. Because $\overline{q(z) / p(z)}=q(\bar{z}) / p(\bar{z}) \in \mathbb{C} \backslash \mathbb{R}$ we can apply the same arguments and get $\mathcal{N}\left(\bar{z}-X_{\phi_{0}}^{*}\right)=\{0\}$. This completes the proof of essential selfadjointness of $X_{\phi_{0}}$ in $\mathcal{D}(\rho \mu)$.

Observe now that the assumptions (i) and (ii) of Theorem 6 hold with $\mathcal{H}:=\mathcal{D}(\rho \mu)$, $A_{j}:=X_{\phi_{j}}$ for $j=0, \ldots, n$. The assumption (iii) of Theorem 6 is also fulfilled since for $j=1, \ldots, n, f \in \mathcal{D}$ we have

$$
\left\|A_{j}\right\|^{2}=\int \phi_{j}^{2}|f|^{2} \rho d \mu \leq \int c\left(1+\phi_{0}\right)^{2}|f|^{2} \rho d \mu=c\left(\left\|f^{2}\right\|+\left\|A_{0} f\right\|^{2}\right)
$$

As a consequence the operators $\bar{X}_{\phi_{0}}, \bar{X}_{\phi_{1}}, \ldots, \bar{X}_{\phi_{n}}$ are selfadjoint in $\mathcal{D}(\rho \mu)$. According to [12, Corollary 1] $\mathcal{D}(\rho \mu)$ reduces $M_{\phi_{j}}$ to $\bar{X}_{\phi_{j}}(j=0, \ldots, n)$. Observe that $\phi \in$
$\mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n+1}, \rho \mu\right)$. This enables us to apply Proposition 2 . As a consequence we get $\mathcal{D}(\rho \mu)=L^{2}(\rho \mu)$.

The idea of the first part of the proof (essential selfadjointness of $X_{\phi_{0}}$) is taken from Example 4.1 of [8], which is stated below. We will show now that that Example is a special case of Theorem 7 . Our r, s, ψ, \mathcal{P} are denoted in [8] by p, q, ϕ, \mathcal{D}, respectively.

Corollary 8. [8, Example 4.1] Let μ be a probability measure on $[0,+\infty)$ and let the algebra \mathcal{P} of square integrable functions contain $\mathbb{C}[x]$ and a nonconstant rational function $\psi=r / s$, where $r, s \in \mathbb{R}[\mathrm{x}]$. Suppose, moreover, that $1 /(\lambda-\psi)$ is bounded and $1 /(\lambda s-r) \in \mathcal{P}$ for some $\lambda \in \mathbb{R}$. Then $\mathcal{P}(\mu)=L^{2}(\mu)$.

Proof. Consider the algebra $\mathcal{D}:=\mathbb{C}[\mathrm{x}, 1 /(\lambda r-s)] \subseteq \mathcal{P} . \mathcal{D}$ fulfills all the assumptions of Theorem 7 with $n=0, \phi_{0}=\mathrm{x}, p=\lambda s-r, q=s$, because $q / p=1 /(\lambda-\psi)$ is bounded (and hence of μ-quasianalytic type). Thus \mathcal{D} and consequently \mathcal{P} are dense in $L^{2}(\mu)$.

Corollary 9. Let $(\mathcal{X}, \mathfrak{M}, \mu)$ be a finite measure space and let $\boldsymbol{\psi}=\left(\psi_{1}, \ldots, \psi_{n}\right)$ $\in \mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n}, \mu\right)$ be such that $\mathbb{C}\left[\psi_{1}, \ldots, \psi_{n}\right] \subseteq L^{2}(\mu)$. Then the algebra

$$
\mathcal{P}:=\mathbb{C}\left[\psi_{1}, \ldots, \psi_{n}, \frac{1}{1+\psi_{1}^{2 k}+\cdots+\psi_{n}^{2 k}}\right]
$$

is dense in $L^{2}(\rho \mu)$ for every $\rho \in L^{2}(\mu), \rho \geq 0, k \in \mathbb{N} \backslash\{0\}$.
Proof. We will apply Theorem 7 with $\phi_{0}:=\psi_{1}^{2 k}+\cdots \psi_{n}^{2 k}, \phi_{j}=\psi_{j}(j=1, \ldots, n)$, $p(x):=x+1$. Notice that $\mathcal{P}=\mathbb{C}\left[\phi_{0}, \ldots, \phi_{n}\right]$. Consider the mapping

$$
\kappa: \mathbb{R}^{n} \ni\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(t_{1}^{2 k}+\cdots+t_{n}^{2 k}, t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1}
$$

Observe that κ is a bimeasurable injection, $\boldsymbol{\phi}=\kappa \circ \boldsymbol{\psi}$ and $\boldsymbol{\psi} \in \mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n}, \mu\right)$. Hence $\phi \in \mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n+1}, \mu\right)$ and so the assumption (a1) (of Theorem 7) is satisfied. Point (a2) is obvious in this situation. Since the function $\left(1+\psi_{1}^{2 k} \cdots \psi_{n}^{2 k}\right)^{-1}$ is bounded and $\mathbb{C}\left[\psi_{1}, \ldots, \psi_{n}\right] \subseteq L^{2}(\mu)$, we have (a3). Observe that $-1 \notin \overline{\phi_{0}(\mathbb{R})}$, so the condition (a4') is also fulfilled. Theorem 7 says now that \mathcal{P} is dense in $L^{2}(\rho \mu)$.

Example 10. Recall that $\mathrm{x}_{j}(x):=x_{j}$. Putting $\mathcal{X}=\mathbb{R}^{n}, \mathfrak{M}=\mathfrak{B}\left(\mathbb{R}^{n}\right), \psi_{j}:=\mathrm{x}_{j}$ in the above Corollary we obtain the following fact. Let μ be a finite Borel measure on \mathbb{R}^{n} such that the polynomials are absolutely integrable and let $k \in \mathbb{N} \backslash\{0\}$. Then the algebra $\mathbb{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}, \frac{1}{1+\mathrm{x}_{1}^{2 k}+\cdots+\mathrm{x}_{n}^{2 k}}\right]$ is dense in $L^{2}(\rho \mu)$ for $\rho \in L^{2}(\mu), \rho \geq 0$. (This result with $\rho=1$ and $k=1$ was proved in [6, Theorem 2.5]; see also [10, Proof of Theorem 45]).

Example 11. Let μ be a finite Borel measure on $[\gamma,+\infty)^{m}(\gamma \in \mathbb{R}, m \geq 2)$ such that the algebra $\mathbb{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{m-1}, \mathrm{e}^{\mathrm{x}_{1}+\cdots+\mathrm{x}_{m}}\right]$ is contained in $L^{2}(\mu)$. Consider the mapping $\boldsymbol{\phi}=\left(\phi_{0}, \ldots, \phi_{m-1}\right):[\gamma,+\infty)^{m} \rightarrow \mathbb{R}^{m}$, where $\phi_{0}=\mathrm{e}^{\mathrm{x}_{1}+\cdots+\mathrm{x}_{m}}$ and $\phi_{j}=\mathrm{x}_{j}(j=$ $1, \ldots, m-1$). Since ϕ is a bimeasurable injection, the assumption (al) of Theorem 7 holds with $n=m-1$ (see Proposition 1). We can easily check the assumptions (a2), (a3) and (a4') (with $p(x)=x+1$). As a consequence we get that the algebra $\mathbb{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{m-1}, \mathrm{e}^{\mathrm{x}_{1}+\cdots+\mathrm{x}_{m}}, \frac{1}{1+\mathrm{e}^{\mathrm{x}_{1}+\cdots+\mathrm{x}_{m}}}\right]$ is dense in $L^{2}(\rho \mu)$ for every $\rho \in L^{2}(\mu), \rho \geq 0$.

Example 12. Let μ be a Borel measure whose support is contained in the set $\left\{x \in \mathbb{R}^{n+1}:\left|x_{j}\right|^{2} \leq c\left(1+\left|x_{0}\right|^{2 k}\right)(j=1, \ldots, n),\left|x_{0}\right|>\varepsilon\right\}$ where $c, \varepsilon>0, k \in \mathbb{N} \backslash\{0\}$.

Assume also that the algebra $\mathbb{C}\left[\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ is contained in $L^{2}(\mu)$. Then for every $l \in \mathbb{N}$ such that $2 l+1 \geq k$ the algebra $\mathbb{C}\left[\mathrm{x}_{0}^{2 l+1}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}, 1 / \mathrm{x}_{0}^{2 l+1}\right]$ is dense in $L^{2}(\rho \mu)\left(\rho \in L^{2}(\mu), \rho \geq 0\right)$. Indeed, we put $\phi_{0}:=\mathrm{x}_{0}^{2 l+1}, \phi_{j}:=\mathrm{x}_{j}$ for $j=1, \ldots, n$, $p(x):=x$ and check the assumptions of Theorem 7. The conditions (a1), (a3) and ($\mathrm{a} 4^{\prime}$) are obvious. To see that (a2) holds observe that there exists $d>0$ such that $c\left(1+\left|x_{0}\right|^{2 k}\right) \leq d\left(1+\left|x_{0}\right|^{2(2 l+1)}\right)$ for all $x \in \mathbb{R}^{n}$.

In the applications of Theorem 7 presented above we used the condition ($\mathrm{a} 4^{\prime}$). The following Proposition (which can be treated as a method of constructing examples) requires Theorem 7 with a stronger condition (a4).

Proposition 13. Let $(\mathcal{X}, \mathfrak{M}, \nu)$ be a finite measure space. Assume that:
(i) $\phi=\left(\phi_{0}, \ldots, \phi_{n}\right) \in \mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n+1}, \nu\right)$;
(ii) there exists $c>0$ such that $\phi_{j}^{2} \leq c\left(1+\phi_{0}^{2}\right)$ v-a.e. for $j=1, \ldots, n$;
(iii) $p \in \mathbb{R}[\mathrm{x}] \backslash\{0\}$ and the algebra $\mathcal{D}:=\mathbb{C}\left[\phi_{0}, \phi_{1}, \ldots, \phi_{n}, 1 /\left(p \circ \phi_{0}\right)\right]$ is contained in $L^{2}(\nu)$.
Let also $r \in \mathbb{R}[\mathrm{x}] \backslash\{\lambda p: \lambda \in \mathbb{R}\}$. Then the algebra \mathcal{D} is contained and dense in $L^{2}(\rho \mu)$ for every $\rho \geq 0, \rho \in L^{2}(\mu)$, where $\mu:=\exp \left(-\left|\frac{r \circ \phi_{0}}{p \circ \phi_{0}}\right|\right) \nu$.

Proof. It suffices to show that the system $(\mathcal{X}, \mathfrak{M}, \mu, \phi, p)$ satisfies the assumptions (a1)-(a4) of Theorem 7.

The condition (a1) holds, because the measure μ is absolutely continuous with respect to v. From the same reason the condition (a2) is fulfilled. Since the function $\exp \left(-\left|\frac{r \circ \phi_{0}}{p \circ \phi_{0}}\right|\right)$ is bounded, we have $\mathcal{D} \subseteq L^{2}(\mu)$, so the condition (a3) is also satisfied.

The only problem is now to show that the real function $\psi:=\frac{q \circ \phi_{0}}{p \circ \phi_{0}}$ is of μ quasianalytic type for some $q \in \mathbb{R}[\mathrm{x}] \backslash\{\lambda p: \lambda \in \mathbb{R}\}$. Put $q(x):=(e / 4) r(x)$. Observe that

$$
\forall_{x \in \mathcal{X}} \quad\left(\frac{\psi(x)}{k}\right)^{2 k} \rightarrow 0 \text { with } k \rightarrow \infty
$$

Moreover

$$
\forall_{k \in \mathbb{N} \backslash\{0\}} \forall_{x \in \mathcal{X}} \quad\left(\frac{\psi(x)}{k}\right)^{2 k} \leq e^{2|\psi(x)| / e} .
$$

This equality is trivial if $\psi(x)=0$. If $y:=|\psi(x)|>0$ it is enough to investigate the function $f_{y}: \xi \mapsto(y / \xi)^{2 \xi}$ whose global maximum on $(0,+\infty)$ equals $\mathrm{e}^{2 y / e}$.

Observe that $\mathrm{e}^{2|\psi| / e}=\exp \left(\left|\frac{r \circ \phi_{0}}{2 p \circ \phi_{0}}\right|\right) \in L^{2}(\mu)$. So by the Lebesgue dominated convergence theorem

$$
\int\left(\frac{\psi}{k}\right)^{2 k} d \mu \rightarrow 0 \text { with } k \rightarrow \infty
$$

So for k large enough

$$
\left(\int \psi^{2 k} d \mu\right)^{-1 /(2 k)} \geq 1 / k
$$

and consequently ψ is of μ-quasianalytic type.
4. Quasianalyticity without domination. The following Proposition is a special case of [10, Lemma 38]; we present here a simple proof.

Proposition 14. If a function ψ is of μ-quasianalytic type and if for some $c>0$ we have $\phi \leq c(1+|\psi|)$ (μ-a.e.) then ϕ is of μ-quasianalytic type.

Proof. It is enough to prove that $(1+|\psi|)$ is of μ-quasianalytic type. Applying the triangle inequality in the space $L^{2 k}(\mu)$ we get

$$
\left(\int(1+|\psi|)^{2 k} d \mu\right)^{1 /(2 k)} \leq\left[\left(\int 1 d \mu\right)^{1 /(2 k)}+\left(\int \psi^{2 k} d \mu\right)^{1 /(2 k)}\right] .
$$

Observe that the first summand on the right hand side tends to 1 with $k \rightarrow \infty$. We can apply now the following simple fact.

Let $\left(a_{k}\right)_{k=1}^{\infty} \subseteq[0,+\infty)$. If $\sum_{k=1}^{\infty} 1 / a_{k}=+\infty$ and the sequence $\left(b_{k}\right)_{k=1}^{\infty} \subseteq[0,+\infty)$ is bounded then $\sum_{k=1}^{\infty} 1 /\left(a_{k}+b_{k}\right)=+\infty$.

Notice that if the function ϕ_{0} from Theorem 7 is of μ-quasianalytic type, then the functions $\phi_{j}(j=1, \ldots, n)$ are also of μ-quasianalytic type. In this situation we can prove a similar result.

Theorem 15. Let $(\mathcal{X}, \mathfrak{M}, \mu)$ be a finite measure space, $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{n}\right) \in$ $\mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n}, \mu\right)$ and let $\mathcal{D}:=\mathbb{C}\left[\phi_{1}, \ldots, \phi_{n}\right] \subseteq L^{2}(\mu)$. Suppose that ϕ_{j} is of μ-quasianalytic type for $j=1, \ldots, n$. Then $\mathcal{D}(\rho \mu)=L^{2}(\rho \mu)$ for every $\rho \in L^{2}(\mu), \rho \geq 0$.

Proof. Let $j \in\{0, \ldots, n\}$. Lemma 5 gives us that $\mathcal{D} \subseteq L^{2}(\rho \mu)$ and that the function ϕ_{j} is of $\rho \mu$-quasianalytic type. So the operator $X_{\phi_{j}}$ is essentially selfadjoint in $\mathcal{D}(\rho \mu)$ (see Lemma 3). According to [12, Corollary 1] the space $\mathcal{D}(\rho \mu)$ reduces $M_{\phi_{j}}$. Due to the Proposition 2 we get $\mathcal{D}(\rho \mu)=L^{2}(\rho \mu)$.

Quasianalytic vectors have been investigated in many papers; for example in [3] or [11] one may find theorems similar to the one above (especially if $\rho \equiv 1$).

Corollary 16. Let \mathcal{X} be a Borel subset of a complete separable metric space. Let $\mathfrak{M}=\mathfrak{B}(\mathcal{X})$ and let μ be any finite Borel measure on \mathcal{X}. There exists a bounded function $\phi \in L^{2}(\mu)$ such that $\mathbb{C}[\phi]$ is dense in $L^{2}(\rho \mu)$ for every $\rho \in L^{2}(\mu), \rho \geq 0$.

Proof. Due to [5, p. 12, Theorem 2.8] \mathcal{X} is countable or has the power of continuum. Due to Kuratowski's theorem (cf. [5, p. 14, Theorem 2.12]) if \mathcal{X} has the power of continuum there exists a bimeasurable bijection $\phi: \mathcal{X} \rightarrow[0,1]$. If \mathcal{X} is enumerable (\mathcal{X} is finite), then there exists a bimeasurable bijection $\phi: \mathcal{X} \rightarrow\{1 / n: n \in \mathbb{N}\}(\phi: \mathcal{X} \rightarrow$ $\{1 / n: n \in \mathbb{N}, n \leq N\}$ where N is the number of elements of \mathcal{X}, respectively). It follows from Theorem 7 that the algebra with unit generated by this single function is dense in $L^{2}(\mu)$.

This fact could be obtained by more elementary methods - the measure transport theorem and the Weierstrass theorem.

We will now show an application of Theorem 15 to moment problems. Let μ be a measure on \mathbb{R}^{n} such that the polynomials are absolutely integrable. We will call μ ultradeterminate if the polynomials are dense in $L^{2}\left(\left(1+|\mathrm{x}|^{2}\right) \mu\right)$) where $|\mathrm{x}|^{2}:=$ $\mathrm{x}_{1}^{2}+\cdots \mathrm{x}_{n}^{2}$. If a measure μ is ultradeterminate then its moment sequence

$$
c_{\alpha}=\int \mathrm{x}_{1}^{\alpha_{1}} \cdots \mathrm{x}_{n}^{\alpha_{n}} d \mu, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}
$$

is determinate, i.e. if v is any measure such that $c_{\alpha}=\int \mathrm{x}_{1}^{\alpha_{1}} \cdots \mathrm{x}_{n}^{\alpha_{n}} d \nu$ for $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ then $v=\mu$ (cf. [2]). The following Corollary extends Theorem 9 from [3].

Corollary 17. If x_{j} is of μ-quasianalytic type for $j=1, \ldots, n$ then $\eta \mu$ is ultradeterminate for every $\eta \in L^{2}\left(\left(1+|\mathrm{x}|^{2}\right)^{2} \mu\right), \eta \geq 0$.

Proof. We apply Theorem 15 to $\phi_{j}:=\mathrm{x}_{j}, j=1, \ldots, n, \rho:=\eta\left(1+|\mathrm{x}|^{2}\right)$.
We can write the fact that x_{j} is of μ-quasianalytic type in the language of sequences: $\sum_{k=1}^{\infty} c_{2 k e_{j}}^{-1 /(2 k)}=+\infty$ where c_{α} is as above and e_{j} stands for the multiindex $(0, \ldots, 0,1,0, \ldots, 0)$ of length n with 1 on the j th position. It appears that we do not need here that $\left(c_{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ is a moment sequence - it is enough to assume that it is positive definite, cf [2].
5. The most general case. The following Theorem is a combination of Theorems 7 and 15 .

Theorem 18. Let $(\mathcal{X}, \mathfrak{M}, \mu)$ be a finite measure space and $A=A_{0} \cup \ldots \cup A_{N}$ be a finite union of pairwise disjoint sets such that $A_{j} \neq \emptyset$ for $j=1, \ldots, n$. Denote by n the number of elements of A. Assume that:
(i) $\phi=\left(\phi_{\alpha}\right)_{\alpha \in A} \in \mathcal{M}\left(\mathcal{X}, \mathbb{R}^{n}, \mu\right)$;
(ii) for each $\alpha \in A_{0}$ the function ϕ_{α} is of μ-quasianalytic type;
(iii) for each $j \in\{1, \ldots, N\}$ there exists $\beta_{j} \in A_{j}$ and $c_{j}>0$ such that for all $\alpha \in A_{j} \backslash\left\{\beta_{j}\right\}$ we have $\phi_{\alpha}^{2} \leq c_{j}\left(1+\phi_{\beta_{j}}^{2}\right) \mu$-a.e.;
(iv) for each $j \in\{1, \ldots, N\}$ there exists $p_{j} \in \mathbb{R}[\mathrm{x}] \backslash\{0\}$ such that the algebra

$$
\mathcal{D}:=\operatorname{lin}\left\{\prod_{\alpha \in A} \phi_{\alpha}^{k_{\alpha}} \cdot \prod_{j=1, \ldots, N}\left(\frac{1}{p_{j} \circ \phi_{\beta_{j}}}\right)^{l_{j}}: k_{\alpha}, l_{j} \in \mathbb{N}\right\}
$$

is contained in $L^{2}(\mu)$;
(v) for each $j \in\{1, \ldots, N\}$ there exists $q_{j} \in \mathbb{R}[x] \backslash\left\{\lambda p_{j}: \lambda \in \mathbb{R}\right\}$ such that the function $\frac{q_{j} \circ \phi_{\beta_{j}}}{p_{j} \circ \phi_{\beta_{j}}}$ is of μ-quasianalytic type.
Then \mathcal{D} is dense in $L^{2}(\rho \mu)$ for every $\rho \in L^{2}(\mu), \rho \geq 0$. In particular $\mathcal{D}(\mu)=L^{2}(\mu)$.
As in Theorem 7 the case when $A_{j}=\left\{\beta_{j}\right\}$ for some $j \in\{1, \ldots, N\}$ is not excluded. Also the case when $N=0$ is possible; in this situation the condition (iii) disappears and the condition (iv) has the following form: The algebra

$$
\mathcal{D}:=\operatorname{lin}\left\{\prod_{\alpha \in A} \phi_{\alpha}^{k_{\alpha}}: k_{\alpha} \in \mathbb{N}\right\}
$$

is contained in $L^{2}(\mu)$.
Observe that if we put $A_{0}=\emptyset, N=1$ then we get Theorem 7 and if we put $N=0$ then we get Theorem 15.

Proof of Theorem 18. As in the proof of Theorem 7 we see that for all $j=1, \ldots, N$, $\alpha \in A_{j}$ the operators $X_{\phi_{\alpha}}$ are essentially selfadjoint in $\mathcal{D}(\rho \mu)$. Repeating the proof of Theorem 15 we get that $X_{\phi_{\alpha}}$ is essentially selfadjoint in $\mathcal{D}(\rho \mu)$ for $\alpha \in A_{0}$. Now we use standard arguments to prove that $\mathcal{D}(\rho \mu)=L^{2}(\rho \mu)$.

Example 19. Let μ be a Borel measure whose support is contained in the set $\left\{x \in \mathbb{R}^{n}:\left|x_{j}\right|>\varepsilon(j=1, \ldots, n)\right\}$ where $\varepsilon>0$. Assume also that the algebra $\mathbb{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ is contained in $L^{2}(\mu)$. Then for every $k \in \mathbb{N}, k$ odd, the algebra $\mathcal{P}_{k}:=\mathbb{C}\left[\mathrm{x}_{1}^{k}, 1 / x_{1}^{k}, \ldots, \mathrm{x}_{n}^{k}, 1 / \mathrm{x}_{n}^{k}\right]$ is dense in $L^{2}(\rho \mu)\left(\rho \in L^{2}(\mu), \rho \geq 0\right)$. Indeed, we put $A_{0}=\emptyset, A_{j}=\{j\}, \phi_{j}:=\mathrm{x}_{j}^{k}, p_{j}(x):=x, q_{j} \equiv 1$ for $j=1, \ldots, n$ and check the assumptions of Theorem 18. Observe that for $l \in \mathbb{N} \backslash\{0\} \mathcal{P}_{k^{\prime}}$ is dense in $L^{2}(\rho \mu)$ and $\mathcal{P}_{k^{(l+1)}} \subseteq \mathcal{P}_{k^{\prime}}$. But $\bigcap_{l=1}^{\infty} \mathcal{P}_{k^{l}}=\mathbb{C} \cdot 1$.

Acknowledgement. I would like to thank Professor Jan Stochel for the inspiration for this paper and for many important suggestions.

REFERENCES

1. N. I. Akhiezer and M. I. Glazman, Theory of linear operators in Hilbert space vol. II (The Pitman Press, Bath 1980).
2. B. Fuglede, The multidimensional moment problem, Expo. Math. 1 (1983), 47-65.
3. A. E. Nussbaum, Quasi-analytic vectors, Ark. Mat. 6 (1965), 179-191.
4. N. S. Poulsen, On the cannonical commutation relations, Math. Scand. 32 (1973), 112-122.
5. K. R. Parthasarathy, Probability measures on metric spaces (Academic Press, San Diego, 1967).
6. M. Putinar and F.-H. Vasilescu, Solving moment problems by dimensional extension, Ann. of Math. 149 (1999), 1087-1107.
7. J. Rusinek, Non linearity of the set of p-quasi analytic vectors for some essentially self-adjoint operators, Bull. Polish Acad. Sci. Math. 48 (2000), 287-292.
8. Z. Sebestyén and J. Stochel, On products of unbounded operators, Acta Math. Hungar. 100 (2003), 105-129.
9. J. Stochel and F. H. Szafraniec, \mathcal{C}^{∞}-vectors and boundness, Ann. Polon. Math. 66 (1997), 223-238.
10. J. Stochel and F. H. Szafraniec, Domination of unbounded operators and commutativity, J. Math. Soc. Japan 55 (2003), 405-437.
11. J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators, I, J. Operator Theory 14 (1985), 31-55.
12. J. Stochel and F. H. Szafraniec, The normal part of an unbounded operator, Nederl. Akad. Wetensch. Proc. Ser. A 92 (1989), 495-503.
13. R. Whitley and Normal and quasinormal composition operators, Proc. Amer. Math. Soc. 70 (1978), 114-118.
