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Introduction. It turns out that methods from operator theory can be useful
in approximation theory. Fuglede in [2] showed that the polynomials are dense in
L2((x2

1 + · · · + x2
n)µ) provided that the multiplication operators �[x1, . . . , xn] � p �→

xjp ∈ �[x1, . . . , xn] are jointly essentially selfadjoint in the closure of polynomials in
L2(µ). Putinar and Vasilescu proved in [6] that the algebra generated by the poly-
nomials and the function 1/(1 + x2

1 + · · · + x2
n) is dense in L2(µ).

An inspiration for this paper was an example in [8]. Stochel and Sebestyén showed
that if an algebra of functions on � contains polynomials and a function 1/p where
p is a nonzero polynomial and for some polynomial q, the rational function q/p is
nonconstant and bounded then this algebra is dense in L2(µ). In Theorem 7 we gener-
alize this fact in many ways:

� (�,B(�), µ) is replaced by an abstract finite measure space
� a result from domination theory enables us to deal with algebras generated by a

finite set of functions (instead of algebras with only two generators)
� the algebra of polynomials is replaced by the algebra generated by the coordinates

of an abstract measurable mapping φ :X → �n,
� the condition of boundedness is abandoned and a weaker µ-quasianalyticity

condition is introduced.
As a consequence we get also the aforementioned result from [6]. Section 3 with
Theorem 15 is a complement of Theorem 7. The situation where all the coordinates
of the mapping φ are of µ-quasianalytic type is considered therein. Theorem 18 is the
most general result of this paper; Theorems 7 and 15 are in fact its consequences.
However, the main ideas, examples and proofs are in Sections 3 and 4.

1. The multiplication operator and quasianalyticity. If Z is a topological space
then the symbol B(Z) will denote the σ -algebra of all Borel subsets of Z. In the whole
paper we will assume that (X ,M, µ) is a finite measure space, i.e. X is a nonempty set,
M is a σ -algebra of subsets of X and µ is a positive finite measure defined on M. We
will deal with the complex Hilbert space L2(µ) := L2(X ,M, µ).
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LetH be a (complex) Hilbert space. By an operator inH we mean a linear mapping
T :D(T) → H, where the domain D(T) of T is a linear subspace of H. By N (T) we
denote the kernel of T . If T is closable then T stands for the closure of T .

Let D be a dense linear subspace H. We will denote by L(D) the algebra of all
operators T in H such that D(T) = D and T(D) ⊆ D. By ID we understand the identity
operator on D. We say that T1, . . . , Tn ∈ L(D) commute pointwise if TiTj f = TjTi f
for all f ∈ D, i, j = 1, . . . , n.

Let S1, . . . , Sn be selfadjoint operators in H and let E1, . . . , En be their spectral
measures, respectively. We say that S1, . . . , Sn spectrally commute if for all i, j = 1, . . . , n
and for all σ, τ ∈ B(�), we have Ei(σ )Ej(τ ) = Ej(τ )Ei(σ ). In such case there exists
a joint spectral measure of the system (S1, . . . , Sn), i.e. a spectral measure E on �n

satisfying

∫
xjdE = Sj, j = 1, . . . , n, (1.1)

where xj(x) := xj. Conversely, if the condition (1.1) holds, then S1, . . . , Sn are spectrally
commuting selfadjoint operators.

Let (X ,M, µ) be a finite measure space and let φ :X → � be a measurable
function. We define the operator Mφ in L2(µ):

D(Mφ) := { f ∈ L2(µ) : φ · f ∈ L2(µ)}
Mφ f := φ · f, f ∈ D(Mφ).

Mφ is a well-defined selfadjoint operator.
Let us define the following set of mappings:

M(X , �n, µ) = {φ :X → �n | φ is measurable, ∀σ∈M∃τ∈B(�n) µ(σ	φ−1(τ )) = 0},

where A	B := (A\B) ∪ (B\A). (According to [13] we would say that φ−1(B(�n)) is
essentially all of M.) A result similar to the following Proposition, but in the context
when φ :X → X , appears in [13, Lemma 1].

PROPOSITION 1. Let φ :X → �n be measurable. Consider the following conditions:
(i) φ is µ-a.e. injective and bimeasurable, i.e. there exists Y ∈ M such that

µ(X \Y ) = 0, φ|Y is injective and φ(σ ∩ Y ) ∈ B(�n) for σ ∈ M;
(ii) φ ∈ M(X , �n, µ);

(iii) { f ◦ φ : f ∈ L2(µ ◦ φ−1)} is dense in L2(µ), where L2(µ ◦ φ−1) := L2(�n,B(�n),
µ ◦ φ−1).
Then (i) ⇒ (ii) ⇔ (iii).

Proof. To prove (i) ⇒ (ii) it is enough to take τ = φ(σ ∩ Y ). Assume now (ii). The
condition (iii) is fulfilled, since χσ = χφ−1(τ ) = χτ ◦ φ (µ-a.e.) and the characteristic
functions are linearly dense in L2(µ).

Now let us assume (iii). Observe that the operator U : L2(µ ◦ φ−1) � f �→ f ◦ φ ∈
L2(µ) is a unitary isomorphism, so for every g ∈ L2(µ) there exists f ∈ L2(µ ◦ φ−1)
such that g = f ◦ φ (µ-a.e.). Take σ ∈ M. Then there exists f ∈ L2(µ ◦ φ−1) such that
χσ = f ◦ φ (µ-a.e.). It is now easy to notice that χσ = χτ ◦ φ (µ-a.e.) where τ = f −1(1) ∈
B(�n). Since χτ ◦ φ = χφ−1(τ ), the proof of (iii) ⇒ (ii) is completed. �
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Notice that the unitary isomorphism appearing above might be used to reduce
the proofs of Theorems 7 and 15 to the case when X = �n+1, φ = id�n+1 (X = �n,
φ = id�n respectively). However, this reduction is implicitly made in Proposition 2 and
we will not repeat it later.

The implication (i) ⇒ (ii) of Proposition 1 will be used in applications. However,
injectivity is not a necessary condition for a function to be in M(X , �n, µ). For
example if X = �, M = {∪k∈K [k, k + 1) | K ⊆ �} then φ defined by φ(x) := [x] belongs
to M(X , �, µ).

The following Proposition gives us a way of proving that a linear subspace is dense
in L2(µ). We slightly extend the method presented by Fuglede in [2] by introducing an
abstract space (X ,M, ν) and a mapping φ.

PROPOSITION 2. Let (X ,M, ν) be a finite measure space, and let φ = (φ1, . . . , φn) ∈
M(X , �n, ν) be such that φj ∈ L2(ν) for all j = 1, . . . , n. If a closed linear subspace K of
L2(ν) reduces each operator Mφj ( j = 1, . . . , n) and if 1 ∈ K, then K = L2(ν).

Proof. Let E be the spectral measure given by the formula:

E(σ )f = χσ f, σ ∈ M, f ∈ L2(ν).

Let j ∈ {1, . . . , n}. It is well known that Mφj = ∫
φjdE. On the other hand the measure

transport theorem gives us ∫
X

φjdE =
∫

�n
xjd (E ◦ φ−1).

Hence Mφ1 , . . . , Mφn are spectrally commuting selfadjoint operators and E ◦ φ−1 is
their joint spectral measure. In consequence, if K reduces every Mφj then

P(E(φ−1(τ )) = (E(φ−1(τ ))P, τ ∈ B(�n),

where P stands for the orthogonal projection from L2(ν) onto K. Take σ ∈ M. Since
φ ∈ M(X , �n, ν), there exists τ ∈ B(�n), such that χσ = χφ−1(τ ) (ν-a.e.). We have

K � P(E ◦ φ−1)(τ )1 = (E ◦ φ−1)(τ )P1 = E(φ−1(τ ))1 = χσ .

Since the characteristic functions are linearly dense in L2(ν), the proof is complete.
�

We introduce the set Q(A) of quasianalytic vectors of an operator A (in the whole
paper 1/0 := +∞):

Q(A) :=
{

f ∈
∞⋂

k=1

D(Ak)

∣∣∣∣∣
∞∑

k=1

∥∥Akf
∥∥−1/k = +∞

}
.

A real function φ ∈ ⋂∞
k=1 L2k(µ) is said to be of µ-quasianalytic type if

∞∑
k=1

(∫
φ2kdµ

)−1/(2k)

= +∞.

Observe, that φ is of µ-quasianalytic type if and only if 1 ∈ Q(Mφ). It is clear that
real µ-a.e. bounded functions are of µ-quasianalytic type. If |ψ | ≤ |φ| and φ is of
µ-quasianalytic type then ψ is of µ-quasianalytic type as well.
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Let ψn, . . . , ψn be real measurable functions on X and let � = {0, 1, 2, . . .}. The
set

�[ψ1, . . . , ψn] := lin{ψα1
1 · · ·ψαn

n

∣∣ α1, . . . , αn ∈ �}

is the complex algebra with unit generated by the functions ψ1, . . . , ψn. In this notation
�[x1, . . . , xn] stands for the algebra of all complex polynomials in n real variables; by
�[x] we will denote the set of all real polynomials in a single real variable. If D is an
algebra of functions on X , which are square-integrable with respect to the measure µ,
then we will not distinguish between functions from D and their equivalence classes
in L2(µ) and we will write D ⊆ L2(µ). By D(µ) we understand the closure of D in
L2(µ). For φ ∈ D we define a densely defined operator in the Hilbert space D(µ) via
Xφ := Mφ|D. Observe that Xφ ∈ L(D).

LEMMA 3. Assume that (X ,M, ν) is a finite measure space. Let ψ1, . . . , ψn be real
measurable functions on X such that D := �[ψ1, . . . , ψn] ⊆ L2(ν) and let k ∈ {1, . . . , n}.
If ψk is of ν-quasianalytic type then Xψk is essentially selfadjoint in D(ν).

Proof. The operator Xψk is symmetric and commutes pointwise with Xψj

( j = 1, . . . , n). From [11, Proposition 2] obtain Xψj (Q(Xψk )) ⊆ Q(Xψk ), j = 1, . . . , n.
Since 1 ∈ Q(Xψk ) we have that

linQ(Xψk ) ⊇ lin
{
Xα1

ψ1
· · · Xαn

ψn
1
∣∣ α0, . . . , αn ∈ �

} = D. (1.2)

Now we can use Nussbaum’s criterion for essential selfadjointness (cf. [3, Theorem 2]),
which completes the proof. �

Since D(Xψk ) = D the inclusion in (1.2) is in fact an equality. We can obtain
a stronger result here, namely Q(Xψk ) = D because every linear combination of
Xα1

ψ1
· · · Xαn

ψn
(α0, . . . , αn ∈ �) commutes pointwise with Xψk . Note that Q(A0) need

not be a linear space ([7]).

2. Log-convex sequences. We will call a sequence (ak)∞k=1 ⊆ [0,+∞) log-convex
if a2

k ≤ ak−1ak+1 for k > 1.
Let us state now some simple facts about divergent sequences and functions of

µ-quasianalytic type:

PROPOSITION 4. (a) If (bk)∞k=1 ⊆ [0,+∞) and c > 0 then
∑∞

k=1 bk = +∞ if and only
if

∑∞
k=1 c1/kbk = +∞.

(b) Assume that (ak)∞k=1 is log-convex and n ∈ �\{0}. Then
∑∞

k=1 a−1/k
k = +∞ if and

only if
∑∞

k=1 a−1/kn
kn = +∞.

(c) If ak = ‖Akf ‖, where A ∈ L(D) is symmetric and f ∈ D, then the sequence (ak)∞k=1
is log-convex.

(d) If φ ∈ ⋂∞
k=1 L2k(µ) is real, then for all n ∈ �\{0}

∞∑
k=1

(∫
φ2kdµ

)−1/(2k)

=+∞ ⇐⇒
∞∑

k=1

(∫
φ2nkdµ

)−1/(2nk)

=+∞.

Proof. (cf. [11, Section 1]) Point (a) is in fact obvious, since c1/k → 1 (k → ∞). To
prove point (b) observe that by induction we can obtain ak ≤ a1/(k+1)

0 ak/(k+1)
k+1 for k ∈ �.
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The case when al = 0 for some l ∈ � is trivial, assume now the contrary. Due to point
(a) we can also assume, without loss of generality, that a0 = 1 and so the sequence
(a−1/k

k )k=0 is decreasing. This completes the proof of (b). Point (c) is simple to prove
and true even for paranormal operators; see [9] for consequences. Point (d) results
straightforwardly from (b) and (c). �

The following Lemma has been inspired by [10, Proposition 47].

LEMMA 5. Let (X ,M, µ) be a finite measure space and let ρ ∈ L2(µ), ρ ≥ 0. If D
is an algebra contained in L2(µ) then D is contained in L2(ρµ). Moreover, if ψ ∈ D is of
µ-quasianalytic type then it is also of ρµ-quasianalytic type.

Proof. From Hölder’s inequality we get

∫
|φ|2ρdµ ≤

(∫
|φ2|2dµ

∫
ρ2dµ

)1/2

, φ ∈ D.

So φ ∈ L2(ρµ).
Let ψ ∈ D be of µ-quasianalytic type. Then, by the Schwarz inequality, we have

(∫
ψ2kρdµ

)1/(2k)

≤
(∫

ψ4kdµ

)1/(4k) (∫
ρ2dµ

)1/(4k)

.

which together with Proposition 4(a) and (d) gives us that ψ is of ρµ-quasianalytic
type. �

3. Finitely generated algebras: domination methods. The following Theorem
(formulated in a slightly different form) was proved in [4]. See also [10, Theorem 10] for
a result which is explicitly stronger than the Theorem below; also many consequences
can be found in [10]. Even for n = 1 Theorem 6 is not trivial.

THEOREM 6. Assume that D is a dense linear subspace of H. Let A0, . . . , An ∈ L(D)
(n ≥ 1) be symmetric operators in H such that:

(i) the operators Ai, Aj commute pointwise for i, j = 0, . . . , n;
(ii) A0 is essentially selfadjoint;

(iii) there exists c > 0, such that ‖Aj f ‖2 ≤ c(‖ f ‖2 + ‖A0 f ‖2) for f ∈ D, j = 1, . . . , n.
Then A0, . . . , An are spectrally commuting selfadjoint operators.

Now we will formulate one of the main results of this paper.

THEOREM 7. Let (X ,M, µ) be a finite measure space. Assume that:
(a1) φ = (φ0, . . . , φn) ∈ M(X , �n+1, µ);
(a2) there exists c > 0 such that φ2

j ≤ c(1 + φ2
0) µ-a.e. for j = 1, . . . , n;

(a3) p ∈ �[x]\{0} and the algebra D := �[φ0, φ1, . . . , φn, 1/(p ◦ φ0)] is contained in
L2(µ);

(a4) the function
q ◦ φ0

p ◦ φ0
is of µ-quasianalytic type for some q ∈ �[x]\{λ p : λ ∈ �}.

Then D is dense in L2(ρµ) for every ρ ∈ L2(µ), ρ ≥ 0. In particular D(µ) = L2(µ).

Observe that the condition (a4) is implied by the following one:
(a4′) p is a nonconstant polynomial, 1/(p ◦ φ0) is µ-a.e. bounded.
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In particular, if ξ ∈ �\φ0(�), then the condition (a4′) holds with p(x) := x − ξ .
Note also that (a2) is equivalent to: There exists d > 0 such that |Pj| ≤ d(1 + |φ0|)

µ-a.e. for j = 1, . . . , n.
Theorem 7 does not exclude the case when n = 0. In such situation we have only

one function φ0 ∈ M(X , �1, µ) and the condition (a2) disappears.

Proof of Theorem 7. Lemma 5 gives us that D ⊆ L2(ρµ) and that the function
q◦φ0
p◦φ0

∈ D is of ρµ-quasianalytic type. Hence, the operator X q◦φ0
p◦φ0

is essentially selfadjoint
in D(ρµ) (see Lemma 3). We will show now that the operator Xφ0 is essentially
selfadjoint in D(ρµ).

Notice that, with X0
φ0

:= ID, p(Xφ0 ) = Xp◦φ0 and X 1
p◦φ0

p(Xφ0 ) = ID. Thus the

operator p(Xφ0 ) has the trivial kernel and a dense (in D(ρµ)) range. Consequently,
N (p(Xφ0 )∗) = {0} and

( (
p
(
Xφ0

))−1 )∗ = ((
p
(
Xφ0

))∗)−1
. (3.1)

Since q/p is a nonconstant meromorphic function with a finite number of poles (due
to (a3) and (a4)) there exists z ∈ �\� such that q(z)/p(z) ∈ �\� . Let us take a vector
f ∈ N (z − X∗

φ0
). Then

q
(
X∗

φ0

)
f = q(z)f, p

(
X∗

φ0

)
f = p(z)f.

Because p(X∗
φ0

) ⊆ (p(Xφ0 ))∗ the operator p(X∗
φ0

) has the trivial kernel as well. Moreover,
we have

(
p
(
X∗

φ0

))−1 f = 1
p(z)

f.

Since X q◦φ0
p◦φ0

= (p(Xφ0 ))−1q(Xφ0 ) and

(
p
(
X∗

φ0

))−1 q
(
X∗

φ0

) ⊆ ((p
(
Xφ0

)
)−1q

(
Xφ0

)
)∗,

we obtain:

X∗
q◦φ0
p◦φ0

f = ( (
p
(
Xφ0

))−1 q
(
Xφ0

))
f = q(z)

p(z)
f.

The operator X q◦φ0
p◦φ0

is essentially selfadjoint, hence f = 0 and consequently

N (z − X∗
φ0

) = {0}. Because q(z)/p(z) = q(z̄)/p(z̄) ∈ �\� we can apply the same
arguments and get N (z̄ − X∗

φ0
) = {0}. This completes the proof of essential

selfadjointness of Xφ0 in D(ρµ).
Observe now that the assumptions (i) and (ii) of Theorem 6 hold withH :=D(ρµ),

Aj := Xφj for j = 0, . . . , n. The assumption (iii) of Theorem 6 is also fulfilled since for
j = 1, . . . , n, f ∈ D we have

‖Aj‖2 =
∫

φ2
j | f |2ρdµ ≤

∫
c(1 + φ0)2| f |2ρdµ = c(‖ f 2‖ + ‖A0 f ‖2).

As a consequence the operators Xφ0 , Xφ1 , . . . , Xφn are selfadjoint in D(ρµ). According
to [12, Corollary 1] D(ρµ) reduces Mφj to Xφj ( j = 0, . . . , n). Observe that φ ∈
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M(X , �n+1, ρµ). This enables us to apply Proposition 2. As a consequence we get
D(ρµ) = L2(ρµ). �

The idea of the first part of the proof (essential selfadjointness of Xφ0 ) is taken
from Example 4.1 of [8], which is stated below. We will show now that that Example is
a special case of Theorem 7. Our r, s, ψ,P are denoted in [8] by p, q, φ,D, respectively.

COROLLARY 8. [8, Example 4.1] Let µ be a probability measure on [0,+∞) and
let the algebra P of square integrable functions contain �[x] and a nonconstant rational
function ψ = r/s, where r, s ∈ �[x]. Suppose, moreover, that 1/(λ − ψ) is bounded and
1/(λs − r) ∈ P for some λ ∈ �. Then P(µ) = L2(µ).

Proof. Consider the algebra D := �[x, 1/(λr − s)] ⊆ P . D fulfills all the assu-
mptions of Theorem 7 with n = 0, φ0 = x, p = λs − r, q = s, because q/p = 1/(λ − ψ)
is bounded (and hence of µ-quasianalytic type). Thus D and consequently P are dense
in L2(µ). �

COROLLARY 9. Let (X ,M, µ) be a finite measure space and let ψ = (ψ1, . . . , ψn)
∈ M(X , �n, µ) be such that �[ψ1, . . . , ψn] ⊆ L2(µ). Then the algebra

P := �

[
ψ1, . . . , ψn,

1

1 + ψ2k
1 + · · · + ψ2k

n

]

is dense in L2(ρµ) for every ρ ∈ L2(µ), ρ ≥ 0, k ∈ �\{0}.
Proof. We will apply Theorem 7 with φ0 := ψ2k

1 + · · ·ψ2k
n , φj = ψj ( j = 1, . . . , n),

p(x) := x + 1. Notice that P = �[φ0, . . . , φn]. Consider the mapping

κ : �n � (t1, . . . , tn) �→ (
t2k
1 + · · · + t2k

n , t1, . . . , tn
) ∈ �n+1.

Observe that κ is a bimeasurable injection, φ = κ ◦ ψ and ψ ∈ M(X , �n, µ). Hence
φ ∈ M(X , �n+1, µ) and so the assumption (a1) (of Theorem 7) is satisfied. Point
(a2) is obvious in this situation. Since the function (1 + ψ2k

1 · · ·ψ2k
n )−1 is bounded and

�[ψ1, . . . , ψn] ⊆ L2(µ), we have (a3). Observe that −1 /∈ φ0(�), so the condition (a4′)
is also fulfilled. Theorem 7 says now that P is dense in L2(ρµ). �

EXAMPLE 10. Recall that xj(x) := xj. Putting X = �n, M = B(�n), ψj := xj in the
above Corollary we obtain the following fact. Let µ be a finite Borel measure on �n

such that the polynomials are absolutely integrable and let k ∈ �\{0}. Then the algebra
�[x1, . . . , xn,

1
1 + x2k

1 + ··· + x2k
n

] is dense in L2(ρµ) for ρ ∈ L2(µ), ρ ≥ 0. (This result with

ρ = 1 and k = 1 was proved in [6, Theorem 2.5]; see also [10, Proof of Theorem 45]).

EXAMPLE 11. Let µ be a finite Borel measure on [γ,+∞)m (γ ∈ �, m ≥ 2)
such that the algebra �[x1, . . . , xm−1, ex1+···+xm ] is contained in L2(µ). Consider the
mapping φ = (φ0, . . . , φm−1) : [γ,+∞)m → �m, where φ0 = ex1+···+xm and φj = xj ( j =
1, . . . , m − 1). Since φ is a bimeasurable injection, the assumption (a1) of Theorem 7
holds with n = m − 1 (see Proposition 1). We can easily check the assumptions
(a2), (a3) and (a4′) (with p(x) = x + 1). As a consequence we get that the algebra
�[x1, . . . , xm−1, ex1+···+xm , 1

1 + ex1+···+xm ] is dense in L2(ρµ) for every ρ ∈ L2(µ), ρ ≥ 0.

EXAMPLE 12. Let µ be a Borel measure whose support is contained in the
set {x ∈ �n+1 : |xj|2 ≤ c(1 + |x0|2k) ( j = 1, . . . , n), |x0| > ε} where c, ε > 0, k ∈ �\{0}.
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Assume also that the algebra �[x0, x1, . . . , xn] is contained in L2(µ). Then for
every l ∈ � such that 2l + 1 ≥ k the algebra �[x2l+1

0 , x1, . . . , xn, 1/x2l+1
0 ] is dense

in L2(ρµ) (ρ ∈ L2(µ), ρ ≥ 0). Indeed, we put φ0 := x2l+1
0 , φj := xj for j = 1, . . . , n,

p(x) := x and check the assumptions of Theorem 7. The conditions (a1), (a3) and
(a4′) are obvious. To see that (a2) holds observe that there exists d > 0 such that
c(1 + |x0|2k) ≤ d(1 + |x0|2(2l+1)) for all x ∈ �n.

In the applications of Theorem 7 presented above we used the condition (a4’). The
following Proposition (which can be treated as a method of constructing examples)
requires Theorem 7 with a stronger condition (a4).

PROPOSITION 13. Let (X ,M, ν) be a finite measure space. Assume that:
(i) φ = (φ0, . . . , φn) ∈ M(X , �n+1, ν) ;

(ii) there exists c > 0 such that φ2
j ≤ c(1 + φ2

0) ν-a.e. for j = 1, . . . , n;
(iii) p ∈ �[x]\{0} and the algebra D := �[φ0, φ1, . . . , φn, 1/(p ◦ φ0)] is contained in

L2(ν).
Let also r ∈ �[x]\{λ p : λ ∈ �}. Then the algebra D is contained and dense in L2(ρµ) for
every ρ ≥ 0, ρ ∈ L2(µ), where µ := exp (−| r◦φ0

p◦φ0
|)ν.

Proof. It suffices to show that the system (X ,M, µ,φ, p) satisfies the assumptions
(a1)–(a4) of Theorem 7.

The condition (a1) holds, because the measure µ is absolutely continuous with
respect to ν. From the same reason the condition (a2) is fulfilled. Since the function
exp (−| r ◦ φ0

p ◦ φ0
|) is bounded, we have D ⊆ L2(µ), so the condition (a3) is also satisfied.

The only problem is now to show that the real function ψ := q ◦φ0
p ◦φ0

is of µ-
quasianalytic type for some q ∈ �[x]\{λ p : λ ∈ �}. Put q(x) := (e/4)r(x). Observe that

∀x∈X

(
ψ(x)

k

)2k

→ 0 with k → ∞.

Moreover

∀k∈�\{0}∀x∈X

(
ψ(x)

k

)2k

≤ e2|ψ(x)|/e.

This equality is trivial if ψ(x) = 0. If y := |ψ(x)| > 0 it is enough to investigate the
function fy : ξ �→ (y/ξ )2ξ whose global maximum on (0,+∞) equals e2y/e.

Observe that e2|ψ |/e = exp (| r ◦ φ0
2p ◦φ0

|) ∈ L2(µ). So by the Lebesgue dominated
convergence theorem

∫ (
ψ

k

)2k

dµ → 0 with k → ∞.

So for k large enough

(∫
ψ2kdµ

)−1/(2k)

≥ 1/k,

and consequently ψ is of µ-quasianalytic type. �
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4. Quasianalyticity without domination. The following Proposition is a special
case of [10, Lemma 38]; we present here a simple proof.

PROPOSITION 14. If a function ψ is of µ-quasianalytic type and if for some c > 0 we
have φ ≤ c(1 + |ψ |) (µ-a.e.) then φ is of µ-quasianalytic type.

Proof. It is enough to prove that (1 + |ψ |) is of µ-quasianalytic type. Applying the
triangle inequality in the space L2k(µ) we get

(∫
(1 + |ψ |)2kdµ

)1/(2k)

≤
[(∫

1dµ

)1/(2k)

+
(∫

ψ2kdµ

)1/(2k)
]
.

Observe that the first summand on the right hand side tends to 1 with k → ∞. We can
apply now the following simple fact.

Let (ak)∞k=1 ⊆ [0,+∞). If
∑∞

k=1 1/ak = +∞ and the sequence (bk)∞k=1 ⊆ [0,+∞) is
bounded then

∑∞
k=1 1/(ak + bk) = +∞. �

Notice that if the function φ0 from Theorem 7 is of µ-quasianalytic type, then
the functions φj (j = 1, . . . , n) are also of µ-quasianalytic type. In this situation we can
prove a similar result.

THEOREM 15. Let (X ,M, µ) be a finite measure space, φ = (φ1, . . . , φn) ∈
M(X , �n, µ) and let D := �[φ1, . . . , φn] ⊆ L2(µ). Suppose that φj is of µ-quasianalytic
type for j = 1, . . . , n. Then D(ρµ) = L2(ρµ) for every ρ ∈ L2(µ), ρ ≥ 0.

Proof. Let j ∈ {0, . . . , n}. Lemma 5 gives us that D ⊆ L2(ρµ) and that the function
φj is of ρµ-quasianalytic type. So the operator Xφj is essentially selfadjoint in D(ρµ)
(see Lemma 3). According to [12, Corollary 1] the space D(ρµ) reduces Mφj . Due to
the Proposition 2 we get D(ρµ) = L2(ρµ). �

Quasianalytic vectors have been investigated in many papers; for example in [3]
or [11] one may find theorems similar to the one above (especially if ρ ≡ 1).

COROLLARY 16. Let X be a Borel subset of a complete separable metric space. Let
M = B(X ) and let µ be any finite Borel measure on X . There exists a bounded function
φ ∈ L2(µ) such that �[φ] is dense in L2(ρµ) for every ρ ∈ L2(µ), ρ ≥ 0.

Proof. Due to [5, p. 12, Theorem 2.8]X is countable or has the power of continuum.
Due to Kuratowski’s theorem (cf. [5, p. 14, Theorem 2.12]) if X has the power of
continuum there exists a bimeasurable bijection φ : X → [0, 1]. If X is enumerable
(X is finite), then there exists a bimeasurable bijection φ : X → {1/n : n ∈ �} (φ :X →
{1/n : n ∈ �, n ≤ N} where N is the number of elements of X , respectively). It follows
from Theorem 7 that the algebra with unit generated by this single function is dense
in L2(µ). �

This fact could be obtained by more elementary methods – the measure transport
theorem and the Weierstrass theorem.

We will now show an application of Theorem 15 to moment problems. Let µ be a
measure on �n such that the polynomials are absolutely integrable. We will call µ

ultradeterminate if the polynomials are dense in L2((1 + |x|2)µ)) where |x|2 :=
x2

1 + · · · x2
n. If a measure µ is ultradeterminate then its moment sequence

cα =
∫

xα1
1 · · · xαn

n dµ, α = (α1, . . . , αn) ∈ �n
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is determinate, i.e. if ν is any measure such that cα = ∫
xα1

1 · · · xαn
n dν for α =

(α1, . . . , αn) ∈ �n then ν = µ (cf. [2]). The following Corollary extends Theorem 9
from [3].

COROLLARY 17. If xj is of µ-quasianalytic type for j = 1, . . . , n then ηµ is
ultradeterminate for every η ∈ L2((1 + |x|2)2µ), η ≥ 0.

Proof. We apply Theorem 15 to φj := xj, j = 1, . . . , n, ρ := η(1 + |x|2). �
We can write the fact that xj is of µ-quasianalytic type in the language of

sequences:
∑∞

k=1 c−1/(2k)
2kej

= +∞ where cα is as above and ej stands for the multiindex
(0, . . . , 0, 1, 0, . . . , 0) of length n with 1 on the jth position. It appears that we do not
need here that (cα)α∈�n is a moment sequence – it is enough to assume that it is positive
definite, cf [2].

5. The most general case. The following Theorem is a combination of Theorems 7
and 15.

THEOREM 18. Let (X ,M, µ) be a finite measure space and A = A0 ∪ . . . ∪ AN be a
finite union of pairwise disjoint sets such that Aj �= ∅ for j = 1, . . . , n. Denote by n the
number of elements of A. Assume that:

(i) φ = (φα)α∈A ∈ M(X , �n, µ);
(ii) for each α ∈ A0 the function φα is of µ-quasianalytic type;

(iii) for each j ∈ {1, . . . , N} there exists βj ∈ Aj and cj > 0 such that for all α ∈ Aj\{βj}
we have φ2

α ≤ cj(1 + φ2
βj

) µ-a.e.;
(iv) for each j ∈ {1, . . . , N} there exists pj ∈ �[x]\{0} such that the algebra

D := lin{
∏
α∈A

φkα

α ·
∏

j=1,...,N

(
1

pj ◦ φβj

)lj

: kα, lj ∈ �}

is contained in L2(µ);
(v) for each j ∈ {1, . . . , N} there exists qj ∈ �[x]\{λ pj : λ ∈ �} such that the function

qj ◦ φβj

pj ◦ φβj
is of µ-quasianalytic type.

Then D is dense in L2(ρµ) for every ρ ∈ L2(µ), ρ ≥ 0. In particular D(µ) = L2(µ).

As in Theorem 7 the case when Aj = {βj} for some j ∈ {1, . . . , N} is not excluded.
Also the case when N = 0 is possible; in this situation the condition (iii) disappears
and the condition (iv) has the following form: The algebra

D := lin{
∏
α∈A

φkα

α : kα ∈ �}

is contained in L2(µ).
Observe that if we put A0 = ∅, N = 1 then we get Theorem 7 and if we put N = 0

then we get Theorem 15.

Proof of Theorem 18. As in the proof of Theorem 7 we see that for all j = 1, . . . , N,
α ∈ Aj the operators Xφα

are essentially selfadjoint in D(ρµ). Repeating the proof of
Theorem 15 we get that Xφα

is essentially selfadjoint in D(ρµ) for α ∈ A0. Now we use
standard arguments to prove that D(ρµ) = L2(ρµ). �
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EXAMPLE 19. Let µ be a Borel measure whose support is contained in the
set {x ∈ �n : |xj| > ε ( j = 1, . . . , n)} where ε > 0. Assume also that the algebra
�[x1, . . . , xn] is contained in L2(µ). Then for every k ∈ �, k odd, the algebra
Pk := �[xk

1, 1/xk
1, . . . , xk

n, 1/xk
n] is dense in L2(ρµ) (ρ ∈ L2(µ), ρ ≥ 0). Indeed, we put

A0 = ∅, Aj = { j}, φj := xk
j , pj(x) := x, qj ≡ 1 for j = 1, . . . , n and check the assumptions

of Theorem 18. Observe that for l ∈ �\{0} Pkl is dense in L2(ρµ) and Pk(l+1) ⊆ Pkl . But⋂∞
l=1 Pkl = � · 1.
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