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Abstract

We investigate a locally full HNN extension of an inverse semigroup. A normal form theorem is obtained
and applied to the word problem. We construct a tree and show that a maximal subgroup of a locally
full HNN extension acts on the tree without inversion. Bass-Serre theory is employed to obtain a group
presentation of the maximal subgroup as a fundamental group of a certain graph of groups associated
with the ^-structure of the original semigroup.
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1. Introduction and preliminaries

1.1. Background The study on the embeddability of HNN extensions of semi-
groups began in [7]. The HNN extension of a semigroup was formalized in terms of
presentations, and several types of embeddings of semigroups into HNN extensions
and the relationship with amalgamated free products were studied in [15, 16]. Vari-
ous inverse semigroups have an HNN extension structure. For example, free inverse
semigroups, free inverse monoids and free Clifford semigroups can be presented as
an HNN extension of a semilattice. Furthermore, any Bruck-Reilly extension of an
inverse monoid is an HNN extension of an appropriate inverse monoid, and hence, any
bisimple regular (w-semigroup and any simple regular co-semigroup can be presented
as an HNN extension ([18]).

There exist considerable applications of HNN extensions to algorithmic and struc-
tural problems in inverse semigroup theory as well as in group theory. The undecid-
ability of Markov properties and several other properties of inverse semigroups are
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proved using HNN extensions and amalgamated free products ([15, 16]). Further-
more, HNN extensions are applied to give an alternative proof of Reilly's theorem that
every inverse semigroup can be embedded into a bisimple inverse monoid ([15]).

In [17], HNN extensions are employed to investigate an idempotent pure image
of a free inverse semigroup and to prove the existence of an F-inverse cover over a
free group for an inverse semigroup. There exist numerous similarities between an
HNN extension of a semilattice and a free group. Therefore, an HNN extension of
a semilattice is considered as a natural generalization of a free group. For example,
an HNN extension of a semilattice is the universal object in a certain category on a
fixed set of generators as a free group is the universal object of the class of groups
generated by a fixed set. Contracted Schiitzenberger graphs of an HNN extension of
a semilattice with respect to a certain subset form a forest. Recall that the Cayley
graph of a free group with respect to its base is a tree. The Nielsen-Schreier subgroup
theorem in group theory can be generalized to the class of full HNN extensions of
semilattices with an identity.

These results suggest more applications of HNN extensions to algorithmic and
structural problems in inverse semigroup theory and motivate us to study the structure
of HNN extensions. An HNN extension is called locally full if the associated inverse
monoids are full in the local monoids defined by their identities. This condition makes
the structure of HNN extensions transparent. In fact, locally full HNN extensions
resemble HNN extensions of groups and have many nice properties. Therefore, we
study locally full HNN extensions in this paper.

Let us outline the paper. In this section, we review several fundamental results
in inverse semigroup theory. In Section 2, we obtain the normal form theorem for
a locally full HNN extension. In Section 3, we apply it to solve the word problem.
In Section 4, we build a tree on which a maximal subgroup of a locally full HNN
extension acts. In Section 5, the Bass-Serre theory is employed to obtain a group
presentation for the maximal subgroup. In Section 6, we give several examples.

For basic results in inverse semigroup theory we refer the reader to [9, 13]. We
use basic results and terminologies from group theory without mention. The reader is
referred to [3,10, 14] for definitions and results on combinatorial group theory.

1.2. Presentations We briefly review inverse semigroup presentations and HNN
extensions. A semigroup 5 is called inverse if there exists a unique element x~{

satisfying xx~lx = x and x~lxx~l = x~l for every x in 5. It is equivalent to say
that 5 is a regular semigroup (in the sense of von Neumann) whose idempotents
form a semilattice. The set of idempotents of a semigroup 5 is denoted by E(S).
The class of inverse semigroups has a free object, that is, there exists a free inverse
semigroup on any non-empty set. Let X be a non-empty set. Then the free semigroup
on X is just the set of all non-empty words on X and is denoted by X+. Now we
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take a copy X~l of X such that X~l is disjoint from X. We have a one to one
correspondence - 1 : X -*• X~l (x —*• x~l for all x e X). We extend the mapping - 1

to the correspondence "' : (X U X"1) -> (X U X"1) by defining (x'1)'1 = x for
all x~l 6 X'1. If w e (X U X"1)"1", then we can write w = X\X2 • • -xn, where
Xi e XUX"1 for every i = 1, 2 , . . . , n. We denote the element x~xx~\ • • -x^x^1 by
iu~'. Note that the operation "' is an involution. Consider the relation Ro consisting
of all pairs of the form (ww~lw, w) and (ww~1zz~l, zz~lww~l), where w and z are
elements of (X U X~')+. The Wagner congruence 6 is the congruence generated by
Ro. Then the semigroup (X U X~l)+/6 is the free inverse semigroup on X. Denote
the free inverse semigroup on X by FTS(X).

Every inverse semigroup is a homomorphic image of a suitable free inverse semi-
group; if S is an inverse semigroup, there exists a certain non-empty set X such that
FlS(X)/r) = S for some congruence r) on FIS(X). If rj is generated by some set R of
relations on (X U X"1)"1", then we say that 5 w presented by the set X of generators
and the set R of relations. Then we write 5 = Inv(X | R). If |X| is finite, 5 is called
finitely generated. If both |X| and \R\ are finite, then S is called finitely presented.

Assume that an inverse semigroup S has a presentation Inv(X | R). Take a set Y
disjoint from X U X"1 and the set R' of relations o n ( y u r ' ) + . Then the inverse
semigroup presented by Inv(X, Y | R, R') is denoted by Inv(5, Y \ R') for brevity.

The inverse semigroup Inv(X | R) is regarded as the freest inverse semigroup
generated by the set X subject to the relation R because of the following well-known
result, which is equivalent to von Dyck's theorem in group theory.

PROPOSITION 1.1. Suppose that an inverse semigroup S is presented by Inv(X | R)
andcp is a homomorphism of FTS(X) into an inverse semigroup T. If(j>{w{) = (piwi)
in Tforallwi, 1U2 € (XUX~')+ with w} = w2 in R, then there exists a homomorphism
y/r : S -*• T such that <p(x) = \js((p(x)) for every x e X, where <p is the natural
homomorphism of FIS(X) into S.

13. HNN extensions and embeddability Let 5 be an inverse semigroup, and let
Ai and Bt (i e /) be inverseVsubsemigroups of 5. Suppose that e, e A, c e,5e,,
/,• € BL c fiSft for some idempotents eh / , of 5 and that 0, : A<; -> fi, is an
isomorphism for every i e I. Then the inverse semigroup 5* presented by

(1.1) Inv(5, ti (i € I) I t~lati = </»,(«) for every a 6 A,-,

hlU = / , , tit'1 = et for every i e / ) ,

or equivalently,

(1.2) Inv(5, ^ (i € /) I trlati = ^ ( a ) for every a e A\,

trlfi = / " Vr1 = ei for every i 6 / ) ,
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where A'. is a set of generators of A,•., is called the HNN extension of S associated with
</>, : Ai -*• Bi (i 6 / ) . Each element U in S* is called a stable letter. In general, a class
C of semigroups is said to have the weak HNN property if C satisfies the following
condition.

Suppose that S, A, B e C, e e A c eSe, f e B c f Sf for some e,f e E(S).
Let 0 : A -> B be an isomorphism. Then there exist T e C and an embedding
\{r : S<-+ T such that

(1.3) t'ylr{a)t = yjr{(p{a)) fo ra l l aeA,

and

(1.4) t't — \fr{f) and « ' = ijf(e) for some f e r and its inverse f'.

A class C of semigroups is said to have the strong HNN property if C satisfies the
following condition.

Suppose that S, A,B € C and A c eSe, B C f Sf for some e,f e £(5).
Let </> : A —*• B be an isomorphism. Then there exist T e C and an embedding
\jr : S «->• T satisfying the conditions (1.3), (1.4) and

(1.5) t'xl/(S)tnf(S) = t'ir(A)t = f(B)

PROPOSITION 1.2 ([15, 16]). The class of inverse semigroups has the strong HNN
property.

By Proposition 1.2, an inverse semigroup S is always embedded into S* presented
by (1.1). We usually identify 5 with the corresponding inverse subsemigroup of the
HNN extension under the natural isomorphism, and hence, (1.5) implies

(1.6) t[lStj n 5 = fTxAiti = Bi for every i e I

in the HNN extension.
We note that the class of inverse semigroups also has the strong amalgamation

property ([5, 6]). The weak and strong HNN embeddability of several classes of
semigroups and the relationship with the amalgamation property are investigated
in [15, 16].

1.4. Locally full HNN extensions If A, is full in e,5e, and B, is full in / , 5 / , , that
is, E(Aj) — E(eiSei) and £(£,) = £(/,5/,) for every f e /, then the HNN extension
5* is called locally full. If M is an inverse monoid and A, and Bt are full submonoids,
that is, E(At) = E(M) and E{Bt) = E(M), then the HNN extension M* is called
full. Full HNN extensions of inverse monoids and locally full HNN extensions of
semilattices are investigated in [15] and [17], respectively.
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For example, the free Clifford semigroup on the set {ti,t2,... , tn] is presented by

Inv(£, h, h,... ,tn\ trlft, = </>,</)=/ for every / e Eeh

t~xti = ut~x = <?, for every i = 1, 2 , . . . n),

where £ is the free semilattice on the set X = [et, e2,... , en) and </>, is the identity
mapping of Eet for every i — 1, 2 , . . . , n. Hence, any free Clifford semigroup is a
locally full HNN extension of a free semilattice.

The formation of a locally full HNN extension yields no new idempotents as we
see in Corollary 3.1. Hence, the partial order structure of a locally full HNN extension
is not so complicated as a more general HNN extension. We can generalize Britton's
lemma to the class of locally full HNN extensions. The following is obtained in [17].

PROPOSITION 1.3. Any HNN extension of a semilattice E with stable letters tt

(i € I) can be presented as a locally full HNN extension of a semilattice Eo with \I\
stable letters, where Eo is an extension ofE.

A similar result holds for HNN extensions of inverse semigroups.

PROPOSITION 1.4. Any HNN extension of an inverse semigroup S with stable letters
tj (i € / ) can be presented as a locally full HNN extension ofT0 with \I\ stable letters,
where 7o is an inverse semigroup extension of S.

PROOF. Let 5 be an inverse semigroup. Suppose that A, and B, are inverse sub-
semigroups of 5 such that et e A, c e,Se,and/, e B, c / , S/, for some e , , / ; e E(S)
for every i € I. Let </>, be an isomorphism of A, onto Bt for every i € I. We show
that the HNN extension 5*, presented by (1.1), is a locally full HNN extension of
a certain inverse semigroup with the same cardinal number of stable letters. Let To

be an inverse subsemigroup of 5* generated by 5 and E(S*). Let C, be the inverse
subsemigroup of 5* generated by A, and £l(S*)e, for each i e I. Let D, be the inverse
subsemigroup of 5* generated by B, and £(5*) / , for each i € I. We note that C, and
D, are inverse subsemigroups of 5* such that et e C, c £,S*e, and / , € Dt C ftS*ft

for each i e I. We also notevthat E(Q) = £(e,5*e,) and £ ( A ) = £ ( / , 5* / , ) for
each i e / . We define a mapping <j>* of C, into D, by (f>*(s) = rf'sf, for s 6 C,. Since
t^AtU C Bt and t^E(S*)eiti C £(S*)/ , for each i e / , we have t^Qn c A for
each i e I. Hence, <p* is well defined. Similarly, we can show that txDtt~

x C C, for
each i e / . It is clear that </>* is an isomorphism of C, onto D, for each i € / and
that the restriction <j>*\Aj of <j>* to A/ is equal to 0,. Let T be the inverse semigroup
presented by

Inv(r0, pi (i € I) | p~xcpi = 4>*(c) for every c € Ch

P7lPi = / . - PiP~iX = «/ for every i € / ) .
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Then T is a locally full HNN extension of To. We show that T is isomorphic to 5*. We
define a mapping <t> of 5 U [tt \ i e /} into T by 4>(s) = s for * € S and <t> (f,) = p, for
each i 6 / . Since the defining relations of 5* are satisfied by T under $, the mapping
<I> can be extended to a homomorphism by Proposition 1.1. We next define a mapping
* of To U {pi | i € 1} into 5* by *(s) = s for s € S, *(e) = e for e € E(S*) and
*(p,-) = f, for each i e / . It is easy to check that the defining relations are satisfied
by S* under * . Hence, * can be extended to a homomorphism by Proposition 1.1.
Apparently * o <t> = ids> and so 0 is injective. We next show that <t> is surjective.
To prove this we show that every e in £(S*) can be written as a product of p,'s and
elements of 5 in T. Take any e e E(S*). Since e is in S*, the element e can be written
as a product of several stable letters r,'s and their inverses and elements of 5. Since
tjt'1, t~ltt e E(S), we may assume that e is written as

where s, e S for i = 0, 1, 2 , . . . , rc and e, = ±1 for j = 1, 2 , . . . , n. Note that

e = e2 = e~le

Therefore, every element of e in E(S*) can be written as

where 5, € 5 for i = 0, 1, 2 , . . . , n and e, = ±1 for j = 1, 2 , . . . , « . We claim that
if e can be written in 5* as above then we have

in T by induction on n. If n = 0, then the claim is trivial. Suppose that the claim is
true for non-negative integers less that n (n > 1). Assume that

in 5*. Let

/ — Sn-lti,-l
 Sn-2 " ' " Sl 'i, S0 50', , *1',2 S2 «,-„

By the inductive hypothesis,

/ = ^n-lPlTSn-2 • • • S;lp;i
flSolsoP?lS1p'l2

2S2 • • •p

in T. Then we have

«— s~l t~e" f t€n s — s~lrf"fte"t~e"te"s
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Note that/£"£'" e E{S*)tf
t"j~e\ Then we have

C"if CC")C = W)e"(f CC") ^ m e definition of 0*)
= /C" V £ O K " <bv t h e elation p~lcpi = <j>*(c)

for c e C f € 7)

t7'tin=fin=p-lPi. eT)

Therefore, we have

e — sn li, J lin ',„ «i. An — •*« P i , J Pi,

Hence, the claim is true for every non-negative integer. It follows that every e € £(S*)
can be written as a product ofp,'sand elements of 5. Since 7 is generated by S, E(S*)
and p,'s, the homomorphism 4> is surjective. Consequently 4> is an isomorphism of
5* onto 7. •

2. Normal form theorem

Any element of an HNN extension of a group has a unique expression called a
normal form (or canonical form). The method using such an expression is useful to
study algorithmic and structural problems. In this section we obtain a normal form of
an element of a locally full HNN extension of an inverse semigroup.

2.1. Normal form Let 5 be an inverse semigroup, and let H be an inverse subsemi-
group of 5. We define a relation ~w on 5.

For x, y e S, we define

(2.1) V x ~w y

if one of the followings holds:

(El) x=y.
(E2) *"'.*, y~ly € E(H) and there exists h e H such XhsAxh = y withx~lx = hh~x.

PROPOSITION 2.1. The relation ~ w is an equivalence relation on S.

PROOF. Clearly, x ~ w x for every x e S. Suppose that x ~ w y. Then either (El)
or (E2) holds. In the case of (El), x = y and so clearly y ~ w x. We assume (E2).
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Then, we have x~lx, y~ly e E(H) and xh = y and x~lx = hh~l for some h e H.
Then, yh~l = xhh"1 = xx~xx = x. We note that h~l e H. It is easy to see that
y-'y = h~\h~x)~l. Hence, y ~w x.

Suppose now that x ~ w y, y ~w z. We consider only the case that x~xx, y~ly,
z~lz e E(H) and xh = y, yk = z, jf"1.* = /jft"1 and y~xy = kk~x for some h, k
in // . Then z = x(M) and /lit e H. It is easy to see that x~lx = (hk)(hk)~x. Hence,
x ~w z. Consequently, we have shown that ~w is an equivalence. •

The ~ w class of 5 containing an element x is denoted by x. We denote the
equivalence class of S containing x for Green's relation Jf, 0?., ££ and $ by Hs(x),
Rs (x), L s (JC ) and Ds (x), respectively. \

LEMMA 2.2. For an element h of H we haveH = Rs(h) D H = RH(h).

PROOF. Suppose x e h. Then x ~ w h, and hence, JC = h OT hk = X and
/ r ' n = &AT1 for some k e H. Since h,k e H, we have x - hk e H. Then *.S?/i
in 5, since * = M and n = xA:"1. Hence, x e Rs(h) n / / . Take ^ from /?s(^) n H.
Then JC^/ I in 5 and x € H. Hence, JCX"1 = hh~x and s o i e ^ H ( / I ) . Take x
from RHQI). Then, x e H and ;c^/i in H and so JCJC"1 = /z/i~'. Then, we have
h(h~lx) = xx~[x — x. We note that h~lx e H (as h, x e H). It is easy to see that
{h-xx){h-lxYx = h~lh. Hence,x eh. D

LEMMA 2.3. Forx, y e S, x ~ H y ffa«^ only if
(1) x =yandx~ix $ E(H)or
(2) .o;-1 = yy"1, A:"'y e H andx~lx, y~xy G £(/ /) .

PROOF. 'Only if part: Suppose x ~w y. If (El) holds, then we have (1) or (2)
according to whether or not x~lx is in E{H). We now suppose that (E2) holds. Then
x~lx,y~ly e E(H). There exists h e H such thatxn = y and*"1* = hh~x. Then
we have x~ly = x~lxh € E(H)H C //. It is easy to see that yy"1 = xx~K Hence,
(2) holds.

'If part: Suppose (2) is true. Then x~lx, y~ly € E(H). Set x~ly = h e H.
Then we havex/i = xx~ly = yy~ly = y. It is easy to see thatx~lx = hh~x. Hence,
x ~w y. If (1) holds, clearly x ~ H y. D

PROPOSITION 2.4. / / / / = £(S), r/ien ~ w is the identity relation on S.

PROOF. Suppose* ~ H y and the condition (E2) holds. Then there exists h e E(S)
such that xh = y and J:"1^ = /t/i"1. Since h € £(5), we have x~lx = A/T1 = h.
Then y = * / i = ;t;c~1;t=x. Hence, JC = y and so ~w is the identity on 5. •
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PROPOSITION 2.5. IfH = S, then ~w is identical to Green's Sf,-relation.

PROOF. Obviously ~w is included in &.. Suppose xg&y. Then, xx~x = yy~l and
so x = xx~lx = yy~lx. It is easy to see that y~xy = (y~lx)(y~1x)~l. Note that
y~lx e S = H. Hence, (E2) holds, and so, x ~ H y. It follows that ~w is identical
with 3?.. •

We begin to seek a unique expression of an element of a locally full HNN extension.
Let S be an inverse semigroup, A, and B, (i e I) inverse subsemigroups of 5.
Suppose that e, e A , C e,Set, / , 6 B, C / , 5 / , for some idempotents e,,/, of S
and that 0, : A/ ->• B, is an isomorphism for every i e I. We also assume that
E(Ai) = E(e,Sej) and £(B,) = £(/;$/,) for every i e / . Let 5* be the inverse
semigroup presented by

(2.2) Inv(S, u (i e I) | t~xat, = <pt(a) for every a e A,,

*rlti = //- ?^r ' = ei f o r e v e ry ' e / ) .

Note that S* is the locally full HNN extension of 5 associated with the isomorphisms
<f>i (i € /) . In the rest of the paper we assume that S, A,, B, and 5* are defined as
above.

We choose and fix a set C(~xf) of ~Ai. representatives of 5 for each / e I.
Similarly, we choose and fix a set C(~8f) of ~B; representatives of 5 for eachy e I.
If r € C(~Af) is in the ~/tj class /?s(«) n ^,- (this is a ~i4. class by Lemma 2.2) for
some idempotent e e £(A,), then we assume r — e. Similarly, if 5 e C(~B/) is in the
~B class Rs{f) n Bj for some idempotent / e £(B/), then we assume s = f.

Let X be a sequence

where n >0,xk e S for every & = 0, 1, 2 , . . . , « , f,-, is a stable letter and 6/ = ±1 for
every/ = 1,2,... , n. We consider the following conditions on the sequence X:

(Cl) If €k = 1, then x^x^ € £(A,J. If e* = - 1 , then x^xk-X 6 E(fi,t), and
^ ' ( ^ - I ^ - I )

 = xkXk~
1 for every ^ = 1, 2 , . . . , n.

(C2) If ek = 1, thenjct_j belongs to C(~/tf ), and if €k = —1, then jct_! belongs to
C(~B( ) for every k = 1, 2, • • • n.
(C3) There exists no subsequence of the form (tfl, e, tt) (e e £(A,)) nor (t,, e, t~x)

(e e E{Bd).
(C4) There exists no subsequence of the form (f,"1, a, f,) (a e A,) nor (r,, fo, rf')

(& € B,)-
A sequence satisfying (Cl), (C2) and (C3) ((Cl) and (C4)) is called normal {reduced).
Note that a normal sequence is always reduced. A pinch is a word of the form t~xatt
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(a € Ai) or tibt~l (b G /?,), where ?, is a stable letter. Let x be an element of 5*.
Suppose that x is written as

(2.3) *oC*i£ • • • £ * -

If the sequence

(2.4) (*o,C '*!•£ ' • • • •£ .*«)

satisfies the condition (Cl), then we say that x has a form (2.3). Moreover, if the
sequence (2.4) is normal (reduced), then we say that x has a normal form (reduced
form) (2.3). Note that a form is reduced if and only if it contains no pinch. We
remark that a form in an inverse semigroup corresponds to the trace product in the
corresponding inductive groupoid. The inductive groupoid approach is employed
in [4].

LEMMA 2.6. If an element x in S* has a form xot
(
h'xit^ • • • t*"xn then the following

hold:

(1) xx-1 =*0*(T1-
(2) x~xx =x~lxn.

PROOF. We prove (1) using induction on n. If n = 0, then x = x0 and the claim is
trivially true. Next suppose that the claim is true for every non-negative integer less
than n and that x has the form xot^xit^ • • • t^xn. By the inductive hypothesis, we
have

Therefore
xx~l =

= (XOth X\th • • • tin_t Xn-lMn^Xn-ll.M/, *lf;2 ' " • ̂ ,,_, Xn-\)

(by (Cl) and the relations t~lati = fa (a) for all a e A,
and tibt~{ = <p-\b) for all b e B,)

This completes the induction. Similarly we can prove (2). •

2.2. Normal form theorem In this section we prove the normal form theorem for
a locally full HNN extension.

THEOREM 2.7. Let S be an inverse semigroup, and let A, and S, be inverse sub-
semigroups such that e, e At c e,5^,, E(Ai) = Zs^Se,), / , e 5, C fjSfi and
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E(Bi) = E(fiSfi) for every i e /. Let (pi : A, -*• fi, be an isomorphism of At onto
Bi for every i e /. Let S* be the locally full HNN extension presented by (2.2). Every
element ofS* has a unique normal form (2.3).

The proof is divided into four lemmas. Lemma 2.8 shows that every element has
a form and also provides an algorithm that finds a form. Lemma 2.9 shows that
we can construct a reduced form from a form and provides an algorithm for doing
so. Lemma 2.10 shows that we can obtain a normal form from a reduced form.
Lemma 2.11 guarantees the uniqueness of the normal form.

LEMMA 2.8. Every element ofS* has a form. Moreover, if the isomorphisms 0, and
<j)~{ are effectively computable for every i e /, then we can effectively find a form for
any element of S*.

PROOF. Take an element x e S*. Note that S* is generated by S and the stable
letters f,. Since tit~x = e, and t~xti — / , , the element x can be written as

where yj e S for j' = 0, 1 , . . . , m and Sj = ± 1 for j = 1,2,... ,m. Since we
have ttt;

x = e, and trltt = / , , we may assume that y^yo < t^t;*1, ymy~l < t;Jmt^,
yky;1 < Cktf: for k = 1, 2 , . . . , m, and y?yk < t ^ t ^ for k = 0, 1 , . . . , m - 1.
Then

(2.5) Vtliyk-i € E(AU) if 5* = 1

and

(2.6) y^y^ € E(Bik) if Sk =-1

for k = 1,2,... ,m. Using induction on m, we show that if x is written as
yotifyit^ • • • tf^ym satisfying (2.5) and(2.6), then the element x has aformxo^'xi^2 • • •
tfcxm- If »i = 0, the result is trivially true. Suppose that the result is true for any
non-negative integer less than m (1 < m), and that x is written as yotffyitf* • • • tf"ym

satisfying (2.5) and (2.6). We set

z = yott'yitf2
2 • • • ym-2t-^ym-i4>7jm(yn,y~1)-

Note that x = ztSmym since 4>~s- (ymy^l)ts" = ^-ymy'1. By inductive hypothesis, the

element z has a form Zo^'zi^ • • • Zm-2 "̂_",lZm-i- ^ *s easily verified that

• • zm-2tt:zm-itfy
s-(z~i_1zm-l)ym

is a form for x. It is also easy to see that there exists an algorithm that finds a form for
an element if the isomorphisms <\>, and <j>~x (i e /) are effectively computable. •
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LEMMA 2.9. Every element of S* has a reduced form. Moreover, if the isomor-
phisms (pi and </>"' are effectively computable and the membership problems for A,
and Bi in S are solvable for every i € / , then we can effectively find a reduced form
for a given element x of S* provided that a form for x is given.

PROOF. Take* e 5*. Suppose that x has a form x = xotffxit% • • -tfn
nxn. If the form

contains a pinch, that is, a subword of the form t^xktf^, where ik = ik+i, xk e Ait,
Sk = — 1 and 8k+1 = 1 (or ik = ik+\,xk e Bit, 8k = 1 and <5t+1 = —1), then we replace
it by <p~Sk(xk). Recall that (j>~h{xk) = t*t

kxktf™ in 5*. Then we have

x = xotk xxth • • • t i t i xk-\<pik (xk)xk+ltit+2 • • • tin xn.

It is easy to see that this is a form of x. We continue this process until all pinches
disappear, and then the resulting form is reduced. Obviously we can construct an
algorithm to find a reduce form using the argument above if the isomorphisms </>, and
0,~' (i € / ) are effectively computable and the membership problems for A, and Bt in
S are solvable for every i e I. •

LEMMA 2.10. Every element of S* has a normal form. Furthermore, ifx has a re-
ducedform xot^Xit^ • • • tf^xn, then a normal form for x is written as M0̂ ,'«i'f2

2 • • • ',*"""
for some u0, uu ... un € S.

PROOF. Take an element x of S*. By Lemma 2.8 and Lemma 2.9, x has a reduced
iormx0tl

lxit^ • • • t^xn. If ei = 1, then we rewritex0 as x0 — uoco, where u0 is a ~A.|

representative for JC0 and c0 e Ait with «o'Mo = C0CQ
 l. If e{ = —1, then we rewrite x0

as x0 — uoco, where u0 is a ~B j | representative for x0 and c0 6 Bi{ with UQ
 lu0 = C0CQ1.

Then we have

x = uocotl'xtf* • • • t-"xn = uofitiiicdXitZ • • • t-"xn.

It is easy to see that the resulting sequence is a reduced form for x. Then we have
<pe'(c0)xi = MiCi where cx is a ~Aj2 or ~Bi2 representative according to e2 = ± L
We rewrite the form by applying a similar argument to the subword (p^(co)xit^ and
continue the same process. We eventually get a form uot*' u, t^ • • • ff" un for x. Clearly
it is a normal form for x. •

LEMMA 2.11. A normal form for any element ofS* is unique.

PROOF. We use the Artin-van der Waerden method. Let N be the set of normal
sequences. Let Sym(N) be the symmetric inverse semigroup on N. We assume that an
element of Sym(N) acts from the right. We define a mapping <J> of S U {f,, r,~' | i e /}
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into Sym(N) as follows. For any X e N, if X = (x0, t^, xu t%,... , %,xn), then we
define z(X) to be the last component xn. For s e S, we define O(s). We set

(2.7) Dom(*(s)) = {X e N | z(X) e Sss'1}

and for X = (x0, # , . . . , £ , *„) € Dom(<&(5))

(2.8) X4>(s) = (x0, $ , . . . , tl\xns).

Clearly X<i>(s) satisfies the condition (Cl), (C2) and (C3), and hence, it belongs to N.
It is easy to see that Ran(<t>(s)) = {X e N | z(X) e Ss~xs} and the inverse mapping
of 4>(s) is 4>(i"') for every s € S. Therefore, <J>(s) belongs to Sym(N). It is also
easy to see that for s, r 6 S we have

that is, <t> is a homomorphism on 5.
We now define <!>(/,) and <$>(?,"') for every i e I. We set

Dom(*(O) = {X € N I z(X) e Set}

and

Ran(*a,-)) = {X e N I z(X) e 5/,},

where ut;x = e, and tr'?, = / , . Note that if X e Dom(4>(r,-)), then z(Z)-'z(A:) G
,) since £(A,) = £(g,-5g;). Take X = (x0, rf/,... , ^", xn) from Dom(4>(f,)).

We define <l>(f,) by

(2.9) # C,
i = /„ anden = - 1 ,

(2.10) X<b(ti) = (jc0, C ' • • • ' C-1 1 ' x " - ' ' C> y - r'- ̂ '(fl)> otherwise,

where *„ = yna and yn is a ~/t|. representative, y " 1 ^ = aa~l and a e A,-. Similarly,
we define ((>{t~x) as follows. We set

)) = {X 6 N | z(X) e Sfi)

and

Ran(<D(f-')) = {X e N | Z(X) e Se,}.

Note that if X e Dom(<J>(?/~1)) then Z(Z)" 'z(X) € £(B,) since £(B,) = £ ( / , 5 / , ) .
Take Z = (*„, < ' , . - . , <",*«) from Dom(d>(/,r1)). We define <D(rr') by

2 = /„ anden = 1,

(2.12) Xct>(trl) = (x0, %,..., ^" ; i ' , x n _ 1 , tl",yn, t~x, <p~x(b)) otherwise,
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where xn = ynb and yn is a ~B. representative, y~lyn — bb~l and b e Bt.
If all defining relations for 5* are preserved under <t> then the mapping <I> can be

extended to a homomorphism 0 : 5* —>• Sym(N) by Proposition 1.1. To show all
relations are preserved, we prove

(2.13) *(/ ,-)* (ff1) = <&(<?,) f o r e v e r y i e / ,

(2.14) o a , - 1 ) ^ , ) = <&(/,-) for every i e /,

(2.15) Q(trl)Q(a)Q(t,) = 4>(<£,(a)) for every a e A,.

Since <t> is a homomorphism on S, it preserves the relations for S.
n idempoten

N | z(X) g

We prove the relation (2.13). Since et is an idempotent, we have

by (2.7). Then we have

X4>(*,) = (xo, < ' , . . . , <",xn^) = (jc0, < ' ' • • • ' <"•*») = X

for any X = (x0, ff,',... , t-",xn) € Dom(<J>(e,)) by (2.8). Therefore, 4>(<?,) is the
identity mapping on Dom(<I>(e,)). On the other hand, we have

Ran(<t>(r,-)) = ( X e N | z(X) e Sft) = Dom(<D(f,-1)).

It follows that
Dom(4)(f,)<D(;-1)) = (Ran(<t>(r,))nDom(4>(f-1)))<D(?,)-1

= Ran(cD(f,))<D(f,)-1 - Dom(«Da,-))

= {X € N | z(X) € 5e,} = Dom(<D(e,)).

Take an element X from Dom(<J>(<?,)) = {X e N | z(X) e 5^}. Suppose that
X = (x0, t-t' tl",xn), where z(X) = xn e 5e,. We compute XO(r,)tI>(r~1). In
computing X4>(rj) for X and th there are two possible cases; (2.9) and (2.10).

Suppose that (2.9) is true. Then we have xn e AM i = in and en — — 1. Remark
that in this case, it cannot happen that*,,-! e B,, i = in_i and en_i = 1 since X e N.
We have

By the remark above, ^"Jj'^B-i^i^n)^1 is n o t a pinch, and so, we have

w h e r e X n - ^ , ^ ) = yn-i*, yn_i is a ~B. representative and beBt with y ^ ^ n - i = bb~x.
Thenyn_i = xn~\4>i(xn)b~x. Note that
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Since *n_i<£,(*„) = yn-ib, we have

( J C - i ^ G O r W i & O c ) ) = (y»-iftrI(yl,-i6)

It follows that b~lb = <pj(x~lxn). Then we have

249

^y^b = b~lb.

Note that *-_!,*„_, € £(5,-), 3vV,,-i = bb'1 e £(£,-) and 0,(*•)*"' € B,. Hence,
(E2) holds for xn_x and j n _i , and so, xn^i ~Bl yn-\. Since both xn-\ and yn_j are ~B.
representative, we have*„_) = yn-i. By (Cl), we have <Prl(xn-\xn-i) = ^n^1- Then
</>,(xn) = JC~J,JcB_i0,-(j:n) = y,".1,^-^ = b, and so, 0r'(fe) = xn. Consequently, we
haveX<&(ti)<P(t-1) = X.

Next suppose that (2.10) holds. Then we have

X<t>(t,) = (x0, C , . . . , C,1'*"-•• C- >»•r" &(«)>'

where^ = j n aandj n i sa~4 i representative with ̂ "'jn = aa"1 and a 6 A,-. Remark
that tj<t>j(a)t~l is a pinch. Hence, we have

X<t>(t,)<IXtrl) = (x0, %,..., t£,xm-u tl\yn, t,, ^ ( a

Consequently, we have = X in both (2.9) and (2.10). It follows that

We have proved (2.13). Similarly, we can prove (2.14). This implies that <P(t~l) =
$ (/,)"' in Sym(N) for every i s / .

Next we prove the relation^. 15). Take a from A,, where / e / . Note that

Ran(*(a)) = {X e N | Z(X) e 5a~'a}

and

Dom(<D(/,)) = {X 6 N | Z(X) 6 5e,}.

Since a € A, C e,Se(, we have a"1 a < et and aa"1 < e,. Then we have

Ran(4>(a)) D Dom(4>(?,)) = {X € N 1 Z(X) € 5a~'a D Se,}

= (Z € N | Z(X) € Sa~'a} = Ran(<I>(a)).
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Hence

= Dom(*(a)) = {X G N | z(X) e Saa~1}.

Since

Ranker.-1)) = ( I e N | z{X) G Se,},

then

Ran(4>(rr')) nDom(4>(a)<D(f,)) = {X e N | z(X) e Saa~l n 5^}

= {X G N | Z(X) € 5aa- ' }

since aa~l < e,. Recall that <t>(f,~') = O^,)"1 in Sym(N). Then it is easy to see that

Dom(<i>(t-1)®^)®^)) = [X e N | z(X) €

= {X 6 N | z(X) e

= {X G N | Z(X) G S(pi(aa-1)}.

On the other hand, we have

Dom(<D(</>,(«))) = {X G N | z(X) e S^,-^)^,-^))"1}

= {X G N | Z(X) G 5</>,(aa"')}.

Hence, Dom(4>(r/'
1)4)(a)<I>(/(-)) = Dom(<&(^(a))).

Take a normal sequence X from Dom(<J>(ff l)<t>(a)<fr(tj)). Suppose that X =
(x0, t^,xi,... , jcn_2, ^"Jj1,xn-\, t^",xn). In computing XO(;~') for X and t~\ there
are two possible cases; (2.11) and (2.12).

Suppose that (2.11) holds. Then we have i = in, en = 1 and xn e Bin = Bt.
Remark that it cannot happen that xn_i G At, i = in and e«_i = —1 since X e N.
Then <f>i(x~\xn-i) = <pin(x~\xn-i) = xnx;1 by (Cl). We have

Then we have

X<$(?"')4>(a) = (x0, te,\x\,... , jcn_2, t*"~\xn-.\(b~l{xn)a).

By the remark above *,'"__"', xn-\<p~[i{xn)ati is not a pinch, and so, we have

X<t>(f/"')<I>(a)<I>(r,) = (JC0, t^,x\,... , jcn_2, t*"~', yn-i, tj, <^,(c)),

where yn_x is a ~Ai. representative and y^\yn-\ = cc"1, c G A/ and *„_!</>"' (^;n)a =
yn-\C. Then both xn_! and yn_i are ~/i , representative. Note thatx~\xn-i belongs to
E(At) by the condition (Cl). Also note that y~\yn-i belongs to £(A,) since c G A,
andy~\yn-i = cc~x. Set/i = <f>^l(xn)ac~l. Then/i belongs to A, (asj:n G B,-,a G A,
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a n d c e A,-). Since xn =z(X) e S</>i(aa~x), we have *„ = s0,(aa~x) for some s e 5.
Then xa<f>i(aa~l) = xn, and so, <f>~l(xn)aa~x — 0,"'(xn). We have

xn_xh = xn^<p~x(xn)ac~x = yn-Xcc~x = yn-Xy~x
xyn-X = yn-\

and

Then xn-\x~\ = yn-Xy~lx. Furthermore, we have

x~\yn-\ =x;\xn_lh =x~llxn.i <p~l (xn)ac~l

x = h€ A,,

It follows that JCB_I ~A. yn-X by Lemma 2.3. Since both xn-{ and yn_i are ~/ l .
representative, we have .*„_! = yn-\. Since xn_i0~'(A;n)a = ^n_ic and y~_1,;yn_i =
cc"1, we have c = y~\yn-ic = x~\xn-i<p~x{xn)a = <p~l(xn)a. Hence, 0,(c) =
<p,(cj)'1 (xn)a) = xn^i(a). Consequently, we have

Next suppose that (2.12) holds. Then

where xn = ynb and yn is a ~B j representative such that y~lyn = ^^" ' and b e B,.
Then

= (jc0, < ' , x , , . . . ,xn_2, t^,xn.x, <", yn, tr1, (j>-

Since t~x<p~x{b)ati is a pinch,

' , . ) = (jc0, # , * „ . . . ,xn-2, C / ' ^ - " C- ynfrW

- (x0, tl',xu... , xn_2, rf;;,', xn-i, ^", ynb(j>i

— (x0, tl',xu ... ,xn_2, t-"~',xn^u t-",xn<t>i(a))

We have proved (2.15).
Consequently, we can extend the mapping O to a homomorphism of 5* into Sym(N)

by Proposition 1.1. Now suppose that x (e 5*) has a normal form xot^
lx\t^ • • • t^xn.

Then the sequence (x0, t^, xx, t%,..., t^,xn) is normal, and so, it belongs to N. Set
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e = xx~l. By Lemma 2.6, we have e = XOXQ\ Then it is easy to see that the normal
sequence (e) is in Dom(<J>(x)) and

This implies the uniqueness of a normal form of x. •

We have completed the proof of Theorem 2.7. A similar normal form is obtained
for a full HNN extension of an inverse monoid with one stable letter and a locally full
HNN extension of a semilattice in [15] and [17], respectively.

3. Applications of the normal form theorem

An immediate consequence of Theorem 2.7 is that an inverse semigroup 5 is
strongly embedded into any locally full HNN extension 5*. Note that this follows
from Proposition 1.2. Another easy consequence is that a formation of a locally full
HNN extension yields no new idempotent. Conversely, if an HNN extension of an
inverse semigroup has the same semilattice of idempotents as the original semigroup,
then it must be locally full as we will see next.

COROLLARY 3.1. An inverse semigroup S is strongly embedded into a locally full
HNN extension S* and E{S*) = E(S). Conversely, if S* is an HNN extension of S
with the property that E(S*) = E(S), then S* is a locally full HNN extension ofS.

PROOF. Every element x of 5 has the normal form x since the sequence (x) satisfies
the conditions (C1), (C2) and (C3). It follows that S can be naturally embedded into 5*.

Take x e t~lStj D S. Then x = t~lstt, where s e S. Using Lemma 2.8 we may
assume that t~lstt is a form. If t~lstt is not a pinch, then x has the normal form
sQt~xSiti, where s0, st € S. On the other hand, since x e S, x is in the normal form.
This contradicts the uniqueness of the normal form. Thus, t~lstj must be a pinch, and
so, s e Ai and t^stt = <j>;(a) € Bt. It follows that t~lStj n 5 = fi, and that S is
strongly embedded in S*.

Takeanyidempotentefrom£(S*). Suppose that e has the normal form xo^'xit** • • •
/*"*„. By Lemma 2.6, we have

e = ee~l = ( M ' ' * i £ • • • fixJixofixit? • • • %xny
x = XQX^ € E(S)

since xQ € 5. This shows that E(S*) C E(S). Clearly £(5) c E(S*) since 5 is
embedded into 5*.
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Conversely, we assume that the semilattice £(5*) is equal to E(S). We show
that each E(At) coincides with £(e(Se,) = E(S)et. Take any e e £(S)e,. The
element tjxet{ is an idempotent of 5*. Since E(S*) = E(S), t~lett is in E(S). Then
t~leti € E(S) n t~l(E(S)ei)tj C S n t~lStt. On the other hand, we have 5 fl ff'Sf,- =
f-'A.f, = Bt by (1.6). It follows that t~lett € ff'A.-r,- and that e = f.rf'ef,*"1 C
tit~lAitit~l C A, (as f,ff' = e, <= A, and e < <?,-). Therefore, E(A() — E(S)eh and
hence, 5* is a locally full HNN extension of 5. •

COROLLARY 3.2. //"«« element x ofS* has a reduced form

(3.1) *otf*i£ •••£*,,,

n > 1, tfienx ̂  £(5*) = £(S).

PROOF. By Lemma 2.10, if the element x has a reduced form (3.1), then x has the
normal form MO^'"I^2 • • • ^"«n f°r s o m e "o, "i» • • • ,un in 5. Since E(S*) — E(S)
by Corollary 3.1, every idempotent e has the normal form e. Since the expression is
unique, we have x £ E(S). •

Note that Corollary 3.2 is considered as a generalization of Britton's lemma in
group theory ([3, 10]).

Some algebraic properties are not preserved under a formation of a locally full
HNN extension. For examples, the property of being a finite semigroup, being
commutative, being free, being E-unitary, being factorizable, being combinatorial,
being fundamental, being congruence-free, being completely semisimple or having
a zero element is not necessarily preserved under a formation of a locally full HNN
extension.

On the other hand, we show that several algebraic properties are preserved under a
formation of a locally full HNN extension. It is easy to see that an HNN extension of
a monoid (group) is always a monoid (group).

COROLLARY 3.3. Let S be-^n inverse semigroup. Let £P be one of the properties
listed below. Then a locally full HNN extension S* satisfies & if S does.

(1) Having finitely many idempotents.
(2) Being torsion-free.
(3) Being bisimple.
(4) Being simple.

PROOF. (1) By Corollary 3.1, E(S) = E(S*) and so the HNN extension 5* has
finitely many idempotents if S does so. (2) Using Theorem 2.7, we can easily show
that 5* is torsion-free if 5 is. (3) We note that an inverse semigroup is bisimple if
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and only if all idempotents are ^-related. By Corollary 3.1, all idempotents of S* are
^-related in 5* if all idempotents of S are ^-related in S. (4) We note that an inverse
semigroup is simple if and only if all idempotents are ^-related. By Corollary 3.1, all
idempotents of 5* are ^- re la ted in 5* if all idempotents of S are ^-re la ted in 5. •

Under a certain condition on associated inverse submonoids A, and B, (i e / ) ,
algebraic properties are preserved.

COROLLARY 3.4. Let S be an E-unitary inverse semigroup. Suppose that S* is a
locally full HNN extension of S associated with <f>t : A, ->• Z?, (i e / ) . IfA, and Bt

are closed in S for every i e I, then S* is E-unitary. \

PROOF. Suppose that S* is not E-unitary. There exist e e E(S*) = E(S)
and x e S* \ E(S) such that e < x. By Theorem 2.7, x has the normal form
xot^Xit^ • • •xn_1^"xn, where either n > 1 or *0 ^ E(S). Since e < x, there exists
/ € E(S) such that / x = e. Then it is easy to see that

fx —Jxoti{
x\tj2 • • • xn-\t^xn —xotiixlti2 • •'xn_itj^xn,

for some x'o, x[,... , x'n in 5 with x\ < xt for every i. By Lemma 2.8, we may assume
that e = fx has the form x'ot^ x[t** • • -x'^^x^. Then either x[ e A, or x\ € B, holds
for some i by Corollary 3.2. On the other hand, we have *, £ A, and xt £ Bt. This
contradicts the fact that A, (or Bt) is closed in 5. Consequently 5* is E-unitary. •

Similarly any locally full HNN extension of an F-inverse monoid associated with
closed inverse submonoids is F-inverse. We next discuss the word problem for a
locally full HNN extension.

LEMMA 3.5. Let S be an inverse semigroup, and let S* be a locally full HNN
extension of S associated with the isomorphisms <pt : A, -*• B, (i € I). If the
membership problems for the semilattice E(S), A, and B, (i e / ) in S are solvable and
the isomorphisms <pt and<p^~l are effectively computable (i e I), then the membership
problem for E(S) in S* is solvable.

PROOF. For a given word w on generators of S*, we can effectively obtain a reduced
form for w by Lemma 2.8 and Lemma 2.9. Suppose that the reduced form for w is
xot^Xit^ • • • t^xn. If n > 0, then we can conclude that w £ E(S*). If n = 0, w
is written as a word on generators of 5. We use the algorithm for the membership
problem for £ (5 ) in S to determine whether or not w is in E(S). If so, we can
conclude that w e E(S*), otherwise w <£ E(S*). •
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THEOREM 3.6. If the word problem for S is solvable and 0, and<p~{ are effectively
computable for every i € / and the membership problems for A, and B,- in S are
solvable for every i € I, then the word problem for S* is solvable.

PROOF. Let w\ and w2 be given words on generators of 5*. We note that wi — w2

if and only if u;! wj"1 = w2w2
l andu^'u^ e E(S*) = E(S). For, if WiW^1 = w2u>21

and W2~xw\ € E(S), then we have

~X W2W21Wi = W2W2~
iWiW2~

iW\

lw2 (as w^Wi = (uij'wi)"1 = w^w2)

1 W2 = W2.

Hence, to solve the word problem for 5* it is enough to decide for given words wx and
w2 whether or not uJiioj"1 = w2w2

l and w^wi 6 £(5).
Since the word problem for S is solvable, we can effectively determine whether or

not w = w2 for a given word w on the generators of S. Therefore, the membership
problem for E(S) in 5 is solvable. By Lemma 3.5, we can effectively determine
whether or not w^Wi e E(S). By Lemma 2.8 and Lemma 2.9, we can effectively
find reduced form e\ and e2 for w\w^x and u^wj1, respectively. Then w^w^x and
w2W2l are written as words on the generators of S. By Corollary 3.1, ex and e2 are in
£(5). Since the word problem for 5 is solvable, we can effectively decide whether or
not ex — e2 in S. Consequently, the word problem for 5* is solvable. •

COROLLARY 3.7. A locally full HNN extension of a finite inverse semigroup has
solvable word problem.

PROOF. Obviously the word problem for a finite inverse semigroup is solvable,
the membership problems for inverse subsemigroups are solvable and the partial
isomorphisms are effectively computable. •

Margolis and Meakin [11] solved the word problem for an idempotent pure image
of a free inverse monoid using Rabin's tree theorem. Using their result, the author
showed that any HNN extension of a finite semilattice has solvable word problem
([17]). Note that any idempotent pure image of a free inverse semigroup is an HNN
extension of a semilattice. However, a finitely generated idempotent pure image of a
free inverse semigroup does not necessarily have solvable word problem. Jajcayova
[8] solved the word problem for an HNN extension of a free inverse semigroup
associated with finitely generated inverse subsemigroups using graphical methods. It
is not known whether or not any HNN extension of a finite inverse semigroup has
solvable word problem. We remark that Cherubini, Meakin and Piochi [2] proved
the solvability of the word problem for an amalgamated free product of free inverse
semigroups associated with finitely generated inverse subsemigroups.
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4. Action of a maximal subgroup on a tree

Haataja, Margolis and Meakin [4] employed the Bass-Serre theory to obtain a
group presentation of a maximal subgroup of a full amalgamated free product of
regular semigroups. See [1, 8, 12, 15] for similar applications of the Bass-Serre
theory to find presentations of maximal subgroups of free constructions of inverse
semigroups. We obtain a group presentation of a maximal subgroup of a locally full
HNN extension using the Bass-Serre theory. The reader is referred to [3, 14] for the
detail of the Bass-Serre theory.

Let S* be the locally full HNN extension given by (2.2). Let e be an idempotent in
£(5*) = E(S). We denote the maximal subgroup (gro\ip Jif -class) of S* containing
e by 5*. We construct a graph Xe on which 5* acts without inversion.

4.1. Forest X Let S be an inverse semigroup and H an inverse subsemigroup of S.
For any x in 5 withx~xx € E(H), we define acosetxH to be

xH = {xh | jc-'x = hh'x (h e H)}.

LEMMA 4.1. The cosetxH is identical to the ~# class containingx ifx~lx e E(H).

PROOF. Recall that ~ w is defined in (2.1). Suppose that*"1* e E(H). Then, if
y € xH, then v = xh for some h e H with x~lx = hh~l. By the definition of ~w,
we have x ~ w y and so xH C x. Conversely, we take y e i t . Then, y = xh with
h € / /and*- 1 * = hh~l. Hence, y = xh exH. Thus, J c xH. •

LEMMA 4.2. For*, y G S witfi x~'x, y"1^ € £(/ /) , * / / = yH if and only ifx3?,y
in S andx~xy e H.

PROOF. This is an immediate consequence of Lemma 2.3 and Lemma 4.1. . •

LEMMA 4.3. Letx,y e Swithx~lx,y~ly G E(H). IfxH = yH, then x^y and
x~xx9y~xy in H.

PROOF. By Lemma 4.2, we have x3?,y in 5 and x~ly e H. Let h — x~ly. Then
we have

hh~x = Oc~';y)(jc~1;y)~1 = x~i(yy~l)x = x~l(xx~~l)x =x~xx.

Hence, hSf.x~xx in H. Similarly we can show hS£y~xy in H. Consequently,
x~xx9y~xy in H. •
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f) =xS t(xA,) = xttS t(xBt) = xt~lS KxBt) =xS

o -o o- o
xAt xBj

FIGURE 1. Edge and initial and terminal vertex

xS xhS xt~lS xS
O O O »O

xAi = xtjBj xBj = xt~xAi

FIGURE 2. Inverse edge

The graph X consists of the set Vert(X) of vertices and the set Edge(X) of edges.
The set Vert(X) consists of cosets x S:

(4.1) Vert(X) = [xS \ x e 5*}.

Note that*-1* e E(S*) = E(S) for every x 6 S*. The set Edge+(X) of the positively
oriented edges of X consists of cosets xAt (i e / ) :

(4.2) Edge+(X) = {xAt \ x e 5*, x~lx < et = r.-rf1 for / e / } .

The set Edge_ (X) of the negatively oriented edges of X consists of cosets xBt(i e / ) :

(4.3) Edge_(X) = {xfi, \x eS*, x~lx < / , = t~xh for i e I}.

We make a convention that * A, and xAj are distinct for distinct i and j even if A,
coincides with A;, and similarly, x B, and xBj are distinct for distinct i and j even if
Bi coincides with fl,. The sebfidge(X) is the union of Edge+(X) and Edge_(X):

(4.4) Edge(X) = Edge+(X) U Edge_(X)

Here we make a convention that Edge+(X) andEdge__(X) are disjoint (even if A, = Bj
for some / stadj).

We define the initial vertex, the terminal vertex and the inverse edge. The initial
vertex of xA, and xBt are defined by

(4.5) \(xAi)=xS, l(xBi)=xS.
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y»-i
<V
l(y»)

^ y n

FIGURE 3.

y i /

Circuit

V
j /

l(y2)

The terminal vertex of xA> and xBt are defined by

(4.6) X(xAi)=xtiS, t(xBd=xt-lS.

The inverse edge of xAt and xBt are defined by

(4.7) x~A~i=xtiBi, xB~ — xt~lAi

See Figure 1 and Figure 2. It is routine to verify that Vert(X) and Edge(X) forms a
graph in the sense of Serre [14].

THEOREM 4.4. The graph X defined by (4.1)-(4.7) is a forest.

PROOF. Suppose that X is not a forest. Then there exists a circuit without backtrack-
ing. Suppose that the edges y{, y 2 , . . . , yn (n > 1) form a circuit without backtracking
in this order. See Figure 3. We have t(y*) = Kyt+i) for each k = 1,2,... ,n — \ and
t(yn) = i(yi). We also have yk ±. J^[ for k = 1, 2 , . . . , n - 1 and y, £ y7.

We assume that n > 2 and derive a contradiction. In the case of n = 1, we can
similarly derive a contradiction and so we do not discuss the case. If yk e Edge+(Z),
then we have yk = Zt-\Ait for some zt-\ e S* with zk\zk-i € Ait. Then we define €k

to be 1. We note that i(yt) = zk-iSandt(yk) = zk-ititS = zk-xt-t
kS. Ify* e Edge_(X),

then we have yk = zk-\Bik for some Zk-i ^ S* with zklxzk-\ e Bik. Then we define
ek to be - 1 . We note that i(yt) = zk-iS and \(yk) = zk-itr

lS = z t _ i £ S . In the
both cases, we have \(yk) = zk-\S and X(yk) = Zk-it^S for every k = 1, 2 , . . . , « .
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Since t(yt) = i(y*+i) for every k = 1 ,2 , . . . , n — 1, we have Zk-itfS = zkS. There
exists *t € 5 such that z* = zt-i^'jc* with (z*-i^*)~'(z*-i^) = x**^1 for every
k = 1 , 2 , . . . , « — 1. Similarly there exists xn € S such that Zo = zn-\t

e£xn with
(zn_irf;)"'(zn_ir,f;) = AT,,*"1, since we have t(yn) — i(yO. Then we have

Zk Zk—Xk tik
 tZk_\Zk-\ti*Xk = Xk XkXk Xk = Xk Xk

for every J f c = l , 2 , . . . , n — 1. There fo re ,

for every k = 2,3,... ,n and also Jtixj"1 = <j>^ (z^'zo). We note that if e t = 1, then
we have jc^1,**-! 6 E(Aik) and that if ê  = —1, then we have xk\xk-i € E(Bik).
Using the equations zt = zk-\t

f
ik

kxk (k = 1, 2 , . . . ,n - 1) and zo = z n - i £ x n , we
can inductively derive zk-\ = Zo^'xi^2x2 • • • te

ik
k^xk-i, for every ^ = 2, 3 , . . . , n, and

hence, we have Zo = Zo^'xif,f2
2x2 • • • tf

t"^xn^t^xn. Set / = z^'zo- Then we have
/ = z^1zot-i'xit-2

2x2---tl"~i'xn_itl
nxn. Since xkxk

l =</>,'* (xk\xk-\) holds for every
* = 2, 3 , . . . , n and xi*f' = 0,*' (z^'zo), / has a form

^0 20*i| ^I'l^ ^2 - • - ',„_, Xn-\tin Xn.

Since Zo""1^ € £(5*) = £ (5) , the form zo"
1zo^l

1x1^
2x2 • • • t^xn^xn is not reduced

by Corollary 3.2.
We assume that t^xkt

e
ik

k*' is a pinch for some k — 1,2, ...n — 1. There are two
possible cases; (1) it = /*+i, e t = - 1 , €k+1 = 1 and xk € Ai<+1 or (2) ik = ik+u

ek = 1, ek+i = —1 and x t e fi,i+1. We now suppose that case (1) holds. Then we have
yk = zk-\Bk and yt + 1 = zkAit+1. We show that zk-\t

(
ikxkAk = Zk-\t-t

kAit. Note that
(Zk-it-t

kr\zk-ltl
i)=XkXk-

1 andsozk-ifixk&Zk-it-;. We have

(Zk-it-kyl(Zk-it-kxk) =xkxk
lxk -xk € Aik+I =Aik,

{Zk-^kXk)-
l(Zk-^kXk) = Xk

l{Zk-^k)-\zk-xtTt)Xk

= xk
lxkxk

lxk = xk
lxk € E(Aik)

and V

Hence, we have Zt-i/^JctA,t = Zk-it1kAit by Lemma 4.2. Then we have

y t + 1 = zkAik+l = Zk-it-kXkAit+l = zk-it-
kxkAik

= Z k - \ t i k A i k = z k - \ t i k A i k = z k - \ B i k - y k ,

which contradicts the assumption that there exists no backtracking in the circuit. In
the case (2), we can similarly derive a contradiction. Consequently, there exists no
circuit in the graph X. •
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eS = x0S xo$S xotl'x^S xS = xo$xlt
l
h
2 •••ftS

O - O - O "O

yi yz y3 y«

FIGURE 4. Path form eS to x S

4.2. Connected component For an idempotent e e E(S*),we denote the connected
component of X containing the vertex eS by Xe. We now describe the tree Xe.

LEMMA 4.5. Let e be an idempotent in E(S*) = E^S). For x € 5*, the vertex
xS (the edge xAt provided that x~1x € E(At) or the edge xBt provided that x~xx e
E(Bi)) is in Xe if and only ifxx~l = e.

PROOF. Suppose that xx'1 = e. Suppose that x has the normal ^ ^
tf^xn-iti"xn. By Lemma 2.6, we have e — xx~l — XQXQ1. By Lemma4.2, eS = x0S
since we have e, x0 € 5. Similarly, we have Xot^xi • • • t^S = xot

e
h'xi • • • te

k
kxkS for

every k = 1,2,... ,n. For each k = 2, 3 , . . . , n, we define yk to be the edge

M*'*i£ •••£>*->A<* i f e* = l 2ind t o b e t h e e d g e xotllxit£---t£xk-lBit if
ek = — 1. We define yi to be xQAh or x0Bh according to ex = ±1. Then the
path connecting eS and x S is given in Figure 4.

Note that^o^'^i •••t-t
tS = Xote

h'xi • • • t]k
kxkS for every k = 1, 2 , . . . , n. Hence, x S

is in the connected component Xe.
LetxA, (x"1* € E (A;)) be a positively oriented edge such that xx~l = e. Suppose

that t(xAj) = zS. Note that x~lx < e, = ttt~
l, \(xAj) = xS and t(xAj) = xtiS.

Moreover, we have (xtiXxti)'1 = xtjt^x'1 = xx'1 = e since x~lx < t{t~
l. On the

other hand, by Lemma 4.2, zz~x = (xtj)(xtj)~l since we have xttS = zS. Hence,
zz~} = e. Similarly, we can show that for a negatively oriented edge JC£, such that
t(xBi) = zS we have zz~x = e. It follows that if a vertex zS is connected to a
vertex xS such that xx~l = e then we have zz~l = e. Since Xe is connected, every
vertex zS in Xe has the property that zz'1 = e.

We have shown the result for vertices. It is similarly shown that xAt (or xBt) is
in Xe if and only if xx~l — e. •

4.3. Action of a maximal subgroup We now consider a maximal subgroup 5*
of S*, wheree € E(S*). Take a vertex xS from Xe and u; from S*e. Wehave^"1 = e
by Lemma 4.5. Then we have

(wx)(wx)~i — wxx~!w~l = wew~l — ww"1 = e

(as ww~l = w~lw = e). This implies that wxS is in Xe. Similarly, we can show
that wxAi and wxBi are in Xe if xAt and xB, are in Xe. Furthermore, we have
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i(sy) = si(y), t(jy) = .st(y) and (sy) = sy for s € S* and y € Edge(Xe), that is to
say, the group S* acts on the tree Xe from the left. The action preserves the orientation
of Xe: S;Edge+(Xe) c Edge+(Xe) and Se*Edge_(Xe) c Edge_(X,). Hence, S*e acts
on Xe without inversion. Denote the orbit of xS (x A t andxB,)by Orb(jcS) (Orb(xA,)
and OrbOcfl,)). Denote the stabilizer ofxS (xAt and xB{) by Stab(;cS) (Stab(xA,)
and Stab(xBi)). We describe the orbits and the stabilizers of the vertices and the edges
ofX,.

LEMMA 4.6. Let x be an element in S* such that xx~l = e.

(1) We have

Orb(xS) = {wS | ww~l = e, x-lxS>sw~lw}.

(2) Ifx~lx € E(Aj), then we have

Orb(xAj) = {wAt \ ww'1 = e, w~xw e E(At), x~lx@Ajw~lw}.

(3) Ifx~lx e E(Bj), then we have

Orb(;cB,) = [wBi \ ww~l = e, w~xw € E(Bt), x~xxS>Blw~lw}.

Here &s< @A, cmd 3>Bi denote Green's &-relation ofS, At and Bh respectively.

PROOF. Take wS from Orb(xS). There exists z in 5* such that z(xS) = wS. Note
that

(zx)~lzx —x'xz~lzx —x~lex — x~lxx~xx =x~lx.

ByLemma4.3, v/ehavezx&w and {zx)~l(zx)2sw~lw. Since (zx)~1zx =x~lx,v/e
have X~XX3)SVJ~XW. Moreover, we have

ww~l = (zx)izxy1 = zxx~lz~x = zez~l = e.

Hence, we have shown that ww^1 = e and x~xx!2)sw~xw.
Conversely, we assume that ww~x = e andx~lx^sw~xw. There exists a e S such

that w~xw£?,saS£sx~xx. Let d = wax~x. Then we have

dd x = wax x(wax ') ' = wax xxa xw x

and

= waa xaa xw x = waa xw x = ww xww ' = ww x = e

d xd = (wax ') x(wax x) = xa xw xwax '

= xa~xaa~xax~x = xa~xax~x = xx~xxx~x = e.
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Hence, d e S*. We now note that

(wa)(wa)~x — waa~xw~x = ww~xww~x = ww~l.

Hence,wa&w. Sincea € Sandw~lw € E(S),wehavew~[wa e 5. ByLemma4.2,
we have wS = waS. On the other hand, we have

dxS = wax~xxS = waa~xaS — waS.

Hence, wS = dxS and so wS e Orb(xS). It follows that

OrbQcS) = [wS \ ww~x = e, x~lx^sW
[w}.

We can similarly show the other two statements. N •

LEMMA 4.7. (1) For x e S* with xx~l = e andx~lx = f we have

Stab(xS)=xHs(f)x-1,

where Hs(f) is the group 3%'-class of S containing f.
(2) Suppose that xAi (xBt) is in the tree Xe. Then we have

Stab(xA,)=xHAi(f)x-1 (StabQcfi,) - xHBi(f)X-1),

where HAj(f) (HBi(f)) is the group Jf?-class of At (B,) containing f.

PROOF. We show that StableS) = xHs(f)x~1. Take an element z from Stab(xS).
Then zxS — xS. Note that zz~x = z~lz = e = xx~l. By Lemma4.2, we have zx3$x
2LT\&X~X(ZX) € 5. Setg —x~lzx. Then we have

gg~l =x~lzx(x~lzx)~l =x~lzxx~lz~lx =x~xzz~lzz~lx =x~lxx~lx —x~xx =f

and

g~lg = (x~[zx)~lx~izx =x~[z~1xx~1zx =x~lz~izz~izx =x~lxx~lx =x~lx=f.

Hence,g e Hs(f). Thenz =xx~lzxx~l =xgx~l exHs(f)x~l. Thus,Stab(xS) c
xHs(f)x-1.

Conversely, we take an element v from Hs(f). Then we have

(xvx~l)xS = xvx~lxS = xvfS- xvS

(as v e Hs(f)). We next show thatxv^x a n d x " 1 ^ ) e S. Note that

(xv)(xv)~1 = xvv~xx~x =xfx~x = xx~xxx~x =xx~x.

Hence, xv@x. Since x~xxv = fv = v (as v e Hs(f)), we have x~xxv e S (as
v e S). By Lemma 4.2, we have xvS = xS. It follows that (xvx~x)xS = xS.
Hence, xvx'x 6 Stab(x5). This shows that xHs(f)x~l C Stab(xS). Consequently,
Stab(;tS) = xHs(f)x~x. Similarly it can be shown that StabCxA,) = xHAi{f)x~x

and Stab(jc£,) = xHBi(f)x~x. •
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5. Presentation of a maximal subgroup

Using the action of S* on Xe, we obtain a group presentation of S*.

5.1. Graph of groups S*\Xe = (K, Ze) We describe the graph of groups induced
from the action of 5* on the tree Xe. Let S*\Xe = (K, Ze) be the graph of groups ob-
tained from the action of S* on Xe in the Bass-Serre theory. We recall the construction
of (K, Ze).
(1) Graph Ze The graph Ze is formed by the set of vertices

Vert(ZJ = (OrbQcS) | xx~l = e]

and the set of edges

Edge(Zc) = Edge+(ZC) U Edge_(Ze),

where

Edge+(Ze) = [Orb(xAi) \ xx~l = e, x~xx e E(At), i 6 /}e+

is the set of positively oriented edges and

Edge_(Ze) = {Orb(jcB,-) | xx~l = e, x~lx e E{Bt), i e /}

is the set of negatively oriented edges. The initial vertex and the terminal vertex of
OrbQcA/) are Orb (A: 5) and Orb(;cf,S), respectively. The initial vertex and the terminal
vertex of Orb(;cB,) are Orb (A: 5) and Orb(x tflS), respectively. The inverse edge of
Orb(;cA,) is 0rb(*?,5i) and the inverse edge of Orb(;cB,) is OrbOcff'-A,). It is easy
to verify that Ze forms a graph.
(2) Groups K Let T be a maximal subtree of Ze, that is, a spanning tree of Ze.
There exists a lifting _/ : T —> Xe because T is a tree (see [14]). We extend j to all
edges of Ze so that we can have j (i(y)) = i(/ (y)) for every y 6 Edge+(Z«,). Then j
is no longer a graph morphism. The groups associated with Orb(xS), OrbOtA,) and
Orb(xB,) (i e I) are defined by

V
and

^orbuB,) = StabO' (Orb(**,)))•

If sy = y, then sy = y for every y 6 Edge(X,). Therefore, K0M:cAi) - KOMXA,) and

(3) Monomorphisms Suppose that y is a positively oriented edge of Ze. Then
y = Orb(xA,) for some* e 5* and i e / such thatxx~l — e and*"1* G E(At). We
define group isomorphisms

and zy : Ky
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Suppose thaty (y) = xAt. Then; (i(y)) = \(j (y)) = xS. We have

Km = StabC/ (i(y))) = Stab(l(/ (y)))

= Stab(l(xAi)) = Stab(*S) = xHs(x~lx)x-1.

We also have

Ky = StabO' (y)) = Stab(xA,) = xHAl{x~lx)x-1.

Note that xHAj(x~ix)x~1 C xHs(x~1x)x~K Then ay : Ky ->• Kl(y) is defined to be
the inclusion mapping.

Since we have
• \

Orb(/ (t(y))) = Orb(t(/ (y))) = Qrb(t(xA,-)) = Orb(xt,S),

we can choose an element yy from S* such that

(5.1)

Then we have

Kt(y) = StabO" (t(y))) =

because

i = trlx~lextt = t~lx~lxx~lxti — t~

(as *"'* e £(A,) c A,-). Then ry : Ky -+ t̂(y) is defined by

(5.2) Tj(s) = yysy-1

for 5 € Ky. For y e Edge_(Zc), we define ay and ry by ay = xy and ry = ay.

5.2. Graph of groups (G, Ye) We construct a graph of groups (G, ye) associated
with 5, A, and S, (i € /) for each idempotent e € £(5) using Green's ^-relation.
We also show that (G, Ye) is conjugate isomorphic to the graph of groups S*\Xe —
(AT, Ze). Then we can conclude that 5* is isomorphic to the fundamental group of
(G, Yt). Let us start to define the graph of groups (G, Ye).
(1) Graph Y Let Vert(y) be the set of ^-classes of S, Edge+(K) be the set of
^-classes of A, for all i e / and Edge_(K) be the set of ^-classes of B, for all i e I.
We make a convention that Edge+(F) and Edge_(K) are disjoint although A, may be
equal to Bj for some i, j e I. We also make a convention that for distinct i, j e I the
set of ^-classes of A, is disjoint from the set of ^-classes of Ay even though A, may
coincide with A;. We make a similar convention for the set of ^-classes of B,'s. The
set of edges Edge( Y) is the union of the set Edge+ (Y) of positively oriented edges and
the set Edge_(y) of negatively oriented edges. Suppose that DAi e Edge+(K), that is,
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DAl is a ^-class of A, for some i e / . Then the initial vertex \(DA/) is the f^-class of
5 including DAl, the terminal vertex t(DA.) is the 0-class of S including <j>i(DAi) and
the inverse edge DAl is <f>i(DAl). Note that (j>i(DAl) is a ^-class of Bt. Suppose that
DBi € Edge_(F), that is, DB. is a f^-class of B, for some i € I. Then the initial vertex
\(DBj) is the ^-class of 5 including DB., the terminal vertex t(Z)Bj) is the ^-class of
5 including <j>7l(DBl) and the inverse edge DB is <f>T '(DB.). Note that <f>~l(DBi) is a
^-class of A,-. It is routine to verify that Y forms a graph in the sense of Serre. We
remark that Y is not necessarily connected.
(2) Groups G For each Ds e Vert(F), that is, Ds is a ^-class of 5, we choose
a group J(f'-class of 5 included in Ds and denote it by GDs. Similarly, for each
DAl e Edge+(y), we choose a group Jff class of A, included in DAi and denote it by
GDAj. For each DBi e Edge_(JO, we set GDB. = G^(Dg) = G^-.
(3) Monomorphisms Suppose DAi e Edge+(K). There exists a unique Z)s e
Vert(y) such that DAj c £>s- Let AT be a group Jf-class of 5 including GD/(.. Then
K and GDs are group J^-classes of 5 included in Ds. By Green's lemma there exists
n € Ds such that nKn~l = GDs. We choose such an element n from Ds and fix it.
Then cr^ : GDA —* GDs is defined by

(5.3) aDA\h) = nhn-1

for h € GDA.. We note that GDs = GI(DA) as Ds = \(DAi). We now define
*DAi • GDAJ -+ GHDA.). There exists a unique Ds € Vert(y) such that <pi(DA.) c £>s.
Let AT be the group Jif-class of 5 including (j>i(GDA). Then £ and GDj are group
.^-classes included in Ds- By Green's lemma there exists n e Ds such that

(5.4) nKn-x = GDs.

We choose such an element n from Ds and fix it. Then XDA> : GDA ->• GDs is defined by

(5.5) rDA.(/1) = n 1

for/i € GO/1 (. We note that GDs = Gt(D<() as Ds = t(DA,). For DBi e Edge_(K),aDB

and XDB, are defined by ODB. = T ^ - and rDs. = CT^-.
(4) Connected component Ye For e e £(5*) = £(5) , let Ye be the connected
component of Y containing the 5?-class of 5 containing e. We denote the restriction
of (G, Y) to Ye by (G, ye). Then (G, ye) is a connected graph of groups.

5.3. Conjugate isomorphism We prove that (G, Ye) is conjugate isomorphic to
(K, Ze). The reader is referred to [3] for the definition of a conjugate isomorphism of
graphs of groups.

THEOREM 5.1. The graph of groups (K, Ze) is conjugate isomorphic to the graph
of groups (G, Ye).
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PROOF. We define a graph morphism <i> : Ze ->• Ye by

<D(Oib(jcS)) = OsCc"1*), O(Orb(xA,)) = DAi(x~xx)

and

where Ds(x~lx) (DAi(x~lx) and D J ^ J : " ^ ) ) is the ^-class of 5 (A, and B,)containing
x~lx. By Lemma 4.6, <I> is a well-defined bijection. Note that

<J>(i(Orb(xA,))) = cD(Orb(xS)) = Ds(x~xx) = l(DAl(x~lx)) = l(4>(Orb(jcA,))).

Therefore, 3>(i(y)) = i(4>(y)) for every y e Edge+(Ze). Similarly we can show
that O(t(y)) = t(O(y)) for every y e Edge+(Ze) and that O(i(y)) = i(<E>(y)) and
4>(t(y)) = t(4>(y)) for every y e Edge_(Ze). It is also easy to see that <t>(y) = (^(y))
for every y e Edge(Z,.). Thus <J> is a graph isomorphism of Ze onto Ye.

We define isomorphisms between the vertex groups. Let v be a vertex in Ze.
Suppose j (v) = JC5. Then v = Orb(/ (v)) = Orb(xS) and so <J>(v) = 4>(Orb(A;5)) =
Ds(x~lx). Then we have

Ky = StabO' (v)) = StableS) = xHs{x~xx)x~x.

Since Hs(x~lx) and GDs(x-ix) are group 3^-classes of S included in Ds(x~lx), there
exists mx e Ds(x~lx) such that

(5.6) mxHs(x~lx)mJl = GDs{x->x)

by Green's lemma. We choose such mx and fix it. Then a mapping <1>V : Ky —>

G<i>(v) = GDS(X-IX) is defined by

(5.7) &v(s) = mxx~xsxm~x

for s e Ky —xHs(x~lx)x~l. We show that 4>v is well defined. Since

x~lsx e x~ixHs(x~lx)x~lx = Hs(x~lx),

we have

<t>v(s) € mxHs{xx~i)m~x = GDsU-ix).

Note that the choice of m, depends on x. We show that Ov can be defined so that any
other choice of the coset representative z for xS can have an element mz in Ds(z~lz)
such that mzz~lszm~l — mxx~lsxm~l for s e Ky. Suppose that xS = zS. We
define mz to be mxx~~[z. Then mz belongs to 5 since mx and x~lz belong to S.
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Then mz e Ds(z
 lz) = Ds(x '*) and mzz

 1szmz
 l = mxx

 {zz 'sztrn*.* lz) ' =
mxx~lsxm~l. Therefore, <1>V is well defined. Clearly <1>V is an isomorphism.

We next define isomorphisms between the edge groups. Suppose y is in Edge+(ZC)
and j (y) = xAj. Then we have

and so

<D(y) = *(Qrb(jrA,)) = DA i(x- ' j t) .

We also have

Ky = StabO' (y)) = StabOtA,-) = xHAi(x~ix)x~1.

Since HA.{x~lx) and GDA.(X->X) are group Jf?-classes of A, included in DAi{x~xx),
there exists ax e DA.(x~lx) such that

(5.8) axHAi(x

by Green's lemma. Then a mapping 4>y : Ky —> G*^ is defined by

(5.9) <*>,(*) = axx-lsxa;1

for s e Ky ~ x~[HA (xx~l)x. For any z such that xAt — zAt we can choose az from
DAi{z~lz) = DAi{x~lx) such that ^z^'sz^""1 = axx'lsxa~y. Therefore 4>y is well
defined. Clearly <J>y is an isomorphism. For any edge y in Edge_(Ze), we define 4>y

to be <t>y.
We now prove that $ is a conjugate isomorphism of (K, Ze) onto (G, Ye). Recall

that O is a conjugate isomorphism if for every edge y e Edge(Zf) the diagram

Kv — ' -+ Ky *• A t (y )

w
is commutative up to conjugation by an element of Gt(4>(y)) =

There are two cases: (1) y e Edge+(Ze) and (2) y e Edge_(Zc). We prove the first
case and omit the second case.

Suppose thaty is in Edge+(Z(.) andy (y) = xAt. Theny = Orb(/ (y)) = Orb(jcA,-).
We have

Ky = StabO' (y)) = Stab(xA,) = xHAi(x~1x)x~l.
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Recall that yy satisfies the equation j (t(y)) = yyxtjS by (5.1). Then we have

Kt(y) = StabO" (t(y))) =

since

Then ry : Ky —>• Kt(y) is defined to be the mapping s H-> tySK"1 for 5 6 Ky by (5.2)
and <t>y : Ky -*• G9(y) is defined to be the mapping s h-> ax^.sxtf"1 for s e Ky

by (5.9). Note that a = ax is the element of DA /(*- '*) defined in (5.8). Hence,
we have axHA.{x~xx)a~x = GDA.(X-IX). We recall (hat <J>t(y) : ^t(y) -> G*(,(y)) is
defined to be the mapping s (->• m^yjcr,-)"1*^,^^)/^"1 for * € ATt(y) by (5.7). Note
that m = mYjXt. is the element of Ds(<pi(x~lx)) defined in (5.6). Hence, we have

^i{x-lx))m-1 = GDs(0.(,-,x)). Note that

4>(t(y)) =

We also recall that T*^) : GQ^ —>- Gi^(y)) is defined to be the mapping s i->- n<j>i{s)n~x

for s 6 G<t,(y) by (5.5). Note that n is the element of Ds(<j>i(x-lx)) defined by (5.4).
Hence, we have nKn~l = GDs(<j)Cx-ix)), where K is the group jf?-class of 5 including
0i(GDi,((X-ijt)). See Figure 5 for the ^-structure and the location of the elements
m, n, a.

Take an element s from HAi(x~lx). Thenxsx"1 e xHA.(x~lx)x~l = Ky. We have

<&t(y)(ry(xsx-1)) = Q

— mt~lstiin~x = m<pj(s)m~x.

On the other hand, we have

tQwiQyixsx*1)) = z<p(y)(ax~xxsx~xxa~x) —

= n<t

Then we have

We prove that n0,(fl)m-1 € GDs(Mx->x)). By our choice of n and a, the el-

ement nrxn is the identity of K and the element 0,(a)0,(a~') is the identity of

& (Go,, (*-•,))• Since <MGA, ,U- '* ) ) C K, we have n~ln = ^ ( ^ / ( a " 1 ) - S i n c e
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a~la = x~lx, (pjia^Wiia) — <pi(x~lx). On the other hand, by the choice of m, we
have <j>i(x~lx)&?,m~x. Hence, we have m~lm = </)i(x~lx) = <f>i(a~la). Then we have

= m<t>i{a~l)4>i(a)m~l = mm~xmm~l = mm'1

and so n(pi(a)m~1Jfmm~l. By our choice of n and m, both nn~x and mm~l are the
identity of GDs^(X->X)). Therefore, nn~l = mm'1, that is, nS?,m. Then

~l)n~l = nn^nn'1 = nn~l = mm'1= n(pi(a)<pi(a~l)n~l = nn^nn'1 = nn~l = mm

It follows that nfaUfim'1 @mm~l. Hence, n(pi(a)m~x Jtfmm'1. This implies that
nfaiajm'1 is in the Jf-class of mm"1, that is, G£>sWiU-ix)). Recall that GDs^i(x -ix)) =
Gt(<t>(j,)). Consequently, for every s e HA^X^X), the element ^^(TyCxije""1)) is
conjugate to r^j^O:.**"1)) by the element n</>,(a)m~1 of the group Gt(*(y)). •

THEOREM 5.2. 5* w isomorphic to the fundamental group n(G, Ye).

PROOF. By the Bass-Serre theory, the group 5* is isomorphic to n(K, Ze). On the
other hand, n(G, Ye) is isomorphic to it{K, Ze) since (G, Ye) is conjugate isomorphic
to (AT, Ze) (see [3, Lemma 21, page 202]). Therefore, 5* is isomorphic to 7t(G, Ye).

•
We remark that the group action of the maximal subgroup on the corresponding

tree can be integrated into an inverse semigroup action of 5* on the forest X. The
Bass-Serre theory can be generalized to the class of inverse monoids acting on ordered
forests; an inverse monoid acting on an ordered forest is characterized as a fundamental
inverse monoid of a certain graph of inverse monoids and vice versa. See [12] for the
inverse monoid actions on ordered forests, fundamental inverse monoids and graphs
of inverse monoids.

6. Examples

EXAMPLE 6.1. Let S be an inverse semigroup. Let A, be an inverse subsemigroup
such that et € A, C e,Se, and E(At) = E(eiSej) for every i e I, where et 6 E(S).
Suppose that B, is an inverse subsemigroup of 5 such that et e fi, C e,Se, and
E(Bi) = E(eiSei) for every i e / . Let </>, be an isomorphism of A{ onto B, such that

for all / € E(Aj) for every i 6 / . It is easy to see that the graph of groups
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FIGURE 5. ^-structure of 5, A, and B,

(G, Ye) has the property that Ye is a bouquet, that is, a graph consisting of only one
vertex and several edges. It follows that each maximal subgroup of 5* is an HNN
extension of the maximal subgroup of 5.

EXAMPLE 6.2. Let B be the bicyclic monoid. Let (p be the identity mapping on
E{B). Let B* be the full HNN extension of B associated with (j>. We can conclude
that the group ^-class Bf of B* is a free group of infinite rank since the graph of
groups defined from B is just a bouquet with infinitely many edges such that every
vertex group is trivial and the fundamental group of such a graph of groups is a free
group generated by infinite generators.

EXAMPLE 6.3. Let 5 be a strong semilattice y(E, Se, p
e
e"J, where E is the w-chain,

https://doi.org/10.1017/S1446788700002639 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002639


[37] Locally full HNN extensions 271

that is, E = {e0, ex, e2,...} (with the order em < en if and only ifm > n), SCn isagroup
for every en e E and pe

e" : Sen -*• Sem is a transition homomorphism for en, em e E
with m < n. Let A be an inverse subsemigroup of 5 such that £ (5 ) = E(A). Let B
be an inverse subsemigroup of 5 such that E(B) = E(S) \ {e0}. Suppose that there
exists an isomorphism 0 of A onto B. Then it is easy to see that the locally full HNN
extension S* of S presented by

Inv(5, t | t~[at = <p{a) for every a e A, t~lt = eu tt~l = e0)

is a bisimple regular (^-semigroup, that is, a Reilly extension of a group. The maximal
subgroup containing e0 is isomorphic to the fundamental group of the graph of groups
(G, Yeo), where Yeo is a half chain, that is, a graph consisting of countably many vertices
vn and countably many edges yn with i(yn) = vn_i and t(yn) = vn for n = 1, 2, 3 , . . . .
Therefore, S* is a Reilly extension of the fundamental group n(G, Yeo) of the graph
of groups (G, Y^).

In the case that every Sfn is the trivial group, the fundamental group of the graph
of groups (G, Yeo) is trivial. Then, 5* is a Reilly extension of the trivial group, that is,
S* is the bicyclic semigroup.

EXAMPLE 6.4. Let S be the free Clifford semigroup on a set X. Let E be a free
semilattice on a set {ex | x e X}. For every ex (x € X), we let (/>x be the identity
mapping on the principal ideal Eex generated by ex. Clearly, (px is an isomorphism of
Eex onto itself. It is easy to see that the locally full HNN extension E* presented by

Inv(£, tx(x e X) | t~latx = <f>x(a) = a V a € Eex, t~ltx — txt~
l = ex Vx e X)

is isomorphic to S. Take an idempotent e from E. Then e = ex,eX2 • • • eXn for some
X\,x2,.. .xn e X such that JC,'S are distinct each other. We consider the graph of
groups (G, Ye). Clearly, the graph Ye is a bouquet with n edges since all <px are
identity mappings. Every vertex group is trivial since E is combinatorial. It follows
that the fundamental group of (G, Ye) is a free group of rank n. Therefore, the maximal
subgroup of the free Clifford semigroup containing the idempotent

e = eXx»^ • • • eXn = Xix;lx2x~l • --xnx;1

is a free group of rank n.

EXAMPLE 6.5. It is known that a universally E-unitary inverse semigroup is a locally
full HNN extension of a semilattice of idempotent rank zero ([17]). Hence, a maximal
subgroup is a fundamental group of the graph of groups (G, Ye), where every vertex
group G(v) is trivial. This implies that the fundamental group of the graph of group is
a free group. Hence, a maximal subgroup of a universally E-unitary inverse semigroup
is a free group. The rank of the maximal subgroup can be determined by the shape of
the graph Ye, in fact, the rank is given by the number of circuits in the graph Ye.
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