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The crystal structure of meglumine diatrizoate has been solved and refined using synchrotron X-ray
powder diffraction data and optimized using density functional theory techniques. Meglumine diatri-
zoate crystallizes in space group P21 (#4) with a = 10.74697(4), b = 6.49364(2), c = 18.52774(7) Å,
β = 90.2263(3), V = 1292.985(5) Å3, and Z = 2. Two different crystal structures, which yielded essen-
tially identical refinement residuals and positions of the non-H atoms, were obtained. The differences
were in the H atom positions and the hydrogen bonding. One structure was 123.0 kJ/mol/cell lower in
energy than the other and was adopted for the final description. The crystal structure consists of alter-
nating double layers of cations and anions along the c-axis. The hydrogen bonds link the cations and
anions into a three-dimensional framework. Each of the hydrogen atoms on the ammonium nitrogen
of the cation acts as a donor in a strong N–H⋯O hydrogen bond. One of these is to a hydroxyl group
of another cation, and the other is to the carboxylate group of the anion. Each of the amide nitrogen
atoms of the anion forms a strong N–H⋯O intermolecular hydrogen bond, one to a carbonyl and the
other to a carboxylate group. The powder pattern has been submitted to ICDD for inclusion in the
Powder Diffraction File™ (PDF®).
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I. INTRODUCTION

Meglumine diatrizoate (combined with diatrizoate sodium
and sold under the brand name Renografin-60 and
Gastrografin, among others) is a common colorless liquid con-
trast agent used in radiography, commonly of the urinary tract
and parts of the digestive system, and is administered orally or
intravascularly (Geng et al., 2018). The systematic name (CAS
Registry Number 131-49-7) is (2R,3R,4R,5S)-6-(methylammo-
nium)hexane-1,2,3,4,5-pentol 3,5-diacetamido-2,4,6-triiodo-
benzoate. For children and adults, 660 mg/ml of meglumine
diatrizoate is used with 100 mg/ml diatrizoate sodium as an
injection and is named MD-76R by the FDA (Dizendorf
et al., 2002; FDA.gov, 2017). There are a number of possible
side effects of MD-76R, including a decrease in urine produc-
tion or blood in urine, burning sensation and pain during urina-
tion, dizziness, increased heart rate, and others (Mayo Clinic,
2022). The effect of nephrotoxicity due to meglumine diatri-
zoate and other contrast agents has also been presented, particu-
larly in angioplasty and angiography (Berns, 1989). A two-
dimensional molecular diagram is shown in Figure 1.

A connectivity search for the meglumine cation in the
Cambridge Structural Database (Groom et al., 2016) yielded

two hits: meglumine (2R,4E)-7-chloro-4-(2-oxo-1-phenyl-3-
pyrrolidinylidene)-1,2,3,4-tetrahydro-2-quinolinecarboxylic
acid (Di Fabio et al., 2002; HUTMAK) and (2S,3R,4R,5R)-
2,3,4,5,6-pentahydroxy-N-methyl-1-hexanaminium 2-(2-
methyl-3-(trifluoromethyl)anilino)nicotinate (Cao et al.,
2003; ILIQID). Similar searches for diatrizoic acid and its
derivatives yielded crystal structures of the free acid
(Fucke et al., 2015; PUFJUX), several hydrates and solvates
(Fucke et al., 2012; ECEZOD, ECEZUJ, ECIBAV; Fucke
et al., 2015; PUFGUU, PUFGUU01, PUFJIL, PUFJUX,
PUFKEI, PUFKOS, PUFLAF, PUFLIN), several hydrated/
solvated sodium salts (Najib et al., 2017; CERRID,
CERROJ, CERRUP, CERSAW; Fucke et al., 2015;
PUFHOP, PUFHOP01), and several lanthanide salts.

Meglumine diatrizoate is claimed as a component of oral
contrast agents in US Patent 7,384,624 B2 (Raines, 2008) and
is described as useful in radiosurgery of tumors in US Patent
Application 2004/0006254 A1 (Weil and Morris, 2004). We
are unaware of any published X-ray powder diffraction data
on meglumine diatrizoate.

This work was carried out as part of a project (Kaduk
et al., 2014) to determine the crystal structures of large-volume
commercial pharmaceuticals and include high-quality powder
diffraction data for them in the powder diffraction file (PDF)
(Gates-Rector and Blanton, 2019).
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II. EXPERIMENTAL

Meglumine diatrizoate was a commercial reagent, pur-
chased from Sigma (Batch #SLCJ2134), and was used as-
received. The white powder was packed into a 1.5 mm diam-
eter Kapton capillary and rotated during the measurement at
∼50 Hz. The powder pattern was measured at 295 K at
beam line 11-BM (Antao et al., 2008; Lee et al., 2008;
Wang et al., 2008) of the Advanced Photon Source at
Argonne National Laboratory using a wavelength of
0.458963(2) Å from 0.5 to 50° 2θ with a step size of 0.001°
and a counting time of 0.1 s/step. The high-resolution powder
diffraction data were collected using 12 silicon crystal analyz-
ers that allow for high angular resolution, high precision, and
accurate peak positions. A mixture of silicon (NIST SRM
640c) and alumina (NIST SRM 676a) standards (ratio
Al2O3:Si = 2:1 by weight) was used to calibrate the instrument
and refine the monochromatic wavelength used in the experi-
ment. The beamline staff noted that the meglumine diatrizoate
specimen changed slightly during the measurement.

The synchrotron diffraction pattern was indexed using
N-TREOR (Altomare et al., 2013) on a high-quality primitive
monoclinic unit cell with a = 10.74782, b = 6.49318, c =
18.53081 Å, β = 90.206°, V = 1293.2 Å3, and Z = 2. A reduced
cell search of the Cambridge Structural Database (Groom
et al., 2016) with the chemistry C, H, I, N, and O only, yielded
no hits.

The meglumine cation was extracted from the previously
mentioned HUTMAK crystal structure usingMaterials Studio
(Dassault Systèmes, 2021), and saved as a *.mol2 file. This
file was converted to a Fenske–Hall Z-matrix using
OpenBabel (O’Boyle et al., 2011). The diatrizoate anion was
built using Spartan ‘18 (Wavefunction, 2020), saved as a
*.mol2 file, and converted using the same tools as for the cation.

The structure was solved using Monte Carlo simulated
annealing techniques as implemented in EXPO2014
(Altomare et al., 2013) and FOX (Favre-Nicolin and Černý,
2002). Two different structures (structures 1 and 2) were
obtained. Both had similar arrangements of heavy (non-H)
atoms, but different apparent H-bonding patterns. We refined
and optimized both structures. Although both structures
refined to similar residuals (Rwp = 0.04566 and 0.04556 and
goodness of fit (GOF) = 1.58 and 1.57 for structures 1 and
2, respectively), the (VASP) energy of structure 2 was
123.0 kJ/mol/cell lower in energy than that of structure 1, so
is the one primarily discussed here.

Rietveld refinement was carried out using general
Structure Analysis System (GSAS)-II (Toby and Von

Dreele, 2013). Only the 1.0–30.0° portion of the pattern was
included in the refinement (dmin = 0.887 Å). All non-H bond
distances and angles were subjected to restraints, based on a
Mercury/Mogul Geometry check (Bruno et al., 2004; Sykes
et al., 2011). The Mogul average and standard deviation for
each quantity were used as the restraint parameters. The
restraints contributed 1.7% to the final χ2. The hydrogen
atoms were included in calculated positions, which were recal-
culated during the refinement using Materials Studio (Dassault
Systèmes, 2021). The I atoms were refined anisotropically.
The Uiso of the heavy atoms was grouped by chemical similar-
ity. The Uiso for the H atoms was fixed at 1.3× the Uiso of the
heavy atoms to which they are attached. No preferred orienta-
tion model was included in the refinement. The peak profiles
were described using the generalized microstrain model
(Stephens, 1999). The background was modeled using a six-
term shifted Chebyshev polynomial, and a peak at 6.18° 2θ
to model the scattering from the Kapton capillary and an
amorphous component.

The final refinement of 141 variables using 29,047 obser-
vations and 76 restraints yielded the residuals Rwp = 0.0456
and GOF = 1.57. The largest peak (1.65 Å from O48) and
hole (1.47 Å from I38) in the difference Fourier map were
0.37(9) and –0.41(9) eÅ−3, respectively. The largest errors
in the difference plot (Figure 2) are in the shapes of some of
the low-angle peaks, perhaps reflecting the specimen changes
noted by the beamline staff.

Both structures of meglumine diatrizoate were opti-
mized (fixed experimental unit cell) with density functional
techniques using VASP (Kresse and Furthmüller, 1996)
through the MedeA graphical interface (Materials Design,
2016). The calculations were carried out on 16 2.4 GHz pro-
cessors (each with 4 Gb RAM) of a 64-processor HP
Proliant DL580 Generation 7 Linux cluster at North
Central College. The calculation used the generalized gradi-
ent approximation (GGA)-Perdew-Burke-Ernzerhof (PBE)
functional, a plane wave cutoff energy of 400.0 eV, and a
k-point spacing of 0.5 Å−1 leading to a 2 × 2 × 1 mesh,
and took ∼19 (structure 1) and 10 (structure 2) hours.
Single-point density functional calculations (fixed experi-
mental cell) and population analysis were carried out
using CRYSTAL17 (Dovesi et al., 2018). The basis sets
for the H, C, N, and O atoms in the calculation were those
of Gatti et al. (1994), and for I was that of Laun and
Bredow (2022). The calculations were run on a 3.5 GHz
PC using 8 k-points and the B3LYP functional and took
∼2.8 h.

Figure 1. The 2D molecular structure of meglumine diatrizoate.
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III. RESULTS AND DISCUSSION

Two different crystal structures of meglumine diatrizoate,
which yielded essentially identical refinement residuals and
positions of the non-H atoms, were obtained. The orientations
of four of the five hydroxyl groups (O1, O2, O3, and O4) in
the meglumine cation differ between the two structures
(Figure 3). Some of the atoms have different names in the two
structures. There is an additional complication in describing
the structures. The chemical connectivity of the anion exhibits

two-fold rotational symmetry, but the atom names are arbitrary.
Superposition of the anions of the two structures (Figure 4)
reveals that the structure solutions oriented the anions differ-
ently, so that chemically-equivalent atoms bear different atom
numbers in the two structures. The DFT calculations indicated
that structure 2 was significantly lower in energy, so is preferred
and the one on which this discussion concentrates.

The root-mean-square Cartesian displacement between
the Rietveld-refined and DFT-optimized cations is 0.084 Å

Figure 2. The Rietveld plot for the refinement of meglumine diatrizoate. The blue crosses represent the observed data points, and the green line is the calculated
pattern. The cyan curve is the normalized error plot, and the red line is the background curve. The vertical scale has been multiplied by a factor of 8× for 2θ > 12.0°.

Figure 3. Comparison of the structure of the cation in the correct (low-energy) structure (green) and the incorrect (high-energy) structure (purple). Image
generated using Mercury (Macrae et al., 2020).
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(Figure 5). The maximum deviation is 0.114 Å, at the
methyl group C7. The similar quantities for the anion are
0.053 Å (Figure 6) and 0.100 Å, at C47. The excellent
agreement is well within the normal range for correct

structures (van de Streek and Neumann, 2014) and provides
strong evidence that the refined structure is correct. The
asymmetric unit (with atom numbering) is illustrated in
Figure 7.

Figure 4. Comparison of the structure of the anion in the correct (low-energy) structure (green) and the incorrect (high-energy) structure (purple). Image
generated using Mercury (Macrae et al., 2020).

Figure 5. Comparison of the Rietveld-refined (red) and VASP-optimized (blue) structures of the meglumine cation. The rms Cartesian displacement is 0.084 Å.
Image generated using Mercury (Macrae et al., 2020).
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The best view of the crystal structure is down the short b-
axis (Figure 8). The crystal structure consists of alternating
double layers of cations and anions along the c-axis. The

hydrogen bonds (discussed below) link the cations and anions
into a three-dimensional framework. The mean planes of the
phenyl rings in the two anions in the unit cell are 3,3,10 and

Figure 6. Comparison of the Rietveld-refined (red) and VASP-optimized (blue) structures of the diatrizoate anion. The rms Cartesian displacement is 0.053 Å.
Image generated using Mercury (Macrae et al., 2020).

Figure 7. The asymmetric unit of meglumine diatrizoate, with the atom numbering. The atoms are represented by 50% probability spheroids/ellipsoids. Image
generated using Mercury (Macrae et al., 2020).
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3,-3,10. The Mercury Aromatics Analyser indicates only two
weak interactions with distances of 6.49 and 7.14 Å between
the phenyl rings of the anions.

All of the bond distances, bond angles, and torsion angles
fall within the normal ranges indicated by a Mercury Mogul
Geometry check (Macrae et al., 2020). Quantum chemical
geometry optimization of the isolated cation and anion (DFT/
B3LYP/6-31G*/water) using Spartan ‘20 (Wavefunction,
2022) indicated that the observed conformation of the cation

is close to a local minimum. The global minimum-energy con-
formation of the cation differs significantly (Figure 9), and is
41.7 kJ/mol lower in energy. The observed conformation of
the anion is very close to a local minimum. The global mini-
mum-energy conformation of the anion is 20.7 kJ/mol lower
in energy, and has a very different conformation (Figure 10).
The differences are mainly in the conformations of the amide
side chains. The differences indicate that intermolecular interac-
tions are important in determining the solid-state conformation.

Figure 8. The crystal structure of meglumine diatrizoate, viewed down the b-axis. Image generated using Diamond (Crystal Impact, 2022).

Figure 9. Comparison of the observed structure of the meglumine cation (blue) to the global minimum-energy conformation (orange). Image generated using
Mercury (Macrae et al., 2020).
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Analysis of the contributions to the total crystal energy of
the structure using the Forcite module of Materials Studio
(Dassault Systèmes, 2021) suggests that torsion distortion
terms dominate the intramolecular deformation energy.
The intermolecular energy is dominated by electrostatic

attractions, which in this force field analysis also include
hydrogen bonds. The hydrogen bonds are better analyzed
using the results of the DFT calculation.

Hydrogen bonds are prominent in the crystal structure
(Table I). Each of the hydrogen atoms on the ammonium

Figure 10. Comparison of the observed structure of the diatrizoate anion (blue) to the global minimum-energy conformation (orange). Image generated using
Mercury (Macrae et al., 2020).

TABLE I. Hydrogen bonds (CRYSTAL17) in the two structure solutions of meglumine diatrizoate.

H-Bond D–H, Å H⋯A, Å D⋯A, Å D–H⋯A, ̊ Overlap, e E, kcal/mol

N6–H20/19⋯O2N6–H19⋯O2 1.0501.048 1.7821.909 2.7772.921 156.7161.5 0.0680.065 6.05.9
N6–H19/20⋯O42/43N6–H20⋯O43 1.0751.057 1.5991.738 2.6672.784 171.4169.2 0.1000.078 7.36.4
N44/45–H52/53⋯O43/42N45–H53⋯O42 1.0541.046 1.6501.713 2.6842.734 166.0164.1 0.0850.078 6.76.4
N45/44–H53/52⋯O48/49N44–H52⋯O49 1.0411.041 1.8261.821 2.8492.855 166.5171.3 0.0730.070 6.26.1
O1–H14⋯O2O1–H14⋯O3 0.9940.992 1.7621.805a 2.7462.689 169.5146.7 0.0510.058 12.313.2
O2–H15⋯O4O2–H15⋯O43 0.9981.018 1.731a1.643 2.6192.660 146.1176.6 0.0690.071 14.414.6
O3–H16⋯O1O3–H16⋯O4 0.9821.002 1.979a1.687 2.8152.678 141.6169.2 0.0350.063 10.213.7
O4–H17⋯I39/40O4–H17⋯O2 0.9790.993 3.0811.805a 4.0102.721 158.9151.7 0.0150.063 13.7
O5–H18⋯O49/48O5–H18⋯O48 0.9940.995 1.7941.736 2.7732.712 167.3166.2 0.0590.062 13.313.6
C7–H22/21⋯O49/48 1.096 2.684 3.539 134.4 0.011
C7–H23⋯O3C7–H23⋯O3 1.0941.094 2.6772.465 3.3803.370 121.4139.3 0.0090.017
C8–H24/25⋯O1C8–H25⋯O1 1.0981.100 2.2812.280 3.3023.380 153.8178.1 0.0310.031
C8–H25/24⋯O43/42C8–H24⋯O42 1.0991.100 2.6592.553 3.6003.456 143.2138.6 0.0130.014
C9–H26⋯O42/43C9–H26⋯O43 1.1071.108 2.6852.523 3.4993.374 129.8132.7 0.0100.011
C10–H27⋯O43/42C10–H27⋯O42 1.1041.102 2.1902.265 3.2413.197 158.1141.0 0.0270.020
C11–H28⋯O5C11–H28⋯O5 1.1061.106 2.420a2.463a 2.9472.939 107.4104.3 0.0090.010
C13–H31⋯I40/39C13–H31⋯I39 1.1071.105 3.1222.956 4.0713.931 144.1147.3 0.0100.013

The top lines are structure 1 (incorrect/higher energy) and the bottom lines are structure 2 (correct/lower energy). XXX structure 1 to structure 2 equivalent names.
aIntramolecular.
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nitrogen N6 of the cation acts as a donor in a strong N–H⋯O
hydrogen bond. One of these is to a hydroxyl group O2 of
another cation, and the other is to the carboxylate O43 of
the anion. The energies of the N–H⋯O hydrogen bonds
were calculated using the correlation of Wheatley and
Kaduk (2019). Each of the amides N44 and N45 of the
anion forms a strong N–H⋯O intermolecular hydrogen
bond, one to a carbonyl O49 and the other to a carboxylate
O42. Thus, each O of the carboxylate acts as an acceptor in
an N–H⋯O hydrogen bond. There is a variety of O–H⋯O
hydrogen bonds between the hydroxyl groups of the cation.
Some are intramolecular to other hydroxyl groups, and others
are intermolecular, both to hydroxyl groups and to carboxyl
and carbonyl groups. The energies of the O–H⋯O hydrogen
bonds were calculated using the correlation of Rammohan
and Kaduk (2018). Several C–H⋯O hydrogen bonds also
contribute to the lattice energy. C–I⋯O halogen bonds
(Table II; Corradi et al., 2000; Wilcken et al., 2013) also
apparently contribute to the crystal energy.

The volume enclosed by the Hirshfeld surface of the
meglumine diatrizoate asymmetric unit (Figure 11,
Hirshfeld, 1977; Spackman et al., 2021) is 637.73 Å3,
98.64% of 1/2 the unit cell volume. The packing density is
thus fairly typical. The only significant close contacts (red in
Figure 11) involve the hydrogen bonds. The volume/non-
hydrogen atom is larger than normal, at 19.6 Å3, reflecting
the presence of the large I atoms.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866;
Friedel, 1907; Donnay and Harker, 1937) morphology sug-
gests that we might expect platy morphology for meglumine
diatrizoate, with {001} as the principal faces. No preferred

orientation model was necessary, indicating that preferred ori-
entation was not present in this rotated capillary specimen.

IV. DEPOSITED DATA

The powder pattern of meglumine diatrizoate from this
synchrotron data set has been submitted to ICDD for inclusion
in the PDF. The Crystallographic Information Framework
(CIF) files containing the results of the Rietveld refinement
(including the raw data) and the DFT geometry optimization
were deposited with the ICDD. The data can be requested at
pdj@icdd.com.
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