A Real-analytic Nonpolynomially Convex Isotropic Torus with no Attached Discs

Purvi Gupta

Abstract. We show by means of an example in \mathbb{C}^{3} that Gromov's theorem on the presence of attached holomorphic discs for compact Lagrangian manifolds is not true in the subcritical real-analytic case, even in the absence of an obvious obstruction, i.e., polynomial convexity.

A compact set $X \subset \mathbb{C}^{n}$ is called polynomially convex if, for every $z \notin X$, there is a holomorphic polynomial P such that $|P(z)|>\sup _{x \in X}|P(x)|$. It is known that no real compact n-dimensional submanifold $M \subset \mathbb{C}^{n}$ (without boundary) can be polynomially convex. In the particular case when the inclusion $t: M \rightarrow \mathbb{C}^{n}$ is maximally isotropic (or Lagrangian) with respect to $\omega_{\mathrm{st}}=i \sum_{1}^{n} d z_{j} \wedge d \overline{z_{j}}, i . e ., \iota^{*}\left(\omega_{\mathrm{st}}\right)=0$, Gromov [5] proved a stronger statement: there is a holomorphic disc attached to M; i.e., there is a nonconstant holomorphic map from the unit disc \mathbb{D} to \mathbb{C}^{n} that is continuous up to the boundary and maps $\partial \mathbb{D}$ into M. Gromov's result is not true in the subcritical case (when $\operatorname{dim} M<n$), as there are several examples of polynomially convex isotropic surfaces in \mathbb{C}^{3}. It is natural to ask whether Gromov's result holds in the subcritical case in the absence of polynomial convexity. For C^{∞}-smooth manifolds, this is known to be false due to an example in [6] of a nonpolynomially convex two-torus in \mathbb{C}^{3} that does not have any analytic variety attached to it. Since this torus is the graph of a real-valued function over the standard torus in \mathbb{C}^{2}, it is isotropic in \mathbb{C}^{3} with respect to $\omega_{\text {st }}$. No such examples are known in the real-analytic case.

In this note, we produce an explicit real-analytic nonpolynomially convex twotorus $T \subset \mathbb{C}^{3}$ that is isotropic with respect to ω_{st}, but has no holomorphic discs attached to it. In view of the example in [6], we note that our example does have a holomorphic annulus attached to it. The isotropicity of T implies that it is both totally real and rationally convex (see [4]). Examples of totally real tori with no attached holomorphic discs have been given by Alexander [1] and Duval-Gayet [3] in \mathbb{C}^{2}, but such examples cannot be rationally convex in view of Duval-Sibony (see [4, Theorem 3.1]) and Gromov's result. In the case of manifolds with boundary, Duval has constructed an example of a nonpolynomially convex Lagrangian surface in \mathbb{C}^{2} that has no attached discs (see [2] or [4]).

Theorem 1 There is a real-analytic two-torus in \mathbb{C}^{3} that is isotropic with respect to $\omega_{\text {st }}$, not polynomially convex, but has no holomorphic discs attached to it.

[^0]Proof Let $p(z, w):=1-4 z^{2}+4 w^{2}-z^{2} w^{2}$ and

$$
T:=\left\{(z, w, \operatorname{Re} p(z, w)) \in \mathbb{C}^{3}: z, w \in \partial \mathbb{D}\right\}
$$

Being the graph of a real-valued function on the torus $\mathbb{T}^{2}:=\partial \mathbb{D} \times \partial \mathbb{D}, T$ is isotropic with respect to $\omega_{\text {st }}$. We claim that T is not polynomially convex, and its polynomial hull (defined below) consists of T and an attached annulus.

Before we proceed, we fix some notation. If $A \subset \overline{\mathbb{D}}^{2}$ and $f: \overline{\mathbb{D}}^{2} \rightarrow \mathbb{C}$, then

$$
\mathcal{G}_{f}(A)=\left\{(z, w, f(z, w)) \subset \mathbb{C}^{3}:(z, w) \in A\right\}
$$

denotes the graph of $\left.f\right|_{A}$. If $\zeta \in \overline{\mathbb{D}}^{2}$, then $\mathcal{G}_{f}(\{\zeta\})$ is simplified to $\mathcal{G}_{f}(\zeta)$. For a compact $X \subset \mathbb{C}^{n}$, the polynomial hull of X is the set

$$
\widehat{X}=\left\{z \in \mathbb{C}^{n}:|P(z)| \leq \sup _{x \in X}|P(x)| \text { for all polynomials } P\right\} .
$$

Now, let $f(z, w):=\operatorname{Re}(p(z, w))$. In our notation, $T=\mathcal{G}_{f}\left(\mathbb{T}^{2}\right)$. We first consider a related torus $T_{1}:=\mathcal{G}_{\bar{p}}\left(\mathbb{T}^{2}\right)$. We will show that T_{1} has all the required properties except that it is not isotropic with respect to $\omega_{\text {st }}$. It will then follow from a simple observation that T is indeed the required example.

We claim that

$$
\begin{equation*}
\widehat{T}_{1}=T_{1} \cup \mathcal{G}_{p}(\mathcal{Z}) \tag{1}
\end{equation*}
$$

where $Z=\left\{(z, w) \in \overline{\mathbb{D}}^{2}: w^{2}=\frac{4 z^{2}-1}{4-z^{2}}\right\}$. Since $\left.p\right|_{z} \equiv 0, \mathcal{G}_{p}(Z)$ is isomorphic to z. Moreover, by a computation due to Rudin (see [8, proof of Theorem B]) Z is a connected finite Riemann surface of genus 0 with two boundary components in \mathbb{T}^{2}; i.e, $\mathcal{G}_{p}(Z)$ is an annulus attached to T_{1}.

To prove (1), we use a technique due to Jimbo (see [7]). Following the notation in [7], let

$$
\begin{aligned}
h(z, w) & =(z w)^{-2}\left(z^{2} w^{2}-4 w^{2}+4 z^{2}-1\right), \\
L & =(\overline{\mathbb{D}} \times\{0\}) \cup(\{0\} \times \overline{\mathbb{D}}), \\
V & =\left\{(z, w) \in \overline{\mathbb{D}}^{2} \backslash\left(\mathbb{T}^{2} \cup L\right): \overline{p(z, w)}=h(z, w)\right\} .
\end{aligned}
$$

Note that $h(z, w)=\overline{p(z, w)}$ on \mathbb{T}^{2}. Next, we compute

$$
\Delta(z, w)=\left|\begin{array}{ll}
\frac{\partial p}{\partial z}(z, w) & \frac{\partial p}{\partial w}(z, w) \\
\frac{\partial h}{\partial z}(z, w) & \frac{\partial h}{\partial w}(z, w)
\end{array}\right|=\left|\begin{array}{cc}
-8 z-2 z w^{2} & 8 w-2 z^{2} w \\
\frac{8}{z^{3}}+\frac{2}{z^{3} w^{2}} & -\frac{8}{w^{3}}+\frac{2}{z^{2} w^{3}}
\end{array}\right|
$$

to obtain $\Delta(z, w)=-16(z w)^{-3}(z-i w)(z+i w) p(z, w)$. Setting $q_{1}=(z-i w), q_{2}=$ $z+i w, q_{3}=p(z, w)$, and $Q_{j}:=\left\{(z, w) \in \mathbb{T}^{2}: q_{j}(z, w)=0\right\}, 1 \leq j \leq 3$, we have that

$$
\begin{align*}
& Q_{1}=\left\{(z, i z) \subset \mathbb{T}^{2}: z \in \partial \mathbb{D}\right\}, \tag{2}\\
& Q_{2}=\left\{(z,-i z) \subset \mathbb{T}^{2}: z \in \partial \mathbb{D}\right\}, \\
& Q_{3}=z \cap \mathbb{T}^{2}=\partial z
\end{align*}
$$

In [7], Jimbo showed that if $\Delta(z, w) \not \equiv 0$ on $\mathbb{D}^{2} \backslash L$ and

$$
J:=\left\{1 \leq j \leq 3: \varnothing \neq Q_{j} \neq \widehat{Q_{j}}, \widehat{Q_{j}} \backslash\left(\mathbb{T}^{2} \cup L\right) \subset V\right\} \neq \varnothing \text {, }
$$

then

$$
\overline{\mathcal{G}_{\bar{p}}\left(\mathbb{T}^{2}\right)}=\mathcal{G}_{\bar{p}}\left(\mathbb{T}^{2}\right) \cup \bigcup_{j \in J}\left\{(z, w, \overline{p(z, w)}):(z, w) \in \widehat{Q_{j}}\right\},
$$

and p restricts to a constant on each $\widehat{Q_{j}}, j \in J$. In view of (2), $J=\{3\}, \widehat{Q_{3}}=\mathcal{Z}$, and, since $\left.p\right|_{z}=\left.\bar{p}\right|_{z}=0$, (1) holds; i.e., there is only one annulus attached to T_{1}. Since \mathbb{T}^{2} is totally real and rationally convex, and \bar{p} is smooth, $T_{1}=\mathcal{G}_{\bar{p}}\left(\mathbb{T}^{2}\right)$ is totally real and rationally convex. Due to a result by Duval and Sibony (see [4]), T_{1} is isotropic with respect to some Kähler form on \mathbb{C}^{3}. But, $\iota^{*}\left(\omega_{\text {st }}\right) \neq 0$, where ι : $T_{1} \rightarrow \mathbb{C}^{3}$ is the inclusion map.

We now return to $T:=\mathcal{G}_{f}\left(\mathbb{T}^{2}\right)$. Note that the algebraic isomorphism

$$
F(z, w, \eta) \mapsto\left(z, w, \frac{1}{2}(\eta+p(z, w))\right)
$$

maps T_{1} onto T and fixes the variety $\mathcal{G}_{p}(\mathcal{Z})$. Thus, $\widehat{T}=F\left(\widehat{T_{1}}\right)=T \cup \mathcal{G}_{p}(\mathcal{Z})$. As there are no nontrivial holomorphic discs attached to an annulus, there are none attached to T.

References

[1] H. Alexander, Disks with boundaries in totally real and Lagrangian manifolds. Duke Math. J. 100(1999), no. 1, 131-138. http://dx.doi.org/10.1215/S0012-7094-99-10004-4
[2] J. Duval, Convexité rationnelle des surfaces lagrangiennes. Invent. Math. 104(1991), no. 3, 581-599. http://dx.doi.org/10.1007/BF01245091
[3] J. Duval and D. Gayet, Riemann surfaces and totally real tori. Comment. Math. Helv. 89(2014), 299-312. http://dx.doi.org/10.4171/CMH/320
[4] J. Duval and N. Sibony, Polynomial convexity, rational convexity, and currents. Duke Math. J. 79(1995), no. 2, 487-513. http://dx.doi.org/10.1215/S0012-7094-95-07912-5
[5] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds. Invent. Math. 82(1985), no. 2, 307-347. http://dx.doi.org/10.1007/BF01388806
[6] A. J. Izzo, H. S. Kalm, and E. F. Wold, Presence or absence of analytic structure in maximal ideal spaces. Math. Ann. 366(2016), no. 1-2, 459-478. http://dx.doi.org/10.1007/s00208-015-1330-9
[7] T. Jimbo, Polynomial hulls of graphs on the torus in \mathbb{C}^{2}. Sci. Math. Jpn. 62(2005), 335-342.
[8] W. Rudin, Pairs of inner functions on finite Riemann surfaces. Trans. Amer. Math. Soc. 140(1969), 423-434. http://dx.doi.org/10.1090/S0002-9947-1969-0241629-0
Department of Mathematics, University of Western Ontario, London, ON N6A 5B7
e-mail: pgupta45@uwo.ca

[^0]: Received by the editors March 8, 2017.
 Published electronically June 7, 2017.
 AMS subject classification: 32V40, 32E20, 53D12.
 Keywords: polynomial hull, isotropic submanifold, holomorphic disc.

