THE FRECHET DIFFERENTIAL OF A PRIMARY MATRIX FUNCTION

DAVID L. POWERS

Let X be a given complex matrix of order n. If $f(z)$ is analytic at the eigenvalues of X, one may define the primary matrix function $f(X)$ with stem function $f(z)$ by using any of several well-known methods: for instance, canonical forms, power series, or interpolating polynomials [9]. The Frechet differential of the primary matrix function f at X, evaluated for the "increment" H, is written $d f(X ; H)$ and is defined $[\mathbf{1}, \mathrm{p} .143]$ to be the unique linear function of H which satisfies

$$
\|f(X+H)-f(X)-d f(X ; H)\|=o(\|H\|)
$$

If H commutes with X it is known [6] that $d f(X ; H)=H f^{(1)}(X)$. (Throughout this paper, $f^{(k)}(X)$ denotes the primary matrix function with stem function $f^{(k)}(z)$.) Several attempts have been made to find a similarly satisfying expression for the differential under less restrictive conditions [7; 11], but these have had only partial success because of the reliance on canonical forms to represent $f(X)$. The results of these investigations and the important role of commutativity motivate the following.

Definition. The successive commutes, or inner derivatives, of H with respect to X are defined by: $H_{(0)}=H$ and $H_{(k)}=H_{(k-1)} X-X H_{(k-1)}$ for $k \geqq 1$.

In [12] Roth investigated commutes in detail, and some additional information will be found in [3].

As we shall be dealing with linear functions on matrices, it is convenient to use some notation and results of Neudecker [4]. Let the columns of the $n \times n$ matrix H be $h_{1}, h_{2}, \ldots, h_{n}$. We define an isomorphism between the $n \times n$ matrices and the $n^{2} \times 1$ matrices by vec $H=\left[h_{1}{ }^{T}, h_{2}{ }^{T}, \ldots, h_{n}{ }^{T}\right]^{T}$. It can be shown that

$$
\operatorname{vec}(X H)=(I \times X) \operatorname{vec} H, \quad \operatorname{vec}(H X)=\left(X^{T} \times I\right) \text { vec } H
$$

where \times denotes the Kronecker product. By induction, we find that vec $H_{(k)}=\left(X^{T} \times I-I \times X\right)^{k}$ vec H with the convention that the zeroth power of a square matrix is the identity.

In this notation, it is easy to prove that

$$
\begin{equation*}
e^{-X} H e^{X}=\sum_{n=0}^{\infty} \frac{1}{n!} H_{(n)} . \tag{1}
\end{equation*}
$$

Received February 14, 1972 and in revised form, June 12, 1972.

Proof. vec $\left(e^{-x} H e^{X}\right)=\left[\left(e^{X}\right)^{T} \times e^{-X}\right]$ vec H. But

$$
\left(e^{X}\right)^{T} \times e^{-X}=\exp \left(X^{T} \times I-I \times X\right)
$$

(See [4].) Thus,

$$
\begin{aligned}
\operatorname{vec}\left(e^{-X} H e^{X}\right) & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(X^{T} \times I-I \times X\right)^{n} \operatorname{vec} H \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \operatorname{vec} H_{(n)}
\end{aligned}
$$

A second identity which will be needed is

$$
\begin{equation*}
X^{r-1} H+X^{r-2} H X+\ldots+H X^{\tau-1}=\sum_{s=1}^{r}\binom{r}{s} X^{r-s} H_{(s-1)} \tag{2}
\end{equation*}
$$

The proof of (2) will be found in reference [3].
This latter formula, in fact, is the Frechet differential of the function $f(X)=X^{\tau}$. For, if $(X+H)^{r}-X^{r}$ is expanded, the terms which are linear in H are precisely the left-hand side of (2). From this point, we may pass to the first representation for a Frechet differential.

Theorem 1. Let $f(z)=\sum_{r=0}^{\infty} a_{r}(z-c)^{r}$ be analytic in a disk of centre c and radius R. Let $\rho+\sigma<R$, where ρ and σ are respectively the spectral radii of $X-c I$ and $X^{T} \times I-I \times X$. Then

$$
\begin{equation*}
d f(X ; H)=\sum_{s=1}^{\infty} \frac{1}{s!} f^{(s)}(X) H_{(s-1)} \tag{3}
\end{equation*}
$$

Proof. We may safely assume that $c=0$ and that a norm has been chosen to make $\|X\|=\rho+\epsilon<R-\sigma$. Define $g(x)=\sum_{r=1}^{\infty}\left|a_{r}\right| \xi^{\tau}$, and take H so small that this series converges at $\xi_{1}=\|X\|+\|H\|$. Then the series for $f(X+H)$ converges absolutely, and

$$
\begin{aligned}
f(X+H)-f(X) & =\sum_{r=1}^{\infty} a_{r}\left[(X+H)^{r}-X^{r}\right] \\
& =\sum_{r=1}^{\infty} a_{r}\left[X^{r-1} H+X^{r-2} H X+\ldots+H X^{r-1}\right]+o(\|H\|) .
\end{aligned}
$$

The remainder on the right, containing terms of order two or higher in H, is bounded in norm by $\|H\|^{2} g^{\prime \prime}\left(\xi_{1}\right)$. The differential is transformed formally, using (2), as follows:
(*)

$$
\begin{aligned}
d f(X ; H) & =\sum_{r=1}^{\infty} a_{r}\left[X^{r-1} H+X^{r-2} H X+\ldots+H X^{r-1}\right] \\
& =\sum_{r=1}^{\infty} a_{r} \sum_{s=1}^{r}\binom{r}{s} X^{r-s} H_{(s-1)} \\
& =\sum_{s=1}^{\infty} \sum_{r=s}^{\infty} a_{r}\binom{r}{s} X^{r-s} H_{(s-1)} \\
& =\sum_{s=1}^{\infty} \frac{1}{s!} f^{(s)}(X) H_{(s-1)}
\end{aligned}
$$

The rearrangement of the series is justified because, in the starred line, the inner sum is bounded in norm by $(s!)^{-1} g^{(s)}(\rho+\epsilon)$, and

$$
\lim \sup \left\|H_{(\nu-1)}\right\|^{1 / \nu} \leqq \sigma<R-\rho-\epsilon .
$$

A special case of (3) was discovered and used by Fer [2] in the iterative solution of the matrix equation: $\dot{U}=H(t) U, U(0)=I$. He sets $U=e^{x} V$, where

$$
X(t)=\int_{0}^{t} H(\tau) d \tau
$$

Since

$$
(d / d t) f(X)=d f(X ;(d / d t) X)=d f(X, H)
$$

(see [1]), the time derivative of e^{x} is found to be, using (1),

$$
\begin{aligned}
(d / d t) e^{X} & =e^{X} \sum_{s=1}^{\infty} \frac{1}{s!} H_{(s-1)} \\
& =H e^{X}-e^{X} \sum_{s=1}^{\infty} \frac{s}{(s+1)!} H_{(s)} .
\end{aligned}
$$

Thus the matrix $V(t)$ satisfies

$$
\dot{V}=\left[\sum_{s=1}^{\infty} \frac{s}{(s+1)!} H_{(s)}\right] V, V(0)=I
$$

in which the coefficient of V vanishes with t at $t=0$.
When H is required to satisfy some restriction relative to X, the hypotheses on the function can be relaxed, as follows.

Corollary 1 (Roth [12]). Let P be a nonsingular matrix such that $P^{-1} X P=$ $\left(\lambda_{1} I+N_{1}\right) \oplus \ldots \oplus\left(\lambda_{m} I+N_{m}\right)$, where $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$, and each N_{i} is nilpotent. If H is such that $P^{-1} H P=H_{1} \oplus \ldots \oplus H_{m}$, where H_{i} is of the same order as $\lambda_{i} I+N_{i}$, then $H_{(k)}=0$ for some k. If f is analytic at the eigenvalues of X, then

$$
d f(X ; H)=\sum_{s=1}^{k} \frac{1}{s!} f^{(s)}(X) H_{(s-1)}
$$

It is easily shown that $k \leqq 2 \mu-1, \mu$ being the greatest of the multiplicities of roots of the minimum equation of X. Thus for a diagonalizable $X, k=1$ and the assumption is that H commutes with X.

A different sort of restriction on H can also provide a simplified representation for the differential.

Lemma 1. Let f be analytic at the eigenvalues of X, and let $H=M X-X M$ for some M. Then

$$
d f(X ; H)=M f(X)-f(X) M
$$

Proof. Assume first that M is specified by

$$
\operatorname{vec} M=\left(X^{T} \times I-I \times X\right)^{+} \operatorname{vec} H
$$

where + denotes the Moore-Penrose generalized inverse [5], so that H and M are of the same order as H vanishes. Using the power series expansion for matrix exponentials, we find that

$$
\begin{aligned}
e^{-M}(X+H) e^{M} & =(I-M+-\ldots)(X+H)(I+M+\ldots) \\
& =X+H-M X+X M+o(\|H\|) \\
& =X+o(\|H\|)
\end{aligned}
$$

As $f(X)$ has a Frechet derivative [10], it satisfies a Lipschitz condition at X [1, p. 155]. Hence

$$
\begin{aligned}
f(X+H) & =e^{M} f\left(e^{-M}(X+H) e^{M}\right) e^{-M} \\
& =e^{M} f(X+o(\|H\|)) e^{-M} \\
& =e^{M} f(X) e^{-M}+o(\|H\|) .
\end{aligned}
$$

Again employing the power series expansion for the exponential, and isolating the first order terms, yields

$$
\begin{aligned}
f(X+H)-f(X) & =f(X)+M f(X)-f(X) M-f(X)+o(\|H\|) \\
& =M f(X)-f(X) M+o(\|H\|)
\end{aligned}
$$

Thus the lemma is proved for the special choice of M. In general, M may be expressed as $M=M_{1}+M_{2}$, where M_{1} is as above and M_{2} commutes with X; but then M_{2} also commutes with $f(X)$. Hence the lemma holds in general.

Roth proves a similar theorem under more restrictive hypotheses and by different means [12]. For stem functions analytic in a sufficiently large region, application of (3) gives an alternate proof.

An immediate application of the Lemma can be made to the approximation of $f(Z)$ if $Z=\left[z_{i j}\right]$ has distinct diagonal entries. Set $X=\operatorname{diag}\left\{z_{11}, \ldots, z_{n n}\right\}$, so $f(Z) \simeq f(X)+d f(X ; Z-X)=\left[\phi_{i j}\right]$. The elements $\phi_{i j}$ are given by $\phi_{i i}=f\left(z_{i i}\right)$ and, for $i \neq j$,

$$
\phi_{i j}=z_{i j} \frac{f\left(z_{i i}\right)-f\left(z_{j j}\right)}{z_{i i}-z_{j j}} .
$$

This approximation would have been useful in [13] where Z is a Ritz matrix and $f(z)=(z)^{-\frac{1}{2}} \tanh \left(z^{\frac{1}{2}}\right)$.

We shall now show that the two different restrictions on H mentioned in the Corollary and Lemma 1 are complementary.

Lemma 2. For any matrix H of order n, there exist matrices L and M satisfying: $H=L+M X-X M$, and $L_{(k)}=0$ for some k.

Proof. Let $P^{-1} X P=\left(\lambda_{1} I+N_{1}\right) \oplus \ldots \oplus\left(\lambda_{m} I+N_{m}\right)$ as in Corollary 1. Let $P^{-1} H P=\left[H_{i j}\right], P^{-1} L P=\left[L_{i j}\right], P^{-1} M P=\left[M_{i j}\right]$ be partitioned conformally with $P^{-1} X P$. In order that $L_{(k)}=0$ for some $k, L_{i j}=0(i \neq j)$ is necessary and sufficient [12]. The equations to be satisfied are thus:

$$
\begin{gather*}
M_{i j}\left(\lambda_{j} I+N_{j}\right)-\left(\lambda_{i} I+N_{i}\right) M_{i j}=H_{i j} \quad(i \neq j) \tag{4}\\
L_{i i}=H_{i i}-M_{i i} N_{i}+N_{i} M_{i i} . \tag{5}
\end{gather*}
$$

The submatrices $M_{i i}$ are, in fact, arbitrary but we shall take them to be 0 . Equation (4) determines $M_{i j}$ uniquely, since $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$ [4]. We also note that M is of the same order as H when H vanishes.

By combining the Lemmas and the Corollary, and using the linearity of the Frechet differential, one easily proves the principal representation below.

Theorem 2. Let $f(z)$ be analytic at the eigenvalues of X. Let $H=L+$ $M X-X M$, where $L_{(k)}=0$ for some k. Then

$$
d f(X ; H)=M f(X)-f(X) M+\sum_{s=1}^{k} \frac{1}{s!} f^{(s)}(X) L_{(s-1)}
$$

Several derivatives for functions of matrices have been defined by limit processes $[8 ; 10]$. It is also possible to obtain the Frechet differential via a limit.

Theorem 3. For sufficiently small $\epsilon \neq 0$, let $S=S(\epsilon)$ be defined by $S X-$ $X S+\epsilon S=H$, and let $f(z)$ be analytic at the eigenvalues of X. Then

$$
\begin{equation*}
d f(X ; H)=\lim _{\epsilon \rightarrow 0}\left[S f(X)-f(X) S+\epsilon \sum_{r=1}^{2 n-1} \frac{1}{r!} f^{(r)}(X) S_{(r-1)}\right] \tag{6}
\end{equation*}
$$

Proof. For $\epsilon \neq 0$ and sufficiently small, S exists and is unique. By substitution one verifies that

$$
S(\epsilon)=M-\sum_{m=1}^{2 n-1}(-\epsilon)^{-m} L_{(m-1)}+O(\epsilon)
$$

where L and M are as in Lemma 2, and that the quantity in brackets in (6) is $d f(X ; H)+O(\epsilon)$. The upper limit in the sums may be reduced if more is known about the matrix X.

The Frechet derivative, that is, the linear function $H \rightarrow d f(X ; H)$, may be realized as a matrix of order n^{2} if H and $d f(X ; H)$ are replaced by their images under "vec". We replace $X^{T} \times I-I \times X$ by Δ for brevity.

Theorem 4. Under the conditions of Theorem 1, 2, or 3, the Frechet derivative of f at X is

$$
\begin{equation*}
\sum_{r=1}^{\infty} \frac{1}{r!}\left[I \times f^{(\tau)}(X)\right] \Delta^{\tau-1} \tag{Th1}
\end{equation*}
$$

(Th 2)

$$
\begin{aligned}
{\left[f\left(X^{T}\right)\right.} & \times I-I \times f(X)] \Gamma \\
& +\sum_{r=1}^{k} \frac{1}{r!}\left[I \times f^{(\nu)}(X)\right] \Delta^{\nu-1} \Pi
\end{aligned}
$$

where Γ is any matrix having the property that $\Delta^{k+1} \Gamma=\Delta^{k}$ for some integer k, and $\Pi \equiv I-\Delta \Gamma$, or
(Th 3) $\lim _{\epsilon \rightarrow 0}\left\{\left[f\left(X^{T}\right) \times I-I \times f(X)\right.\right.$

$$
\left.\left.+\epsilon \sum_{r=1}^{2 n-1} \frac{1}{r!}\left(I \times f^{(r)}(X)\right) \Delta^{r-1}\right](\Delta+\epsilon I)^{-1}\right\} .
$$

References

1. J. Diendonné, Foundations of modern analysis (Academic Press, New York, 1960).
2. F. Fer, Résolution de l'équation matricielle $d V / d t=p V$ par produit infini d'exponentielles matricielles, Bull. de l'Acad. R. de Belg., Classe des Sciences 44 (1958), 818-829.
3. N. Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), 206-224.
4. H. Neudecker, A note on Kronecker matrix products and matrix equation systems, SIAM J. Appl. Math. 17 (1969), 603-606.
5. R. Penrose, On best approximate solutions of linear matrix equations, Proc. Cambridge Philos. Soc. 52 (1956), 17-19.
6. H. B. Phillips, Functions of matrices, Amer. J. Math. 14 (1919), 266-278.
7. D. L. Powers, On the differentials of certain matrix functions, Can. J. Math. 23 (1971), 282-286.
8. R. F. Rinehart, The derivative of a matric function, Proc. Amer. Math. Soc. 7 (1955), 2-5.
9. -_The equivalence of definitions of a matric function, Amer. Math. Monthly 62 (1955), 395-414.
10. -_ Extension of the derivative concept for functions of matrices, Proc. Amer. Math. Soc. 8 (1957), 329-335.
11. - The differential of a primary matrix function, Rend. Circ. Mat. Palermo 15 (1966), 209-215.
12. W. E. Roth, On k-commutative matrices, Trans. Amer. Math. Soc. 39 (1936), 483-495.
13. A. Z. Szeri and D. L. Powers, Pivoted plane pad bearings: a variational solution. Trans. ASME(F) 3 (1970), 466-471.

Clarkson College of Technology,
Potsdam, New York

