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THE FRECHET DIFFERENTIAL OF A PRIMARY 
MATRIX FUNCTION 

DAVID L. POWERS 

Let X be a given complex matrix of order n. If f(z) is analytic at the eigen­
values of X, one may define the primary matrix function f(X) with stem 
function f(z) by using any of several well-known methods: for instance, 
canonical forms, power series, or interpolating polynomials [9]. The Frechet 
differential of the primary matrix function/ at X, evaluated for the "increment'' 
H, is written df(X; H) and is defined [1, p. 143] to be the unique linear function 
of H which satisfies 

\\f(X + H) -f(X) -df(X;H)\\ = o(\\H\\). 

If H commutes with X it is known [6] that df(X; H) = Hf <D (X). (Through­
out this paper,/ (&) (X) denotes the primary matrix function with stem function 
/ W ( E ) . ) Several attempts have been made to find a similarly satisfying 
expression for the differential under less restrictive conditions [7; 11], but 
these have had only partial success because of the reliance on canonical forms 
to represent/(X). The results of these investigations and the important role 
of commutativity motivate the following. 

Definition. The successive commutes, or inner derivatives, of H with respect 
to X are defined by: H(0) = H and H(k) = H^-DX — XH^^D for k è 1. 

In [12] Roth investigated commutes in detail, and some additional informa­
tion will be found in [3]. 

As we shall be dealing with linear functions on matrices, it is convenient to 
use some notation and results of Neudecker [4]. Let the columns of the n X n 
matrix H be h\, h2, . . . , hn. We define an isomorphism between the n X n 
matrices and the n2 X 1 matrices by vec H = [hiT, h2

T
1 . . . , hn

T]T. It can be 
shown that 

vec(XH) = (I X X) vecH, vec(HX) = (XT X / ) vec if 

where X denotes the Kronecker product. By induction, we find that 
vec Hik) = (XT X I — I X X)k vec H with the convention that the zeroth 
power of a square matrix is the identity. 

In this notation, it is easy to prove that 

(1) e~xHex = E ^ j f f o o . 
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Proof. vec(e-xHex) = [(ex)T X e~x] vecH. But 

(ex)T X e~x = exp(XT X I - I X X). 

(See [4].) Thus, 
co 1 

:(e~xHex) = Y,Jl(XTXl-lXX)nvecH vec( 
OO 1 

vec Hi, 
tt=0 A*. 

A second identity which will be needed is 

(2) Xr-XH + Xr~2HX + . . . + HXr~l = V ( r )x r - sH ( s -
s=l \S/ 

(8-1) 

The proof of (2) will be found in reference [3]. 
This latter formula, in fact, is the Frechet differential of the function 

f(X) = X7'. For, if (X + H)T — XT is expanded, the terms which are linear 
in H are precisely the left-hand side of (2). From this point, we may pass to 
the first representation for a Frechet differential. 

THEOREM 1. Let f(z) = ]C?=o a,T{p — c)r be analytic in a disk of centre c and 
radius R. Let p + a < R, where p and a are respectively the spectral radii of 
X - eland XT X I - I XX. Then 

(3) dfÇX;H) ^ÈhfU)(X)Hc^. 

Proof. We may safely assume that c = 0 and that a norm has been chosen 
to make | |Z | | = p + e < R - a. Define g(x) = £ ? = i kr|£r, and take H so 
small that this series converges at £i = \\X\\ + \\H\\. Then the series for 
f (X + H) converges absolutely, and 

f(X + H)- f(X) = f ) aT[(X + H)T - Xr] 

= Ë aAX'-'H + Xr~2HX + ...+ HX'-1] + oQ \H\\). 
r=l 

The remainder on the right, containing terms of order two or higher in H, is 
bounded in norm by ||iï| |2g"(£i). The differential is transformed formally, 
using (2), as follows: 

df(X; H) = ] £ aAX^H + Xr~2HX + . . . + HXr_1J 
r=l 

r=l s=l \S/ 

CO CO 

(*) 

CO "I 

= 2~i Zif S (X)H(8-i). 

s=l r=s * ^ / 

~lSl 
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The rearrangement of the series is justified because, in the starred line, the 
inner sum is bounded in norm by (s!)-1g(s)(p + e), and 

lim sup| !#(„_!) H17" ^<r<R-p-e. 

A special case of (3) was discovered and used by Fer [2] in the iterative 
solution of the matrix equation: Û = H(t)U, U(0) = I. He sets U = exV, 
where 

X(t) = f H(r)dr. 

Since 
(d/dt)f(X) = df(X; (d/dt)X) = df(X,H) 

(see [1]), the time derivative of ex is found to be, using (1), 

OO 1 

(d/dt)ex = exZ~,H<s-v 

Thus the matrix V(t) satisfies 

T"=[S(7fï)!^]F'F(0) = 7 

in which the coefficient of V vanishes with t at t = 0. 
When H is required to satisfy some restriction relative to X, the hypotheses 

on the function can be relaxed, as follows. 
COROLLARY 1 (Roth [12]). Let P be a nonsingular matrix such that P~1XP = 

(\il + Ni) 0 . . . 0 (\mI + Nm)y where \ t j* Xj if i 9e j , and each Nt is 
nilpotent. If H is such that P~lHP = H\ 0 . . . 0 Hm, where Ht is of the same 
order as \J + Nu then H{k) = 0 for some k. If f is analytic at the eigenvalues 
of X, then 

df(X;H)=ityu)(X)HU-1). 
S=l S' 

It is easily shown that k ^ 2ju — 1, /x being the greatest of the multiplicities 
of roots of the minimum equation of X. Thus for a diagonalizable X, k = 1 and 
the assumption is that H commutes with X. 

A different sort of restriction on H can also provide a simplified representa­
tion for the differential. 

LEMMA 1. Let f be analytic at the eigenvalues of X, and let H = MX — XM 
for some M. Then 

df(X;H) = Mf(X) -f(X)M. 

Proof. Assume first that M is specified by 

vec M = (XT X I - I X X)+ vec H 
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where + denotes the Moore-Penrose generalized inverse [5], so that H and M 
are of the same order as H vanishes. Using the power series expansion for 
matrix exponentials, we find that 

e~M(X + H)eM = (I - M + - . . .)(X + H)(I + M + . . .) 
= X + H - MX + XM + o(\\H\\) 

= X + o(\\H\\)-
Asf(X) has a Frechet derivative [10], it satisfies a Lipschitz condition at X 
[1, p. 155]. Hence 

f(X + H) = eMf(e-M(X + H)eM)e~M 

= e»*f(X + o(\\H\\))e-* 

= e"f(X)e-M + o(\\H\\). 

Again employing the power series expansion for the exponential, and isolating 
the first order terms, yields 

f(X+H) ~f(X) = f(X)+Mf(X) -f(X)M-f(X)+o(\\H\\) 

= Mf(X) -f(X)M + o(\\H\\). 

Thus the lemma is proved for the special choice of M. In general, M may be 
expressed as M = Mi + M2l where M\ is as above and M2 commutes with X; 
but then M2 also commutes wi th / (X) . Hence the lemma holds in general. 

Roth proves a similar theorem under more restrictive hypotheses and by 
different means [12]. For stem functions analytic in a sufficiently large region, 
application of (3) gives an alternate proof. 

An immediate application of the Lemma can be made to the approximation 
of f(Z) if Z = [Zij] has distinct diagonal entries. Set X = diagj^n, . . . , znn}, 
so f(Z) C^LJ(X) + df(X;Z — X) = [0*J. The elements 4>tj are given by 
<t>a = f(zti) and, fori 7* j , 

, _ v f(zg) ~ f(zjj) 
Zu — Zjj 

This approximation would have been useful in [13] where Z is a Ritz matrix 
a n d / 0 ) = (2)-* tanh(z*). 

We shall now show that the two different restrictions on H mentioned in 
the Corollary and Lemma 1 are complementary. 

LEMMA 2. For any matrix H of order n, there exist matrices L and M satisfying: 
H = L + MX — XM, and L{1c) = 0 for some k. 

Proof. Let P^XP = (\J + NJ © . . . © (\mI + Nm) as in Corollary 1. 
Let P^HP = [Ht&P-iLP = [Li3],P-lMP = [Mfj] be partitioned con-
formally with P~lXP. In order that L&) = 0 for some k, Ltj = 0 (i 7^ j) is 
necessary and sufficient [12]. The equations to be satisfied are thus: 

(4) Mti(\,I + Nj) - (\J + Nt)Mtj = HiS (i * j), 

(5) Lit = Hu - MitNt + NtMit. 
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The submatrices Mu are, in fact, arbitrary but we shall take them to be 0. 
Equation (4) determines M a uniquely, since \ t ^ X̂  for i 7^ j [4]. We also 
note that M is of the same order as H when H vanishes. 

By combining the Lemmas and the Corollary, and using the linearity of 
the Frechet differential, one easily proves the principal representation below. 

THEOREM 2. Let f(z) be analytic at the eigenvalues of X. Let H = L + 
MX — XM, where L{k) = 0 for some k. Then 

df(X;H) = Mf(X) -f(X)M + ityu\X)Lu_». 

Several derivatives for functions of matrices have been defined by limit 
processes [8; 10]. It is also possible to obtain the Frechet differential via a 
limit. 

THEOREM 3. For sufficiently small e 9^ 0, let S = 5(e) be defined by SX — 
XS + eS = H, and let f(z) be analytic at the eigenvalues of X. Then 

(6) df(X;H) = lim \ Sf(X) -f(X)S + e Y, h (r)(X)5(r_J. 

Proof. For e ^ O and sufficiently small, S exists and is unique. By substitu­
tion one verifies that 

2 w - l 

S(e) = M - £ (-6)-mL(m_D + 0(e) 

where L and M are as in Lemma 2, and that the quantity in brackets in (6) 
is df(X;H) + 0(e). The upper limit in the sums may be reduced if more is 
known about the matrix X. 

The Frechet derivative, that is, the linear function H —> df(X; H), may be 
realized as a matrix of order n2 if H and df{X\ H) are replaced by their images 
under "vec". We replace XT X I — I X X by A for brevity. 

THEOREM 4. Under the conditions of Theorem 1, 2, or 3, the Frechet derivative 
of f at X is 

( T h l ) T,Z\llXfU)(X)]A<-\ 

(Th2) [f(XT)XI- IXf(X)]T 

+ EJ[^x/(")(i)]A"-1n 
where T is any matrix having the property that Afc+1T = Ak for some integer k, 
and II = I — AT, or 

lim \\ (Th3) l im i / ( r ) X / - / X / ( X ) 

+ « g JaX/ <r)(X))Ar"1] (A + el)'1}. 
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