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Abstract. Let (M, g(t)) be a compact Riemannian manifold and the metric g(t)
evolve by the Ricci flow. In the paper, we prove that the eigenvalues of geometric
operator −�φ + R

2 are non-decreasing under the Ricci flow for manifold M with some
curvature conditions, where �φ is the Witten Laplacian operator, φ ∈ C2(M), and R
is the scalar curvature with respect to the metric g(t). We also derive the evolution of
eigenvalues under the normalized Ricci flow. As a consequence, we show that compact
steady Ricci breather with these curvature conditions must be trivial.

2010 Mathematics Subject Classification. 53C21, 53C44.

1. Introduction. It is well-known that the eigenvalue problems have received a lot
of attention in various areas in mathematics. The eigenvalues of geometric operators
also have become a powerful tool in the study of geometry and topology of manifolds.
Recently, there occur many interesting results on the eigenvalue problems under
different geometric flows, especially the Ricci flow. In a seminal preprint [14], Perelman
introduced the so-called F-entropy functional and proved that it is non-decreasing
along the Ricci flow coupled to a backward heat-type equation. The non-decreasing of
the functional F implies the monotonicity of the first eigenvalue of −4� + R along the
Ricci flow. With his entropy and the monotonicity of the first eigenvalue, Perelman was
able to rule out non-trivial steady or expanding breathers on compact manifolds. In
[13], Ma obtained the monotonicity of the first eigenvalue of the Laplacian operator on
a domain with Dirichlet boundary condition along the Ricci flow. Cao [2] considered
the eigenvalues of −� + R

2 , showed that they are non-decreasing under the Ricci
flow for manifolds with non-negative curvature operator, and got a new proof of non-
existence for non-trivial steady Ricci solitons which had been proved by Hamilton [6, 7]
and Perelman [14]. Li got the monotonicity of eigenvalues of the operator −4� + kR
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and ruled out compact steady Ricci breathers by using their monotonicity [9]. Later,
Cao [3] also improved his own previous results and proved that the first eigenvalues
of −� + cR(c ≥ 1

4 ) are non-decreasing under the Ricci flow on the manifolds without
curvature assumption. Ling studied the first non-zero eigenvalue under the normalized
Ricci flow, gave a Faber–Krahn type of comparison theorem and a sharp bound [11],
and constructed a class of monotonic quantities on closed n-dimensional manifolds
[12]. Moreover, Zhao [16] got the evolution equation for the first eigenvalue of the
Laplacian operator along the Yamabe flow and gave some monotonic quantities under
the Yamabe flow. Guo and his collaborators [5] derived an explicit formula for the
evolution of the lowest eigenvalue of the Laplace–Beltrami operator with potential in
abstract geometric flows. The first author, Xu and Zhu [4] proved the monotonicity
of eigenvalues of −�φ + cR(c > 1

4 ) along the system of Ricci flow coupled to a heat
equation.

In this paper, we consider an n-dimensional compact Riemannian manifold M
with a time-dependent Riemannian metric g(t). (M, g(t)) is a smooth solution to the
Ricci flow equation:

∂

∂t
gij(t) = −2Rij(t). (1)

Let ∇ be the Levi–Civita connection on (M, g), � the Laplace–Beltrami operator, dν

the Riemannian volume measure, and dμ the weight volume measure on (M, g), i.e.,

dμ = e−φ(x)dν,

where φ ∈ C2(M). Then, the Witten Laplacian (also called symmetric diffusion
operator)

�φ = � − ∇φ · ∇

is a symmetric operator on L2(M, μ), and satisfies the following integration by parts
formula:

∫
M

(∇u,∇v)dμ = −
∫

M
�φuvdμ = −

∫
M

�φvudμ,∀u, v ∈ C∞
0 (M). (2)

When φ is a constant function, the Witten Laplacian operator is just the Laplace–
Beltrami operator. As an extension of the Laplace–Beltrami operator, many classical
results in Riemannian geometry asserted in terms of the Laplace–Beltrami operator
have been extended to the analogous ones on the Witten Laplacian operator. For
example, we can see these results ([10] and [15]). Inspired by Perelman [14] and Cao
[2], we study the eigenvalues of the geometric operator −�φ + R

2 under the Ricci flow
and the normalized Ricci flow. The purpose of this paper is to prove the monotonicity
of eigenvalues of the operator along the Ricci flow on compact Riemannian manifolds
under some curvature assumptions. As an application, we can prove that compact
steady Ricci breathers must be trivial.

The following theorem is our main result.

THEOREM 1.1. Let g(t), t ∈ [0, T), be a solution to the Ricci flow (1) on a compact
manifold Mn with non-negative curvature operator. Suppose that the Ricci curvature
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satisfies

|Rc| ≥ |∇∇φ|
for all times t ∈ [0, T), where | · | is the length of a two-tensor Sij which is defined by

|Sij| = √|Sij|2 =
√

SijSklgikgjl . Then, the eigenvalues of the operator

−�φ + R
2

are non-decreasing under the Ricci flow.

The rest of this paper is organized as follows. In Section 2, we will derive the
evolution equation of eigenvalues under the Ricci flow. In Section 3, we will prove
Theorem 1.1 using the evolution equation of eigenvalues under the Ricci flow. As
application, some corollaries will be obtained. In Section 4, we will derive the evolution
equation of eigenvalues under the normalized Ricci flow.

2. Evolution equation of eigenvalues. In this section, we establish the evolution
equation of eigenvalues of the geometry operator −�φ + R

2 under the Ricci flow.
Let (M, g(t)) be a compact Riemannian manifold with non-negative curvature

operator, and (M, g(t)), t ∈ [0, T) be a smooth solution to the Ricci flow equation (1).
Let λ be an eigenvalue of the operator −�φ + R

2 at time t0 where 0 ≤ t0 < T , and f the
corresponding eigenfunction, i.e.,

−�φf + R
2

f = λf, (3)

with the normalization ∫
M

f 2dμ = 1.

We assume that f (x, t) is a C1-family of smooth functions on M, and satisfies the
following condition:

d
dt

[∫
M

f 2dμ

]
= 0.

Hence, we have ∫
M

f [ftdμ + (f dμ)t] = 0, (4)

where ft = ∂f
∂t .

We also need to define a functional

λ(f, t) =
∫

M

(
−f �φf + R

2
f 2

)
dμ =

∫
M

(
−�φf + R

2
f
)

f dμ,

where f satisfies the equality (4). At time t, if f is the eigenfunction of λ, then

λ(f, t) = λ(t).
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Let us first derive the evolution equation of the above functional under the general
geometric flow.

LEMMA 2.1. Suppose that λ is an eigenvalue of the operator −�φ + R
2 , f is the

eigenfunction of λ at time t0, and the metric g(t) evolves by

∂

∂t
gij = vij,

where vij is a symmetric two-tensor. Then, we have

d
dt

λ(f, t)|t=t0 =
∫

M

(
vijfij − vijφifj + 1

2
∂R
∂t

f
)

f dμ +
∫

M

(
vij,i − 1

2
Vj

)
fjf dμ, (5)

where V = Tr(v).

Proof. The proof is only a direct computation. Notice that

∂

∂t
�φ = �φ

∂

∂t
− vij∇i∇j − 1

2
gkl(2(divv)k − ∇kV )∇l + vij∇iφ∇j.

Hence, we have

d
dt

λ(f, t) = d
dt

∫
M

(
−�φf + R

2
f
)

f dμ

=
∫

M

(
vijfij + 1

2
gkl(2vki,i − Vk)fl − vijφifj + 1

2
∂R
∂t

f
)

f dμ

+
∫

M

(
−�φft + R

2
ft

)
f dμ +

∫
M

(
−�φf + R

2
f
)

d
dt

(f dμ)

=
∫

M

(
vijfij − vijφifj + 1

2
∂R
∂t

f
)

f dμ +
∫

M

(
vij,i − 1

2
Vj

)
fjf dμ

+
∫

M

(
−�φf + R

2
f
)

[ftdμ + (f dμ)t] ,

where we used (2) in the last equality. At time t0, f is the eigenfunction of λ, i.e., the
equality (3) holds. Combining (3) with (4), the last term in the above evolution equation
vanishes. So we get

d
dt

λ(f, t)|t=t0 =
∫

M

(
vijfij − vijφifj + 1

2
∂R
∂t

f
)

f dμ +
∫

M

(
vij,i − 1

2
Vj

)
fjf dμ.

�
REMARK 2.1. In fact, Lemma 2.1 also gives us the evolution of eigenvalues. From

the above proof, it is easy to see that the evolution equation (5) does not depend on
the evolution equation of f , as long as f satisfies (4). Hence, we have

d
dt

λ(t) = d
dt

λ(f, t) (6)

for any time t, when f is the eigenfunction of λ at time t.
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Now we can calculate the evolution equation of eigenvalues of the geometric
operator under the Ricci flow. In Lemma 2.1, when the symmetric two-tensor vij =
−2Rij, we get the following result.

THEOREM 2.1. Let g(t), t ∈ [0, T), be a solution to the Ricci flow (1) on a compact
manifold Mn. Assume that there is a C1-family of smooth functions f (x, t) which satisfy

−�φf (x, t) + R
2

f (x, t) = λ(t)f (x, t),

and the normalization
∫

M
f (x, t)2dμ = 1.

Then, the eigenvalue λ(t) satisfies

d
dt

λ(t) =
∫

M

(
2Rijfifj − 2Rijφifjf + Rijφiφjf 2 + |Rc|2f 2 − Rijφijf 2) dμ. (7)

Proof. The proof also follows from a direct computation. Note that the evolution
of scalar curvature is

∂R
∂t

= �R + 2|Rc|2,

and

divRc = 1
2
∇R.

Using (6) and substituting vij = −2Rij into the equality (5), we have

d
dt

λ(t) =
∫

M

(
−2Rijfijf + 2Rijφifjf + 1

2
�Rf 2 + |Rc|2f 2

)
dμ.

Using integration by parts for the third term, we get

1
2

∫
M

�Rf 2dμ =
∫

M

(
2Rijfifj + 2Rijfijf − 4Rijφifjf + Rijφiφjf 2 − Rijφijf 2) dμ.

Thus, we can easily see that (7) holds from the above two formulas. �

3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1 using the
evolution equation of eigenvalues under the Ricci flow. Moreover, from Theorem
1.1, we obtain some corollaries including the study of compact steady Ricci breathers.

Proof of Theorem 1.1. Notice that the non-negativity of the curvature operator
is preserved by the Ricci flow [1], and this implies that the Ricci curvature is also
non-negative at all time t ∈ [0, T). Let λ(t) be the eigenvalue of −�φ + R

2 , and f (x, t)
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its eigenfunction with the normalization at time t. From Theorem 2.1, we have

d
dt

λ(t) =
∫

M

(
2Rijfifj − 2Rijφifjf + Rijφiφjf 2 + |Rc|2f 2 − Rijφijf 2) dμ

=
∫

M
Rijfifjdμ +

∫
M

Rij(f φi − fi)(f φj − fj)dμ +
∫

M
(|Rc|2 − Rijφij)f 2dμ

≥
∫

M
Rijfifjdμ +

∫
M

Rij(f φi − fi)(f φj − fj)dμ + 1
2

∫
M

(|Rc|2 − |φij|2)f 2dμ

≥ 0.

The last inequality follows from the non-negativity and lower boundedness of Ricci
curvature, i.e. by the non-negativity we can get Rijfifj ≥ 0 and Rij(f φi − fi)(f φj − fj) ≥ 0,
and the lower boundedness condition |Rc| ≥ |∇∇φ| in Theorem 1.1 implies the fact
that |Rc|2 − |φij|2 ≥ 0. Hence, λ(t) is non-decreasing under the Ricci flow. �

In fact, we use the non-negativity of the Ricci curvature in the above proof.
Therefore, our theorem will also hold if the Ricci curvature is non-negative, but in
general, the non-negativity of the Ricci curvature is not preserved unless the dimension
of M is two or three [6, 7]. In view of this, we have the following result in dimension
two and three.

COROLLARY 3.1.

(1) In dimension two, if a compact Riemannian manifold has non-negative scalar
curvature and R ≥ �φ, the eigenvalues of the operator

−�φ + R
2

are non-decreasing under the Ricci flow.
(2) In dimension three, if a compact Riemannian manifold has non-negative Ricci

curvature and |Rc| ≥ |∇∇φ|, the eigenvalues of the operator

−�φ + R
2

are non-decreasing under the Ricci flow.

REMARK 3.1. In Theorem 1.1, if we choose φ be a constant function on M, our
theorem reduce to Cao’s Theorem 1 in [2]. So our result is an extension version of
Cao’s.

COROLLARY 3.2 (Cao [2]). On a Riemannian manifold with non-negative curvature
operator, the eigenvalues of the operator

−� + R
2

are non-decreasing under the Ricci flow.

Next, we are ready to consider compact steady Ricci breathers. We recall the
definition of Ricci breathers, see original definition in [14] and [8].

DEFINITION 3.1. A metric g(t) evolving by the Ricci flow is called a breather, if
there exist times t1 < t2 and α > 0, such that the metrics αg(t1) and g(t2) differ only by
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a diffeomorphism; the cases α = 1, α < 1, α > 1 correspond to steady, shrinking, or
expanding breathers, respectively.

Using the monotonicity of eigenvalues in Theorem 1.1, we can rule out non-trivial
steady Ricci breathers on a compact manifold. We refer the reader to Theorem 3 in [2]
and Corollary 5.5 in [9] for analogous details of the proof.

COROLLARY 3.3. If there exists a C2 function φ on a compact steady Ricci
breather with non-negative curvature operator, such that the Ricci curvature satisfies
|Rc| ≥ |∇∇φ|, then the compact steady Ricci breather is Ricci-flat and φ is a constant.

REMARK 3.2. In fact, when φ is a constant, the condition of the Ricci curvature in
the above corollary is trivial. Cao had gotten a same result with non-negative curvature
operator [2]. A similar result without the curvature assumption was obtained by both
Ivey [8] and Li [9].

Ricci solitons are special Ricci breathers, for which the metrics g(t1) and g(t2) only
differ by a diffeomorphism and scaling for each pair of t1 and t2. Perelman [14] proved
that a steady breather is necessarily a steady soliton. Hence, we actually give a result
on compact steady Ricci solitons.

COROLLARY 3.4. If there exists a C2 function φ on a compact steady Ricci soliton with
non-negative curvature operator, such that the Ricci curvature satisfies |Rc| ≥ |∇∇φ|,
then the compact steady Ricci soliton is Ricci-flat and φ is a constant.

REMARK 3.3. A similar result without the curvature assumption was obtained by
both Hamilton [6, 7] and Perelman [14].

4. Eigenvalues under the normalized Ricci flow. In the last section, we come to
consider the normalized Ricci flow, i.e.,

∂

∂t
gij = −2Rij + 2r

n
gij, (8)

where r =
∫

M Rdν∫
M dν

is the average scalar curvature. In Lemma 2.1, if we evolve the metric

by the normalized Ricci flow, we can get the evolution of eigenvalues of the geometric
operator −�φ + R

2 under the normalized Ricci flow.

THEOREM 4.1. Let g(t), t ∈ [0, T), be a solution to the normalized Ricci flow (8) on
a compact manifold Mn. Assume that there is a C1-family of smooth functions f (x, t)
which satisfy

−�φf (x, t) + R
2

f (x, t) = λ(t)f (x, t),

and the normalization ∫
M

f (x, t)2dμ = 1.

Then, the eigenvalue λ(t) satisfies

d
dt

λ(t) = −2rλ
n

+
∫

M

(
2Rijfifj − 2Rijφifjf + Rijφiφjf 2 + |Rc|2f 2 − Rijφijf 2) dμ.
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Proof. We note that the evolution of scalar curvature is

∂R
∂t

= �R + 2|Rc|2 − 2r
n

R,

and

vij = −2Rij + 2r
n

gij.

The proof can be obtained from the same calculation with Theorem 2.1. So it is easy
to get the extra term − 2rλ

n . �
When M is a two-dimensional surface, r is a constant. We have the following

corollary.

COROLLARY 4.1. Assume that a two-dimensional compact Riemannian manifold has
non-negative scalar curvature and R ≥ �φ. If λ(t) is the eigenvalue of the geometric
operator −�φ + R

2 , then ertλ(t) is non-decreasing under the normalized Ricci flow.
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