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Abstract
We extend the theoretical framework of proof mining by establishing general logical metatheorems that allow for the
extraction of the computational content of theorems with prima facie “noncomputational” proofs from probability
theory, thereby unlocking a major branch of mathematics as a new area of application for these methods. Concretely,
we first devise proof-theoretically tame logical systems that allow for the formalization of proofs involving algebras
of sets together with probability contents, that is probability measures which are only assumed to be finitely additive.
Based on these systems, we provide extensions for the tame treatment of Lebesgue integrals on probability contents
as well as 𝜎-algebras and associated probability measures, all via intensional approaches. All these systems are
then shown to be amenable to proof-theoretic metatheorems in the style of proof mining which guarantee the
extractability of effective and tame bounds from large classes of ineffective existence proofs in probability theory.
Moreover, these extractable bounds are guaranteed to be highly uniform in the sense that they will be independent
of all parameters relating to the underlying probability space, particularly regarding events or measures of them. As
such, these results in particular provide the first logical explanation for the success and the observed uniformities of
the previous ad hoc case studies of proof mining in these areas and further illustrate their extent. Lastly, we establish
a general proof-theoretic transfer principle that allows for the lift of quantitative information on a relationship
between different modes of convergence for sequences of real numbers to sequences of random variables.

1. Introduction

One of the fundamental driving questions of proof theory is the following: What is the computational
content of a mathematical theorem, and how can it be exhibited? Proof mining, which emerged as a sub-
field of mathematical logic in the 1990s through the work of Ulrich Kohlenbach and his collaborators,1
aims at answering that question by extracting this computational content from theorems with proofs as
they are found in the mainstream mathematical literature. This is a nontrivial task, in particular as such
proofs are prima facie noneffective, involving both classical logic as well as various noncomputational
(set-theoretic) principles. However, backed by a logical apparatus relying on the utilization of various
methods from proof theory like functional interpretations and majorizability, the program of proof min-
ing has had great success in various areas of mathematics, in particular regarding (nonlinear) analysis
and optimization (see in particular the recent surveys [27, 28]).

Two areas that proof mining has previously only touched upon briefly are the fields of measure
theory in general and probability theory in particular. Concretely, we refer to the works [1, 2, 3] which

1Historically, proof mining has its roots in Kreisel’s program of the “unwinding of proofs” [33, 34]. We refer to [26] for a
comprehensive monograph on proof mining and its applications until 2008, and to the survey article [31] for details on the earlier
development of proof mining.
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are essentially the only proof mining case studies in these areas preceding this work. From a practical
perspective, this diffidence of proof mining regarding these areas is at least partially due to the fact
that they are so far not substantiated by underlying logical methods as other areas of applications for
proof mining are. This absence of a firm proof-theoretic foundation is largely due to a range of logical
difficulties inherently present in the context of areas strongly reliant on set-theoretic methods, as is
precisely the case with measure and probability theory. In any case, this lack of such a formal approach
to these areas also renders the previous applications, to a certain degree, ad hoc.

It is the aim of this paper to extend the current logical methods used in proof mining as to render
them applicable to large classes of proofs from probability theory, in particular so that they allow for
a logical explanation of the success of the previous case studies mentioned before (as well as of the
various properties of the extracted content).

1.1. The logical foundations of proof mining

The fundamental logical “substrates” of the proof mining program are the so-called general logical
metatheorems.2 These use well-known proof interpretations like Gödel’s functional interpretation [13],
negative translations (see, e.g., [36]), and their extensions3 to provide a general result that quantifies and
allows for the extraction of the computational content of large classes of theorems from their proofs.
Furthermore, these proofs may involve classical logic and various noncomputational principles. In that
way, proof mining, as substantiated by these metatheorems, has led to hundreds of applications in the
last decades.

A crucial innovation in the techniques underlying these logical metatheorems was introduced by
Kohlenbach in [25], marking the “modern age” of proof mining: The metatheorems for proof mining
preceding [25] were based on “pure” systems for arithmetic in all finite types (see, e.g., [26, 60]) and as
such were restricted in their expressivity to dealing with spaces and structures that were representable
as Polish metric spaces in the sense of Baire space (and thus separable). The paradigm first proposed
in [25] was to extend the language of the underlying systems with additional abstract base types which,
together with additional constants and governing axioms, could be used to talk about much larger
and broader classes of spaces and objects on them beyond merely representable ones.4 The class of
spaces and objects treated in this fashion has grown since then to a rather sizable amount, ranging from
fundamental examples like general (nonseparable) metric, hyperbolic, CAT(0), Banach and Hilbert
spaces to much more involved objects like R-trees, 𝐿 𝑝-spaces, the dual of a (nonseparable) Banach
space as well as monotone operators and nonlinear semigroups, among many others.

Further, the approach to represent various classes of spaces via abstract types has, together with an
ingenious combination due to Kohlenbach (see the discussions in Section 8 later on for further details and
references on this) of Gödel’s functional interpretation with (a suitable extension of) Howard’s notion of
majorizability [19], resulted in logical metatheorems that, beyond the extractability of effective bounds
from noneffective existence proofs, guarantee a high degree of uniformity of the respective data. These
perspectives of using abstract types to represent general spaces, together with the use of notions of
majorizability to induce uniformities, are also fundamental to the present paper.

1.2. An abstract approach to probability theory

In this paper, we follow a novel abstract approach towards a treatment of various fundamental notions
from probability theory to avoid the range of issues which are present a priori in that context, as briefly

2Examples of such logical metatheorems for proof mining can, for example, be found in [10, 12, 16, 25, 26, 30, 37, 38, 49, 50,
51, 52, 56].

3For example, other proof interpretations used in proof mining include Kreisel’s modified realizability interpretation [33] for
the treatment of semi-constructive proofs, monotone variants of the Dialectica interpretation [23] to deal with the extraction of
computable bounds from proofs or the related bounded functional interpretation [11].

4Whether a class of spaces or objects can be treated in such a context ultimately depends on the uniformity and complexity of
the axioms describing said class. This will be discussed in more detail later in this paper.
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mentioned before. Namely, already the most fundamental notions from probability like countable unions
of measurable sets or 𝜎-additive measures require the use of proof-theoretically strong comprehension
principles to deal with the high quantifier complexity inherent in their defining axioms. For example,
the existence of countable unions can be rather immediately recognized as a type of Σ1-comprehension
principle while the 𝜎-additivity of a measure is likewise a strong existence property as it immediately
implies various limit theorems for probabilities. Now, while this strength might be realized in extreme
cases, the practice of probability theory suggests that in many situations, in particular where these
objects are only discussed in an “abstract” way, theorems from probability theory can be given compu-
tational solutions with low complexity. An approach towards extractive proof theory based on a direct
specification of these objects and notions would hence distort the complexity of bounds extracted from
proofs in these situations.

We here provide a proof-theoretic approach which characterizes situations where these notions are
indeed inherently “tame” in the sense that, although in principle being subject to well-known Gödelian
phenomena, their mere presence and abstract use do not contribute to the strength of extractable bounds.5
For that, we first focus on so-called probability contents (also called charges), that is, evaluations of sets
which behave like a measure but are only finitely additive. This absence of the strong requirement of
𝜎-additivity then also allows us to, at first, lift the restriction of the closure under countable unions of
the space of events, so that we only consider these mappings to operate on (Boolean) algebras of sets
(also called fields). In fact, these contents on algebras form a well-studied part of modern probability
and measure theory with a rich theory and, as, for example, highlighted in the seminal book by K.P.S.
Bhaskara Rao and M. Bhaskara Rao [6] on general (that is not necessarily [0, 1]-valued) contents, they
are in a way “more interesting, more difficult to handle, and perhaps more important than countably
additive ones” (which, as a statement, is attributed to Bochner in the foreword of [6]).

To formally approach probability contents on algebras, we follow a so-called intensional approach,
that is, we fundamentally employ new base types and constants to provide an abstract access to the
involved objects instead of relying on particular representations. Concretely, over a base theory of
arithmetic in all finite types, we use new abstract types to provide a quantifier-free access to the base set
of the content space and the algebra of events over this set and employ constants utilizing these types
to provide an abstract access to the related set-theoretic operations and the content. These new types
and constants are then governed by admissible axioms, that is axioms of low computational strength,
which simply describe the fundamental properties of these objects instead of extensionally specifying
their precise structure through any kind of coding.

We then utilize this base system for contents on algebras to define extensions which allow us to
treat countably infinite unions and hence to provide access to the theory of 𝜎-algebras and associated
𝜎-additive probability measures. Again, our treatment is intensional here, to avoid the inherent diffi-
culties with infinite unions laid out before. Concretely, we approach infinite unions by adding a novel
constant to the underlying system that provides a direct and abstract access to them as an operator as-
sociating a new measurable set, representing the union, with a sequence of measurable sets. However,
instead of specifying that the resulting values indeed represent the unions in question through the strong
associated (comprehension-type) axiom, which prompted us to consider probability contents on alge-
bras in the first place, we only specify that it “behaves like” a union through a combination of admissible
axioms and rules. Further, we provide a tame approach to the space of bounded and Borel-measurable
functions to introduce the Lebesgue integral (already in the context of probability contents), similarly
an object that relies on strong comprehension principles in its classical formulation. Also here, we
opt for an intensional specification which, instead of describing said objects explicitly and completely,
axiomatizes a general structure just adhering to some essential properties.

In that way, we arrive at suitable systems for probability contents on algebras of sets, and at various
extensions of those systems for these other fundamental notions from probability theory. All of these we

5This phenomenon is referred to as “proof-theoretic tameness” in the work of Kohlenbach [29], see also [40, 41] for related
discussions of such phenomena.
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then endow with corresponding metatheorems on the extraction of computational bounds in the style of
proof mining, based on (a monotone variant of) Gödel’s functional interpretation.

These metatheorems thereby provide a formal proof-theoretic perspective on how an abstract use of
the central notions of probability theory, now formally characterized through our intensional approach,
does not (artificially) contribute to the strength of extractable bounds. Concretely, the metatheorems
formally guarantee that the complexity of the extractable information depends only on (and can be a
priori bounded in terms of) the complexity of the principles used in the corresponding proof. In that
way, while the main base system taken in this paper is actually one that does contain large amounts
of comprehension (to illustrate the potential strength of systems which are amenable to proof mining
methods), the approach to the various objects from probability theory taken here does not rely on these
strong principles at all, as motivated before, and thus can also immediately be developed over suitably
weak subsystems (as, e.g., the collection of systems introduced in [24] based on the Grzegorczyk
hierarchy [15]) where most of the mathematics discussed here can be similarly carried out but where
then bounds of correspondingly low complexity could be guaranteed. In that way, the metatheorems
established here indeed provide the right background to formally elucidate the extent of the phenomenon
of proof-theoretic tameness for probability theory, which as discussed in detail before, was one of the
main motivations for their design.

Beyond this tameness, one of the most crucial features of the new metatheorems presented in this
paper is that they guarantee a high uniformity of the extracted content, in particular that it will be
independent of the measure, the underlying set, and the algebra. As in the case of the first modern
metatheorems mentioned before, this relies on a specific extension of the notion of majorizability due
to Howard, which in our case utilizes the probability content (or measure) to provide a corresponding
notion of majorizability for the new abstract types. In particular, we want to note that this is the first time
in proof mining that an extension of Howard’s majorizability notion to abstract spaces is utilized that
does not rely on any metric structure of the underlying spaces. In that way, the present metatheorems
provide the first concrete logical explanation of the uniformities of extractable bounds observed in the
previously mentioned proof mining case studies, as will be discussed further later on (see in particular
Section 1.4).

1.3. Related work

The present approach to proof mining and probability theory is, in particular, to be distinguished from
previous work on logical aspects of (quantitative) probability theory. On the proof-theoretic side, the
main preceding work is that by Kreuzer [35] on extracting computational content from proofs in measure
theory. This approach, however, relies on strong forms of comprehension for treating measure spaces
(represented via a specific coding), resulting in a rather restricted formal theory with a more limited
scope of analyzable theorems, and which further does not guarantee any of the uniformity features for
the quantitative information extracted thereby, in contrast to the present results. Outside of proof theory,
finitizations of concepts from probability theory that enjoy similar uniformities as the ones considered
here have also been obtained using tools from model theory, particularly ultraproducts [4, 8, 14].
However, these works differ from the present one in both method and scope. The first crucial difference
is that the proof-theoretic metatheorems presented here actually provide a method for extracting the
uniform quantitative information which the model-theoretic approach can only infer the existence of.
Beyond that, as already commented on before, in the present approach, the complexity of that information
can be gauged beforehand based on the principles used in the proof, and the proof-theoretic tameness
of that information can be guaranteed thereby. Lastly, the model-theoretic approach is essentially fixed
to focus on convergence statements and uniformities relating to their so-called metastable formulations.
In contrast, the proof-theoretic approach presented here does not have that limitation (which has a
crucial impact on the range of possible applications as will also be discussed again in Section 1.4).
These facts crucially separate our work from the model-theoretic approach. Nevertheless, the model-
theoretic approaches are certainly not subsumed by our work but rather complementary. For one, the
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model-theoretic approaches to uniformities of rates of metastability in probability theory only rely on the
truth of a statement, while our proof-theoretic results rely on the provability of the underlying theorem
in an (albeit very strong) underlying theory. Also, we want to highlight that in particular the approach by
Dueñez and Iovino [8] seems to rely, upon a closer inspection, on rather similar ideas for approaching
some of the initial objects in question (e.g., by effectively treating probability contents on algebras
instead of measures on 𝜎-algebras and treating these underlying spaces with their operations as abstract
entities), a fact that illustrates the apparent similarity of the problems that both the proof-theoretic
and the model-theoretic approaches to these types of questions face and which in particular further
highlights the naturalness of the approach followed here. However, our approach starts to crucially differ
also conceptually instead of just methodologically from the work in [8] in the way that infinite unions
and integration are treated in our systems and in the way that the uniformities of associated (extracted)
bounds are guaranteed.

1.4. Applications, case studies, and extensions

Besides these logical considerations, the applications of the present metatheorems to probability theory
are arguably the most important consequence of the present work. We hence use the last two sections
of this paper to substantiate the applicability of the logical metatheorems introduced here.

At first, we outline in detail how the quantitative analysis of Egorov’s theorem as presented in the
seminal case study for proof mining in measure theory from [2] formalizes in our systems. Thereby,
as mentioned before, we also provide the first logical explanation of the uniformities of the bounds
extracted therein.6

Furthermore, the analysis of the results from [2] provided later highlights that these remain true for
probability contents. This therefore illustrates that the notions and proofs produced in the work [2],
by following the finitary perspective of proof mining, allow for a lift of the underlying convergence
result to the theory of contents, a qualitative result that complements the quantitative results produced
in [2] in the form of a corresponding rate. In that way, this points to an apparent empirical phenomenon
which we want to highlight here: Finitary quantitative variants of notions and results from the theory of
probability measures, as suggested by proof mining, seem to provide analogous versions suitable for the
theory of probability contents. This view is largely corroborated by the further case studies developed
since this work (as discussed below). Further, and more generally, these results thereby also highlight
the naturalness of the theory of contents as an underlying medium for developing a logical account
of probability theory in the sense of proof mining and fuel our confidence that already this system
for probability contents will provide a suitable base for proof mining developments in the context of
probability theory in the future. In that way, the fundamental relevance of (probability) contents, relating
to the statement by Bochner quoted above, is essentially rediscovered by the proof-theoretic approach
presented in this paper.

As another application of our novel logical approach, we establish a general so-called proof-theoretic
transfer principle that allows for a lift of computational information on the relation between modes
of convergence of sequences of real numbers to sequences of random variables. These results thereby
provide a formal footing for this type of strategy, which is rather abundant in probability theory and
in particular features in some recent case studies on proof mining and probability theory by the first
author [43].

Besides these examples of application discussed here, the applicability of the systems presented in
this paper is further substantiated by the fact that they explain the previously mentioned application [1]
preceding this work as well as the very recent works in laws of large numbers [42, 43], asymptotic be-
havior of stochastic processes [45, 47], and stochastic optimization [44, 46, 53] (along with forthcoming

6This is in particular to be compared with the work by Dueñez and Iovino [8] where a model-theoretic account of the uniformities
of a quantitative variant of the dominated convergence theorem, partially akin to the results of [2], is given. These considerations
of [8], however, avoid Egorov’s theorem and with that the central object of study in [2] by which their quantitative version of the
dominated convergence theorem is established therein.
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work by the authors together with Thomas Powell) as instances of the present methodology. In particular,
in the context of these recent works, the extractive proof-theoretic perspective of this work was crucial
for obtaining the respective results. The growing number of case studies thereby in particular empirically
illustrates that the present abstract approach indeed has a rather broad applicability, as hoped for initially.

Beyond that, the present work lends itself both to further theoretical investigations on the extension of
proof mining methods to further notions from probability and measure theory like Bochner integrals and
martingales, among many others, as well as to substantiate and carry out many further (and potentially
much more sophisticated) applications of proof mining in this area beyond those already mentioned. In
particular, we want to mention that most ideas developed here could be extended, mutatis mutandis, to
general finite contents and measures.

2. Preliminaries

The basic system that we rely on is the system A𝜔 = WE-PA𝜔 +QF-AC+DC for classical analysis in all
finite types as commonly used in proof mining, formalized via (a weakly extensional variant of) Peano
arithmetic in all finite types together with a few choice principles (see, e.g., [25] where this notation
for the system was, presumably, first introduced). As all systems introduced here will be extensions of
this system A𝜔 , we in this section sketch the essential features relevant for this paper. For any further
details, we refer to the works [26, 60].

Here, we follow the definition of weakly extensional Peano arithmetic in all finite types WE-PA𝜔

as, for example, given in [26] (see also [60]) and, in that way, we do not recall all the defining features
WE-PA𝜔 here and only focus on the four main aspects which are relevant in detail for this paper. In
general, we denote function types using the bracket notation used in [26], that is, 𝜌(𝜏) is the type of
functions that map objects of type 𝜏 to objects of type 𝜌, and we use T to denote the set of all finite
types as usual, that is,

0 ∈ 𝑇, 𝜌, 𝜏 ∈ 𝑇 → 𝜌(𝜏) ∈ 𝑇.

As usual, we denote pure types by natural numbers by setting 𝑛 + 1 := 0(𝑛). The four central properties
of WE-PA𝜔 that we need here are that, for one, the only primitive relation is equality at type 0 (denoted
by =0) and higher-type equality is only defined as an abbreviation via recursion with

𝑥𝜏 ( 𝜉 ) =𝜏 ( 𝜉 ) 𝑦
𝜏 ( 𝜉 ) := ∀𝑧 𝜉 (𝑥𝑧 =𝜏 𝑦𝑧).

For another, WE-PA𝜔 crucially does not contain the full extensionality principles

∀𝑥𝜏 (𝜌) , 𝑦𝜌, 𝑦′𝜌
(
𝑦 =𝜌 𝑦

′ → 𝑥𝑦 =𝜏 𝑥𝑦
′
)
. (E𝜌,𝜏)

Instead, it only contains the quantifier-free extensionality rule

𝐴0 → 𝑠 =𝜌 𝑡

𝐴0 → 𝑟 [𝑠/𝑥𝜌] =𝜏 𝑟 [𝑡/𝑥𝜌]
(QF–ER)

where 𝐴0 is a quantifier-free formula, s and t are terms of type 𝜌 and r is a term of type 𝜏. This lack
of full extensionality is essential for establishing results on program extraction from classical proofs as
the full extensionality axiom is not admissible in the context of the Dialectica interpretation, the main
tool used later extract bounds from (classical) proofs. However, the extensionality rule is admissible in
that context and so, from an applied perspective, serves the much-needed purpose of reintroducing an
admissible fraction of extensionality back into the system to be practically as flexible as possible when
dealing with proofs from the literature. We refer to [26] for a detailed discussion on this.

Further, WE-PA𝜔 contains constants 𝑅𝜌 for simultaneous primitive recursion in the sense of Gödel
[13] and Hilbert [18] as governed by the axioms
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(𝑅𝑖)𝜌0𝑦𝑧 =𝜌𝑖 𝑦𝑖
(𝑅𝑖)𝜌 (𝑆𝑥)𝑦𝑧 =𝜌𝑖 𝑧𝑖 (𝑅𝜌𝑥𝑦𝑧)𝑥

for 𝑖 = 1, ..., 𝑘 (R)

where 𝜌 = 𝜌1, . . . , 𝜌𝑘 is a tuple of types, 𝑦 = 𝑦1, . . . , 𝑦𝑘 with 𝑦𝑖 of type 𝜌𝑖 and 𝑧 = 𝑧1, . . . , 𝑧𝑘 with 𝑧𝑖
of type 𝜌𝑖 (0)𝜌𝑡 where we write 𝜌𝑡 := (𝜌𝑘 ) . . . (𝜌1).

Lastly, due to the inclusion of the combinators of Schönfinkel [54] in the language of WE-PA𝜔 , the
system allows the definition of 𝜆-abstraction in the sense that for any term t of type 𝜏 and any variable
x of type 𝜌, we can construct a term 𝜆𝑥.𝑡 of type 𝜏(𝜌) such that the free variables of 𝜆𝑥.𝑡 are exactly
those of t without x and so that

WE-PA𝜔 � (𝜆𝑥.𝑡) (𝑠) =𝜏 𝑡 [𝑠/𝑥]

for any term s of type 𝜌.
Next to WE-PA𝜔 , we define, as usual, the principle of quantifier-free choice QF-AC, that is,7

∀𝑥∃𝑦𝐴0 (𝑥, 𝑦) → ∃𝑌∀𝑥𝐴0(𝑥,𝑌𝑥) (QF–AC)

with 𝐴0 quantifier-free and where the types of the variable tuples 𝑥, 𝑦 are arbitrary, as well as the
principle of dependent choice DC defined as the collection of DC𝜌 for all tuples of types 𝜌 with

∀𝑥0, 𝑦𝜌∃𝑧𝜌𝐴(𝑥, 𝑦, 𝑧) → ∃ 𝑓 𝜌(0)∀𝑥0𝐴(𝑥, 𝑓 (𝑥), 𝑓 (𝑆(𝑥))) (DC𝜌)

where 𝑓 𝜌(0) stands for 𝑓 𝜌1 (0)
1 , . . . , 𝑓

𝜌𝑘 (0)
𝑘 and A may now be arbitrary.

Over A𝜔 , we will have to rely on some chosen representation of the real numbers as a Polish space
and for that we follow definitions and conventions given in [26]. In particular, rational numbers are
represented using pairs of natural numbers and, in that context, we fix the same pairing function j
as in [25]:

𝑗 (𝑛0, 𝑚0) :=

{
min 𝑢 ≤0 (𝑛 + 𝑚)2 + 3𝑛 + 𝑚 [2𝑢 =0 (𝑛 + 𝑚)2 + 3𝑛 + 𝑚] if existent,
00 otherwise.

The usual arithmetical operations +Q, ·Q, | · |Q, etc., are then primitive recursively definable through
terms that operate on such codes and the usual relations =Q, <Q, etc., are definable via quantifier-free
formulas.

For real numbers we then rely on a representation via fast converging Cauchy sequences of rational
numbers with a fixed Cauchy modulus 2−𝑛 (see [26] for details), that is, via objects of type 1, and we
consider N and Q as being embedded in that representation via the constant sequences. Also here, the
usual arithmetical operations like +R, ·R, | · |R, etc., are primitive recursively definable through closed
terms and the relations =R and <R, etc., now operating on type 1 objects, are representable by formulas
of the underlying language. Naturally, these relations are not decidable anymore but are given by Π0

1-
and Σ0

1-formulas, respectively.
In the context of this representation of reals, we will later rely on an operator ·̂ which allows for an

implicit quantification over all such fast-converging Cauchy sequences of rationals. Following [26], we
define this operator via

𝑥̂𝑛 :=

{
𝑥𝑛 if ∀𝑘 <0 𝑛

(
|𝑥𝑘 −Q 𝑥(𝑘 + 1) |Q <Q 2−𝑘−1) ,

𝑥𝑘 for 𝑘 <0 𝑛 least with |𝑥𝑘 −Q 𝑥(𝑘 + 1) |Q ≥Q 2−𝑘−1 otherwise,

turning x of type 1 into a fast-converging Cauchy sequence 𝑥̂, and we refer to [26] for any further
discussions of its properties.

7Here, and in the following, we use the notation 𝑌 𝑥 to abbreviate 𝑌1𝑥, . . . , 𝑌𝑘 𝑥 for 𝑌 = 𝑌1 , . . . , 𝑌𝑘 .
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In the context of the bound extraction theorems later on, we will rely on a canonical selection of
a Cauchy sequence representing a given real number. Naturally, such an association will be noneffec-
tive. However, it will suffice that the operation behaves well enough w.r.t. the notion of majorization.
Following [25], this can be achieved for non-negative numbers via the function (·)◦ defined by

(𝑟)◦(𝑛) := 𝑗 (2𝑘0, 2𝑛+1 − 1),

where

𝑘0 := max 𝑘
[
𝑘

2𝑛+1 ≤ 𝑟

]
.

Later, we will need an extension of this function (·)◦ to all real numbers such that we retain these nice
properties regarding majorizability and so, for 𝑟 < 0, we consider (𝑟)◦ to be defined by8

(𝑟)◦(𝑛) = 𝑗 (2𝑘̄0 ·− 1, 2𝑛+1 − 1)

where

𝑘̄0 := max 𝑘
[
𝑘

2𝑛+1 ≤ |𝑟 |

]
.

Then (𝑟)◦(𝑛) = −Q(|𝑟 |)◦ (𝑛) and we get the following lemma containing exactly the properties that we
later need for this notion to be useful in the context of majorizability (extending Lemma 2.10 from [25]):

Lemma 2.1 (essentially [25, Lemma 2.10], see also [51, Lemma 2.1]). Let 𝑟 ∈ R. Then:

1. (𝑟)◦ is a representation of r in the sense of the above (see again, e.g., [26]).
2. For 𝑠 ∈ [0,∞), if |𝑟 | ≤ 𝑠, then (𝑟)◦ ≤1 (𝑠)◦, that is, (𝑟)◦(𝑛) ≤ (𝑠)◦(𝑛) for all 𝑛 ∈ N.
3. (𝑟)◦ is nondecreasing (as a type 1 function).

Lastly, we write 𝑟𝛼 for the unique real represented by 𝛼̂ for a given sequence 𝛼 ∈ NN and we
sometimes write [𝛼] (𝑛) for the rational number represented by the n-th element of that sequence for
better readability.

In terms of notation, we want to note that, to enhance readability, we will omit the subscripts of
the arithmetical operations for R everywhere. Further, we will omit the operation ·R often altogether.
Similarly, we will also omit types of variables whenever convenient. Also, we will almost always omit
types or related subscripts in proofs. Lastly, we throughout denote the powerset of a set X by 2𝑋 .

3. Systems for algebras of sets

In this section, we develop the underlying systems on which we will later bootstrap our treatment of
probability contents and probability measures as well as of all the other respective extensions discussed
before. As such, we begin with a treatment of algebras of sets as the most basic underlying algebraic
notion that is essential for the theory of contents. For references on these basic definitions and their
properties, if nothing else is mentioned otherwise, we mainly refer to [6].

Definition 3.1 (Algebra of sets). Let Ω be a set and 𝑆 ⊆ 2Ω. Then S is called an algebra of sets (or simply
an algebra) if ∅ ∈ 𝑆 and for any 𝐴, 𝐵 ∈ 𝑆, it holds that 𝐴𝑐 := Ω \ 𝐴 ∈ 𝑆 and 𝐴 ∪ 𝐵 ∈ 𝑆.

The approach that we take towards a formal system for algebras of sets is to use abstract types to
represent both the underlying ground set Ω as well as the algebra 𝑆 ⊆ 2Ω. One then has to restore the
structure of S as a collection of subsets over Ω with certain operations on them by including additional
constants that reintroduce these operations in this abstract setting.

8Here, ·− is defined via 𝑛 ·−𝑚 := max{𝑛 −𝑚, 0} for 𝑛, 𝑚 ∈ N.
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Concretely, to form a system for the treatment of algebras, we extend the previously discussed set of
types T by two new abstract types Ω and S, forming the extended set of types 𝑇Ω,𝑆 defined by

0,Ω, 𝑆 ∈ 𝑇Ω,𝑆 , 𝜌, 𝜏 ∈ 𝑇Ω,𝑆 → 𝜌(𝜏) ∈ 𝑇Ω,𝑆 ,

and, over the resulting language, we then utilize this augmented set of types to introduce the following
new constants to induce the usual structure on the set represented by S in relation to Ω as mentioned
before:
◦ eq of type 0(Ω) (Ω);
◦ ∈ of type 0(𝑆) (Ω);
◦ ∪ of type 𝑆(𝑆) (𝑆);
◦ (·)𝑐 of type 𝑆(𝑆);
◦ ∅ of type S;
◦ 𝑐Ω of type Ω.
The constant eq serves as an abstract account of the equality relation between objects of type Ω while
the constant ∈ serves as an abstract account of the element relation between elements as objects of
type Ω and sets as objects of type S. The constants ∪ and (·)𝑐 reintroduce the respective operations of
union and complement for the abstract type S and ∅ provides a constant representing the empty set. The
constant 𝑐Ω in particular is intended to witness that the underlying set Ω is nonempty. We often simply
write 𝐴𝑐 instead of (𝐴)𝑐 for A of type S. Further, we abbreviate ∈ 𝑥𝐴 =0 0 by 𝑥 ∈ 𝐴 and, similarly,
we write 𝑥 ∉ 𝐴 for ∈ 𝑥𝐴 ≠0 0. Lastly, we define Ω := ∅𝑐 as a notation for the top element of S.9 Also
regarding notation, we introduce intersections as an abbreviation by defining

𝐴 ∩ 𝐵 := (𝐴𝑐 ∪ 𝐵𝑐)𝑐

for terms 𝐴𝑆 , 𝐵𝑆 .
We write 𝑥 =Ω 𝑦 as an abbreviation of eq𝑥𝑦 =0 0 for objects 𝑥Ω, 𝑦Ω. Using ∈, we introduce equality

on S via the following abbreviation: for 𝐴𝑆 and 𝐵𝑆 , we define

𝐴 =𝑆 𝐵 :≡ ∀𝑥Ω (𝑥 ∈ 𝐴↔ 𝑥 ∈ 𝐵).

Note that =𝑆 clearly is, provably, an equivalence relation. Furthermore, we introduce the abbreviation

𝐴 ⊆𝑆 𝐵 :≡ ∀𝑥Ω (𝑥 ∈ 𝐴→ 𝑥 ∈ 𝐵)

for 𝐴, 𝐵 of type S and it is straightforward to show that ⊆𝑆 forms a partial order with respect to equality
defined by =𝑆 .

For axioms, we first specify that eq represents an equivalence relation:

∀𝑥Ω, 𝑦Ω (eq𝑥𝑦 ≤0 1), (eq)1
∀𝑥Ω, 𝑦Ω, 𝑧Ω(𝑥 =Ω 𝑥 ∧ (𝑥 =Ω 𝑦 → 𝑦 =Ω 𝑥) ∧ (𝑥 =Ω 𝑦 ∧ 𝑦 =Ω 𝑧 → 𝑥 =Ω 𝑧)). (eq)2

Further, we axiomatize that ∈, as a relation, is bounded by 1 on all inputs and behaves as an element
relation regarding the operations of union and complement as well as with respect to the empty set:

∀𝑥Ω∀𝐴𝑆 (∈ 𝑥𝐴 ≤0 1), (∈)1
∀𝑥Ω (𝑥 ∉ ∅), (∈)2

∀𝑥Ω∀𝐴𝑆 , 𝐵𝑆 (𝑥 ∈ 𝐴 ∪ 𝐵 ↔ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵), (∈)3

∀𝑥Ω∀𝐴𝑆 (𝑥 ∈ 𝐴𝑐 ↔ 𝑥 ∉ 𝐴). (∈)4

9This is not to be confused with the type Ω but the context will make it clear which of these two readings is intended.
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Based on the fact that inclusions of elements 𝑥Ω in elements 𝐴𝑆 as facilitated by ∈ are quantifier-free
assertions, the above axioms are (generalized) Π1-sentences and so they are in particular immediately
admissible in the context of bound extraction theorems based on the Dialectica interpretation (as will
be discussed later in more detail).
Definition 3.2. We write F𝜔 for the system resulting from A𝜔 over the augmented language including
the types Ω, 𝑆 (where all the respective constants and axioms now are allowed to also refer to these
new types, if applicable) by extending this system with the constants eq, ∈,∪, (·)𝑐 , ∅, 𝑐Ω and the axioms
(eq)1 – (eq)2 as well as (∈)1 – (∈)4.

We now begin by showing some basic properties of the above operations on algebras provable in this
system F𝜔 which, for one, amount to deriving the essential algebraic properties of S as a subalgebra of
the full Boolean algebra of the power set of Ω. Further, for another, all algebraic operations on S behave
in a provably extensional way.
Proposition 3.3. The operations ∪ and (·)𝑐 are provably extensional in F𝜔 , that is, F𝜔 proves:
1. ∀𝐴𝑆 , 𝐴′𝑆 , 𝐵𝑆 , 𝐵′𝑆 (𝐴 =𝑆 𝐴′ ∧ 𝐵 =𝑆 𝐵′ → 𝐴 ∪ 𝐵 =𝑆 𝐴′ ∪ 𝐵′),
2. ∀𝐴𝑆 , 𝐴′𝑆 (𝐴 =𝑆 𝐴′ → 𝐴𝑐 =𝑆 𝐴′𝑐).
Further, all the axioms of Boolean algebras, instantiated using ∩,∪, (·)𝑐 , and =𝑆 , can be derived in
F𝜔 . Lastly, over F𝜔 , 𝐴 ⊆𝑆 𝐵 is equivalent to both 𝐴 =𝑆 𝐵 ∩ 𝐴 and 𝐵 =𝑆 𝐴 ∪ 𝐵 for terms 𝐴𝑆 , 𝐵𝑆 .
Proof. We only show items (i) and (ii) as these illustrate the style of proof that one typically follows in
F𝜔 to reason about the algebraic structure of S. The identities of Boolean algebras and the equivalent
formulations of the order in terms of meet and join are then easily derived from the axioms (∈)2, . . . , (∈)4.
1. Fix 𝐴, 𝐴′, 𝐵, 𝐵′ and assume 𝐴 = 𝐴′ as well as 𝐵 = 𝐵′. We need to show that

∀𝑥(𝑥 ∈ 𝐴 ∪ 𝐵 ↔ 𝑥 ∈ 𝐴′ ∪ 𝐵′).

Let x be arbitrary. Then 𝑥 ∈ 𝐴 ∪ 𝐵 is equivalent to 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 by (∈)3. By assumption of 𝐴 = 𝐴′

and 𝐵 = 𝐵′, we have that 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 is equivalent to 𝑥 ∈ 𝐴′ ∨ 𝑥 ∈ 𝐵′ and so to 𝑥 ∈ 𝐴′ ∪ 𝐵′ by
(∈)3, which yields the claim.

2. Fix 𝐴, 𝐴′ and assume 𝐴 = 𝐴′. We need to show that

∀𝑥(𝑥 ∈ 𝐴𝑐 ↔ 𝑥 ∈ 𝐴′𝑐).

Let x be arbitrary. Then 𝑥 ∈ 𝐴𝑐 is equivalent to 𝑥 ∉ 𝐴 by (∈)4. By assumption of 𝐴 = 𝐴′, we have
that 𝑥 ∉ 𝐴 is equivalent to 𝑥 ∉ 𝐴′ and thus to 𝑥 ∈ 𝐴′𝑐 again by (∈)4. �

Remark 3.4. Also the constants eq and ∈ are immediately provably extensional in F𝜔 , as can be shown
using the quantifier-free extensionality rule.

Using the recursor constants of the underlying language of F𝜔 in combination with the union
operation ∪ immediately allows one to also talk about arbitrary finite unions. Concretely, given a
sequence of events 𝐴𝑆 (0) and two natural numbers 𝑛0 ≤0 𝑚

0, we use the abbreviation

𝑚⋃
𝑖=𝑛

𝐴(𝑖) := 𝑅𝑆 (𝑚 − 𝑛, 𝐴(𝑛), 𝜆𝐵, 𝑥.(𝐵 ∪ 𝐴(𝑛 + 𝑥 + 1)))

where 𝑅𝑆 is a (single) type S recursor constant. For 𝑚 <0 𝑛, we simply set
⋃𝑚

𝑖=𝑛 𝐴(𝑖) := ∅. We then
dually write

𝑚⋂
𝑖=𝑛

𝐴(𝑖) :=

(
𝑚⋃
𝑖=𝑛

(𝐴(𝑖))𝑐

)𝑐
.

It is easy to show by induction that the previous extensionality result for ∪ extends to these finite unions.
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4. Systems for contents on algebras of sets

We now augment the previous system F𝜔 for the treatment of algebras so that we arrive at a system
suitable for treating proofs from the theory of probability contents in the sense of the following
definition:10

Definition 4.1 (Contents). Let Ω be a set and 𝑆 ⊆ 2Ω be an algebra. A content on S is a mapping
𝜇 : 𝑆 → [0,∞] such that 𝜇(∅) = 0 and 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) for 𝐴, 𝐵 ∈ 𝑆 with 𝐴 ∩ 𝐵 = ∅.

We say that 𝜇 is a probability content if 𝜇(Ω) = 1.

We mainly denote probability contents by the symbol P. Again, we mainly refer to [6] as a standard
reference for the theory of contents.

The concrete approach that we now take for a formal system for probability contents on algebras is
to introduce an additional constant

◦ P of type 1(𝑆)

to the language of the system F𝜔 . The first defining properties of P as a probability content are then
easily formalized in the underlying language as

∀𝐴𝑆 (0 ≤R P(𝐴) ≤R 1), (P)1
P(∅) =R 0. (P)2

These statements (P)1 and (P)2 are again purely universal statements and therefore immediately admis-
sible in the context of metatheorems based on the (monotone) functional interpretation.

The last property of P, that is, additivity, if formalized naively via

∀𝐴𝑆 , 𝐵𝑆 (𝐴 ∩ 𝐵 =𝑆 ∅ → P(𝐴 ∪ 𝐵) =R P(𝐴) + P(𝐵)),

is not purely universal based on the internal definition of =𝑆 and is instead equivalent over F𝜔 (extended
with the constant P) to the following generalized Π3-sentence:

∀𝐴𝑆 , 𝐵𝑆∃𝑥Ω (𝑥 ∉ 𝐴 ∩ 𝐵 → P(𝐴 ∪ 𝐵) =R P(𝐴) + P(𝐵)).

Similar to how the class of so-called type Δ sentences is treated in, for example, [16], it is clear that
this statement would be admissible in the context of bound extraction theorems based on the monotone
Dialectica interpretation if the x could be conceived of as being bounded in a suitable sense relative
to A and B. Now, as a matter of fact, a crucial perspective for our formal approach to deriving bound
extraction theorems for these systems for algebras and probability contents will be that the whole space
Ω can be naturally regarded as uniformly bounded. In the context of a corresponding suitable extension
of the notion of majorizability to Ω which reflects this perspective via assuming that there is a uniform
majorant for all 𝑥Ω, the above axiom actually has a trivial monotone functional interpretation and is
thus admissible in the context of the approach to proof mining metatheorems via such a variant of the
Dialectica interpretation. This will be discussed in full formal detail later on so that here, for now, we
are content with just considering quantification over Ω as “bounded” and so as “proof-theoretically
harmless.”

However, if we were to admit the above sentence as the sole axiom, we would be tasked with deriving
all the other properties of P from this axiom, including monotonicity and thus extensionality of the
content as a function, which would require many subtle manipulations of various equalities using the
quantifier-free extensionality rule. We therefore instead opt for the following axiomatization which eases

10While contents are also studied over much sparser structures than algebras of sets, we here only consider the case of a content
defined on such an algebra.
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the formal development of these properties in the resulting system: For one, instead of additivity, we
include the following generalized additivity law which holds for probability contents on algebras:

∀𝐴𝑆 , 𝐵𝑆 (P(𝐴 ∪ 𝐵) =R P(𝐴) + P(𝐵) − P(𝐴 ∩ 𝐵)). (P)3

This statement is purely universal and thus immediately admissible in the context of our approach to
bound extraction theorems as before. The other property of P that we then axiomatically add is that of
the monotonicity of P, that is,

∀𝐴𝑆 , 𝐵𝑆 (𝐴 ⊆𝑆 𝐵 → P(𝐴) ≤R P(𝐵)).

Similar to the above, this statement is equivalent to the following (generalized) Π3-statement

∀𝐴𝑆 , 𝐵𝑆∃𝑥Ω (P(𝐴) >R P(𝐵) → 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) (P)4

which in the context of the previously sketched extended notion of majorizability will later have a
trivial monotone functional interpretation and thus be admissible in the context of our approach to proof
mining metatheorems.

Adding these statements as axioms to the underlying system for algebras of sets, we derive the
following system for probability contents on such algebras:
Definition 4.2. We write F𝜔 [P] for the system resulting from F𝜔 by adding the above constant P
together with the axioms (P)1 – (P)4.

We now begin with some immediate properties of P provable in the above system.
Proposition 4.3. The following properties of P are provable in F𝜔 [P]:
1. P is extensional w.r.t. =𝑆 and =R, that is,

∀𝐴𝑆 , 𝐵𝑆 (𝐴 =𝑆 𝐵 → P(𝐴) =R P(𝐵)).

2. P is definite on ∅, that is,

∀𝐴𝑆 (P(𝐴) >R 0 → 𝐴 ≠𝑆 ∅).

3. P is additive, that is,

∀𝐴𝑆 , 𝐵𝑆 (𝐴 ∩ 𝐵 =𝑆 ∅ → P(𝐴 ∪ 𝐵) =R P(𝐴) + P(𝐵)).

4. P respects the relative complements of subsets, that is,

∀𝐴𝑆 , 𝐵𝑆 (𝐵 ⊆𝑆 𝐴→ P(𝐴 ∩ 𝐵𝑐) =R P(𝐴) − P(𝐵)).

In particular, we also have

∀𝐴𝑆 (P(𝐴𝑐) =R 1 − P(𝐴)).

5. P satisfies Boole’s inequality, that is,

∀𝐴𝑆 (0) , 𝑛0

(
P

(
𝑛⋃
𝑖=0

𝐴(𝑖)

)
≤R

𝑛∑
𝑖=0
P(𝐴(𝑖))

)
.

Proof.
1. Assume P(𝐴) > P(𝐵). By axiom (P)4, there exists an x such that 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵, that is, 𝐴 ≠ 𝐵.

Similarly we derive 𝐴 ≠ 𝐵 from P(𝐴) < P(𝐵). Combined, we get that 𝐴 = 𝐵 implies P(𝐴) = P(𝐵).
2. Assume P(𝐴) > 0 = P(∅). Then by axiom (P)4, we get an 𝑥 ∈ 𝐴, that is, 𝐴 ≠ ∅.
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3. Let 𝐴, 𝐵 be arbitrary with 𝐴 ∩ 𝐵 = ∅. We have P(𝐴 ∪ 𝐵) = P(𝐴) + P(𝐵) − P(𝐴 ∩ 𝐵) by axiom (P)3.
As P is extensional, we get P(𝐴 ∩ 𝐵) = P(∅) = 0 so that the above implies P(𝐴 ∪ 𝐵) = P(𝐴) + P(𝐵)
as desired.

4. Let 𝐸 := 𝐴 ∩ 𝐵 and 𝐹 := 𝐴 ∩ 𝐵𝑐 . Then 𝐸 ∩ 𝐹 = ∅ (by the properties of algebras of sets). Thus, by
additivity, P(𝐸 ∪ 𝐹) = P(𝐸) + P(𝐹). We have that 𝐸 ∪ 𝐹 = 𝐴 (again by the properties of algebras
of sets). Thus, by extensionality of P, we have P(𝐴) = P(𝐴 ∩ 𝐵) + P(𝐴 ∩ 𝐵𝑐). Now, 𝐵 ⊆ 𝐴 implies
𝐴 ∩ 𝐵 = 𝐵 by Proposition 3.3 and so the result follows from the extensionality of P.

5. This follows via a simple induction from the axiom (P)3. �

Contents on algebras enjoy certain continuity properties similar to continuity from above and below
for measures but without the existence of limiting sets, that is, infinite unions, etc. (see, e.g., [6]) and
we now discuss how the system F𝜔 [P] recognizes Cauchy-variants of these properties.

For that, we introduce the following operation on terms of type 𝑆(0) that allows for the implicit
quantification over a disjoint countable family of sets: given 𝐴𝑆 (0) , we set (𝐴↑)(0) = 𝐴(0) and

(𝐴↑)(𝑛 + 1) := 𝐴(𝑛 + 1) ∩

(
𝑛⋃
𝑖=0

𝐴(𝑖)

)𝑐
.

This operation thus turns A into a sequence of disjoint sets 𝐴↑ with the same (partial) union(s) and if A
was already a disjoint family, then it is left unchanged by the operation.

We now begin with a Cauchy-type form of 𝜎-additivity of P as a content. For this, note that for a
given 𝐴𝑆 (0) , the sequence of partial sums

𝑛∑
𝑖=0
P((𝐴↑)(𝑖)) = P

(
𝑛⋃
𝑖=0

(𝐴↑)(𝑖)

)
= P

(
𝑛⋃
𝑖=0

𝐴(𝑖)

)
is a monotone and bounded sequence of real numbers and thus is Cauchy. The following result that
(already a weak fragment of) WE-PA𝜔 suffices to prove the Cauchy formulation of the convergence of
monotone and bounded sequences is well known:
Lemma 4.4 (folklore, see essentially [26]). The system WE-PA𝜔 (and actually already a weak fragment
thereof) proves that

∀𝑎1(0)
(
∀𝑛0(0 ≤R 𝑎(𝑛) ≤R 1 ∧ 𝑎(𝑛) ≤R 𝑎(𝑛 + 1))

→ ∀𝑘0∃𝑁0∀𝑛0, 𝑚0 ≥0 𝑁
(
|𝑎(𝑛) − 𝑎(𝑚) | <R 2−𝑘

))
.

So, instantiating the above result with 𝑎(𝑛) =
∑𝑛
𝑖=0 P((𝐴 ↑)(𝑖)), we can derive that F𝜔 [P] (and

actually already a weak fragment thereof) can prove the Cauchy property of sequences of contents of
increasing disjoint unions:
Proposition 4.5. The system F𝜔 [P] (and actually already a weak fragment thereof) proves

∀𝐴𝑆 (0)∀𝑘0∃𝑁0∀𝑛0, 𝑚0 ≥0 𝑁

(����� 𝑛∑
𝑖=0
P((𝐴↑)(𝑖)) −

𝑚∑
𝑖=0
P((𝐴↑)(𝑖))

����� <R 2−𝑘
)
.

From this Proposition 4.5, we can then immediately derive the following continuity theorems for
contents.
Proposition 4.6. The system F𝜔 [P] (and actually already a weak fragment thereof) proves:
1. P is continuous from below, that is,

∀𝐴𝑆 (0)
(
∀𝑛0(𝐴(𝑛) ⊆𝑆 𝐴(𝑛 + 1)) → ∀𝑘0∃𝑁0∀𝑛0, 𝑚0 ≥0 𝑁

(
|P(𝐴(𝑛)) − P(𝐴(𝑚)) | <R 2−𝑘

))
.
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2. P is continuous from above, that is,

∀𝐴𝑆 (0)
(
∀𝑛0 (𝐴(𝑛 + 1) ⊆𝑆 𝐴(𝑛)) → ∀𝑘0∃𝑁0∀𝑛0, 𝑚0 ≥0 𝑁

(
|P(𝐴(𝑛)) − P(𝐴(𝑚)) | <R 2−𝑘

))
.

Proof.

1. Note that 𝐴(𝑛) ⊆ 𝐴(𝑛 + 1) for all n implies that

(𝐴↑)(𝑛 + 1) = 𝐴(𝑛 + 1) ∩ 𝐴(𝑛)𝑐

for any n. Thus by Proposition 4.3, (4), we have

P((𝐴↑)(𝑛 + 1)) = P(𝐴(𝑛 + 1)) − P(𝐴(𝑛))

for all n. Thus we have

𝑛∑
𝑖=0
P((𝐴↑)(𝑖)) = P(𝐴(0)) +

𝑛−1∑
𝑖=0

(P(𝐴(𝑖 + 1)) − P(𝐴(𝑖))) = P(𝐴(𝑛))

for any n. The result now follows from Proposition 4.5.
2. Observe that 𝐴(𝑛+1) ⊆ 𝐴(𝑛) for any n implies that 𝐴(𝑛)𝑐 ⊆ 𝐴(𝑛+1)𝑐 for all n. Thus, by (1), we have

∀𝑘0∃𝑁0∀𝑛0, 𝑚0 ≥0 𝑁
(
|P(𝐴(𝑛)𝑐) − P(𝐴(𝑚)𝑐) | <R 2−𝑘

)
.

By Proposition 4.3, (4), we get P(𝐴(𝑛)𝑐) = 1 − P(𝐴(𝑛)) and from this the result follows. �

5. Systems for 𝜎-algebras and probability measures

If we now further require the closure of the underlying algebra of sets under countable unions, we arrive
at the notion of a 𝜎-algebra which forms the algebraic basis for probability measures.

Definition 5.1 (𝜎-algebra). Let Ω be a set and 𝑆 ⊆ 2Ω be an algebra. Then S is called a 𝜎-algebra if for
any (𝐴𝑛) ⊆ 𝑆, it also holds that

⋃∞
𝑛=0 𝐴𝑛 ∈ 𝑆.

The requirement that a content on a 𝜎-algebra is also well-behaved w.r.t. these countable unions then
leads to the notion of a measure on such an algebra.

Definition 5.2 (Measure). Let Ω be a set and 𝑆 ⊆ 2Ω be a 𝜎-algebra. A measure on S is a content
𝜇 : 𝑆 → [0,∞] that is also 𝜎-additive, that is,

𝜇

(
∞⋃
𝑛=0

𝐴𝑛

)
=

∞∑
𝑛=0

𝜇(𝐴𝑛)

for any (𝐴𝑛) ⊆ 𝑆 with 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for 𝑖 ≠ 𝑗 .
The map 𝜇 is called a probability measure if 𝜇(Ω) = 1. In that case, (Ω, 𝑆, 𝜇) is called a probability

space.

In this section, we will now discuss how the previous system for algebrasF𝜔 and its extensionF𝜔 [P]

for treating probability contents can be augmented by a certain intensional treatment of countably infinite
unions to provide an apt and tame formal basis for these notions.
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5.1. Treating infinite unions tamely

Concretely, to treat countably infinite unions over algebras of sets tamely, we now extend the previous
system F𝜔 with the following further constant

◦ ⋃
of type 𝑆(𝑆(0)),

providing a term of type S for the resulting union of the sequence of sets coded by the input of type 𝑆(0).
So, in the context of suitable axioms specifying that

⋃
𝐴 for a given 𝐴𝑆 (0) represents the union of all

𝐴(𝑛), we can formally induce that the algebra S is closed under these countable unions. The immediate
axioms specifying the property that

⋃
𝐴 is the corresponding union are

∀𝐴𝑆 (0)∀𝑛0
(
𝐴(𝑛) ⊆𝑆

⋃
𝐴
)

(
⋃

)1

as well as

∀𝐴𝑆 (0)∀𝐵𝑆
(
∀𝑛0 (𝐴(𝑛) ⊆𝑆 𝐵) →

⋃
𝐴 ⊆𝑆 𝐵

)
,

specifying that
⋃

is the join of the elements 𝐴(𝑛) in S (seen as a lattice). The first statement (
⋃
)1

is immediately admissible in the context of the Dialectica interpretation as it is purely universal. The
latter statement is naturally not admissible as is in the context of the usual approach to proof mining
metatheorems as it contains a negative universal quantifier of type 0 that cannot be majorized (which,
after all, is also why a uniform variant of arithmetical comprehension is necessary to fully define
countable unions of sets, see, e.g., [35] for further discussions).

Since we want to avoid this strong form of comprehension as to not in general distort the strength of
the extracted bounds to be able to a priori guarantee the extractability of proof-theoretically tame bounds
from proofs, we opt for the next best thing we can do and instead specify the union only intensionally
by adding the following rule-variant of the above converse implication

𝐹𝑞 𝑓 → ∀𝑛0(𝐴(𝑛) ⊆𝑆 𝐵)

𝐹𝑞 𝑓 →
⋃
𝐴 ⊆𝑆 𝐵

(
⋃

)2

where A is a term of type 𝑆(0), B is a term of type S and 𝐹𝑞 𝑓 is a quantifier-free formula. So: If 𝐴(𝑛)
is provably bounded above by B w.r.t. ⊆𝑆 under some quantifier-free assumptions, then also

⋃
𝐴 is

provably bounded above by B w.r.t. ⊆𝑆 under the same assumptions.

Definition 5.3. We write F𝜔 [
⋃
] for the system resulting from F𝜔 by extending it with the constant⋃

together with the axiom (
⋃
)1 and the rule (

⋃
)2. Similarly, we write F𝜔 [

⋃
, P] for the system that

arises from F𝜔 [P] by adding the same constants, axioms, and rules.

Using this intensional approach to countable unions, we can also immediately provide an intensional
treatment of countable intersections. For this, we first define 𝐴𝑐 for an 𝐴𝑆 (0) by setting 𝐴𝑐 (𝑛) := 𝐴(𝑛)𝑐
for any 𝑛0. Using this notation, we then define the countable intersection of a collection of sets represented
by an 𝐴𝑆 (0) via ⋂

𝐴 :=
(⋃

𝐴𝑐
)𝑐
.

We then get that analogs of the axiom (
⋃
)1 and the rule (

⋃
)2, formulated appropriately for the

intersection, are provable in our system F𝜔 [
⋃
]:

Lemma 5.4. The following statement is provable in F𝜔 [
⋃
]:

∀𝐴𝑆 (0)∀𝑛0
(⋂

𝐴 ⊆𝑆 𝐴(𝑛)
)
.
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Further, in F𝜔 [
⋃
] the following rule is derivable:

𝐹𝑞 𝑓 → ∀𝑛0(𝐵 ⊆𝑆 𝐴(𝑛))

𝐹𝑞 𝑓 → 𝐵 ⊆𝑆
⋂
𝐴

.

Proof. For the provability of the first statement, let 𝑥 ∈
⋂
𝐴. By definition we have 𝑥 ∉

⋃
𝐴𝑐 . Then by

axiom (
⋃
)1, we get 𝑥 ∉ 𝐴(𝑛)𝑐 , that is, 𝑥 ∈ 𝐴(𝑛) for any n.

Now, for the rule, suppose that we provably have 𝐹𝑞 𝑓 → ∀𝑛(𝐵 ⊆ 𝐴(𝑛)). Then we also provably
have 𝐹𝑞 𝑓 → ∀𝑛(𝐴(𝑛)𝑐 ⊆ 𝐵𝑐) and using the rule (

⋃
)2, we get 𝐹𝑞 𝑓 →

⋃
𝐴𝑐 ⊆ 𝐵𝑐 . Thus also

𝐹𝑞 𝑓 → 𝐵 ⊆ (
⋃
𝐴𝑐)𝑐 =

⋂
𝐴 as desired. �

5.2. Handling probability measures

As we have seen in Propositions 4.5 and 4.6, the system F𝜔 [P] already provides Cauchy-variants of
the convergence of monotone sequences of events as well as of sums of disjoint events. In the theory of
measures on 𝜎-algebras, the resulting limits of course correspond to the measure of respective infinite
unions or intersections. Thus, the natural question of whether and how this can be formally represented
in the system F𝜔 [

⋃
, P] immediately arises. And while for a disjoint family represented by 𝐴𝑆 (0) , the

limit

0 ≤ P
(⋃

𝐴
)
− P

(
𝑛⋃
𝑖=0

𝐴(𝑖)

)
→ 0 for 𝑛→ ∞

holds true, there is in general no computable rate of convergence for this expression in the sense that
even a function 𝜑 of type 1 such that

∀𝑘0∃𝑛 ≤0 𝜑(𝑘)

(
P

(⋃
𝐴
)
− P

(
𝑛⋃
𝑖=0

𝐴(𝑖)

)
≤R 2−𝑘

)
(◦)

is in general not computable (see Remark 5.5 for an example). Nevertheless, we want to point out that
while therefore the convergence of the sequence

∑𝑛
𝑖=0 P(𝐴(𝑖)) towards P(

⋃
𝐴) cannot be provable in

any system that allows for the extraction of computable and uniform bounds, the system F𝜔 [
⋃
, P] still

provides an intensional version of that convergence in the following sense:

1. By Proposition 4.5, the sequence of partial sums
∑𝑛
𝑖=0 P(𝐴(𝑖)) is provably Cauchy.

2. Using the additivity and monotonicity of P, that is, axioms (P)3 and (P)4, we get by
⋃𝑛

𝑖=0 𝐴(𝑖) ⊆𝑆
⋃
𝐴

that

𝑛∑
𝑖=0
P(𝐴(𝑖)) =R P

(
𝑛⋃
𝑖=0

𝐴(𝑖)

)
≤R P

(⋃
𝐴
)

holds provably.
3. For any object 𝐵𝑆 such that we provably have ∀𝑛0 (𝐴(𝑛) ⊆𝑆 𝐵), we get

⋃
𝐴 ⊆𝑆 𝐵 using the rule

(
⋃
)2 and so we get provably

P

(⋃
𝐴
)
≤R P(𝐵)

in that case by monotonicity of P.

So the value P(
⋃
𝐴) is at least intensionally specified to be the limit of the partial sums

∑𝑛
𝑖=0 P(𝐴(𝑖))

as P(
⋃
𝐴) is bounded below by this nondecreasing sequence of partial sums and intensionally bounded

above by the probability of any set which provably sits above the given partial unions
⋃𝑛

𝑖=0 𝐴(𝑖).
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The case that we want to make is now twofold: For one, as mentioned in the introduction, the theory
of contents already exhausts large parts of the theory of measures in the sense that often already the
properties of contents on algebras suffice to carry out proofs for properties of measures on 𝜎-algebras
(as will also be the case in the applications discussed later). For another, we want to argue that even
in situations where one cannot do just with finite unions and content, such an intensional specification
of countable unions and their measures might suffice for formalizing a given proof and all the while
guaranteeing the extractability of tame bounds a priori. If that is not the case, then the result under
consideration might be considered to be inherently “untame” and a full treatment of the comprehension
principle needed to define the respective unions could be necessary. We therefore regard F𝜔 [

⋃
, P] as

a suitable tame base system for treating probability measures on 𝜎-algebras.

Remark 5.5. For an example where 𝜑 in (◦) is not computable, we take (𝑟𝑖) ⊆ (0, 1) to be a sequence
of computable real numbers such that

𝑎𝑛 =
𝑛∑
𝑖=0

𝑟𝑖 → 𝑎 ≤ 1

without a computable rate of convergence.11 We now define Ω = N ∪ {∞} as well as 𝑆 = 2Ω. On the
discrete sample space Ω, we then define a probability mass function p via 𝑝(𝑖) = 𝑟𝑖 for 𝑖 ∈ N as well
as 𝑝(∞) = 1 − 𝑎. This p then as usual induces a probability measure P on the 𝜎-algebra S defined for
𝐴 ⊆ Ω via

P(𝐴) =
∑
𝑎∈𝐴

𝑝(𝑎).

Clearly (Ω, 𝑆, P) is a probability space where

P(N) −

𝑛+1∑
𝑖=1
P({𝑖}) = 𝑎 −

𝑛∑
𝑖=0

𝑟𝑖 = 𝑎 − 𝑎𝑛

cannot have a computable rate of convergence to 0.

6. Intensional intervals, inverse mappings and measurable functions

In this section, we now extend the machinery of the previous logical systems so that we are able to deal
with functions 𝑓 : Ω → R that are measurable in a certain suitable sense relative to algebras. As such,
the treatment given here will be instrumental for our approach to integrable functions in Section 7, for
the applications discussed in Section 9, and for the proof-theoretic transfer principles for implications
between modes of convergence in Section 10. For this, we now first recall the essential definitions and
basic results.

Definition 6.1 (Borel 𝜎-algebra). Let X be a topological space. The Borel 𝜎-algebra B(𝑋) on X is the
smallest 𝜎-algebra on X that contains all open subsets of X.

We refer to [17] as a standard reference for Borel 𝜎-algebras in particular and measure theory in
general (in particular regarding the well-definedness of the above definition for which one needs to see
that the intersection of any family of (𝜎-)algebras is again a (𝜎-)algebra).

Crucial for us will be the notion of a generating set of a (𝜎-)algebra.

11The existence of such a sequence is due to [57]. For a direct construction, we proceed similarly to [61]: pick an enumeration
𝑓 : N→ N of the special Halting Problem without repetitions. Then defining 𝑟𝑖 = 2− 𝑓 (𝑖)−1 yields a suitable sequence such that
𝑎𝑛 defined as above naturally converges to an element 𝑎 ∈ [0, 1] as it is monotone and bounded above but the rate of convergence
cannot be computable as this would allow one to decide the special Halting Problem.
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Definition 6.2 (Generators of a (𝜎-)algebra). Let Ω be a set and 𝑆 ⊆ 2Ω be a (𝜎-)algebra. A generating
set for S is a set 𝑆0 ⊆ 2Ω such that S is the smallest (𝜎-)algebra containing 𝑆0.

In that terminology, the Borel 𝜎-algebra B(𝑋) is the 𝜎-algebra generated by the open subsets of the
underlying topological space.

For the special case of the real numbers as a topological space with the usual topology induced by the
metric distance, we in particular get the following canonical generators besides the open subsets of R.
Lemma 6.3 (folklore, see, e.g., [17]). The Borel 𝜎-algebra B(R) on R is generated by the collection of
all closed intervals {[𝑎, 𝑏] | 𝑎, 𝑏 ∈ R}.

One then arrives at the notion of a measurable function which we for simplicity only formulate for
real-valued functions here.
Definition 6.4 (Borel-measurable function). Let (Ω, 𝑆, 𝜇) be a content space. A function 𝑓 : Ω → R is
called Borel-measurable if

𝑓 −1(𝐵) := {𝑥 ∈ Ω | 𝑓 (𝑥) ∈ 𝐵} ∈ 𝑆

for all 𝐵 ∈ B(R).
As we will crucially use later on, Borel-measurability is simply characterized by a similar condition

on a generating set.
Proposition 6.5 (folklore, see, e.g., [17]). Let (Ω, 𝑆, 𝜇) be a measure space. A function 𝑓 : Ω → R is
Borel-measurable if, and only if, 𝑓 −1([𝑎, 𝑏]) ∈ 𝑆 for all 𝑎, 𝑏 ∈ R.

If the underlying algebra S is not a 𝜎-algebra and if 𝜇 is only a content, then the requirement that the
preimages of the above collection of intervals are included is still statable but might result in something
weaker than full Borel-measurability. We call a function 𝑓 : Ω → Rwhere the preimages of all intervals
[𝑎, 𝑏] for 𝑎, 𝑏 ∈ R are included in a corresponding algebra 𝑆 ⊆ 2Ω to be weakly Borel-measurable.
It will in particular be this notion of weakly Borel-measurable functions that we will rely on later in the
context of our approach towards Lebesgue integrals for probability contents. It should be noted that by
requiring the inclusion 𝑓 −1([𝑎, 𝑏]) ∈ 𝑆 for two real numbers 𝑎, 𝑏 ∈ R and an algebra S, we in particular
also obtain that 𝑓 −1([𝑎, 𝑏)) = 𝑓 −1([𝑎, 𝑏]) ∩

(
𝑓 −1([𝑏, 𝑏])

)𝑐
∈ 𝑆 as S is an algebra.12

To formally deal with the notion of (weak) Borel-measurability, we thus need access to the collection
of the closed intervals [𝑎, 𝑏] for 𝑎, 𝑏 ∈ R generating the Borel-algebra. For this, we will introduce an
intensional approach to real intervals in the next subsection to provide formal means of operating on
these generators. These intensional variants of real intervals can then be processed by a general type of
inverse map using which we will be able to state the measurability of a function formally.

6.1. Intensional Intervals

Concretely, we now provide a quantifier-free (and thus in a way intensional) account of the closed
intervals [𝑎, 𝑏] (and thus also of the half-open intervals [𝑎, 𝑏) as discussed above) by introducing a
further constant to the language:
◦ [·, ·] of type 0(1) (1) (1).
Given two inputs 𝑎1, 𝑏1, this function shall return a characteristic function for an intensional represen-
tation of the corresponding interval. For this, we add the following axioms:

∀𝑎1, 𝑏1, 𝑟1 ([𝑎, 𝑏] (𝑟) ≤0 1), ([·,·])1
∀𝑎1, 𝑏1, 𝑟1 (𝑟 ∈ [𝑎, 𝑏] → 𝑎 ≤R 𝑟 ≤R 𝑏), ([·,·])2

12Note that in the context of algebras, this is a particular benefit from working with closed intervals in the above notion of weak
Borel-measurability. If, for example, one instead were to work with half-open intervals [𝑎, 𝑏) , then defining the closed intervals
requires the use of a countably infinite intersection via [𝑎, 𝑏] =

⋂
𝑘∈N [𝑎, 𝑏 + 2−𝑘 ) which can only be sustained in 𝜎-algebras.
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∀𝑎1, 𝑏1, 𝑟1 (𝑎 <R 𝑟 <R 𝑏 → 𝑟 ∈ [𝑎, 𝑏]), ([·,·])3

∀𝑎1, 𝑏1 (𝑎, 𝑏 ∈ [𝑎, 𝑏]). ([·,·])4

Here, we wrote [𝑎, 𝑏] for [·, ·]𝑎𝑏 as well as 𝑟 ∈ [𝑎, 𝑏] for [𝑎, 𝑏] (𝑟) =0 0. Note that this is an intensional
representation of the set as we have 𝑎, 𝑏 ∈ [𝑎, 𝑏] but we cannot conclude from 𝑟 = 𝑎 or 𝑟 = 𝑏 that
𝑟 ∈ [𝑎, 𝑏].

We also introduce the following notation used later: if we are given a system C𝜔 , we write C𝜔 [Int]
to denote the extension of C𝜔 by the above constant [·, ·] and the axioms ([·, ·])1 – ([·, ·])4 for treating
the closed intervals.

In similarity to the discussion above, these closed intervals then also provide a quantifier-free access
to the half-open intervals in the following way: We define [·, ·) of type 0(1) (1) (1) via

[·, ·) := 𝜆𝑎1, 𝑏1, 𝑟1.max{[𝑎, 𝑏] (𝑟), 1 − [𝑏, 𝑏] (𝑟)}.

Also for [·, ·), we write [𝑎, 𝑏) for [·, ·)𝑎𝑏 as well as 𝑟 ∈ [𝑎, 𝑏) for [𝑎, 𝑏) (𝑟) =0 0.
In the context of that definition, we in particular obtain relatively immediately that [·, ·) defined

as such satisfies properties that intensionally specify the half-open intervals similar to how we have
specified closed intervals above with the axioms ([·, ·])1 – ([·, ·])4, that is, we for one have 𝑎 ∈ [𝑎, 𝑏)
but from 𝑟 = 𝑎, we cannot infer 𝑟 ∈ [𝑎, 𝑏) and we have 𝑏 ∉ [𝑎, 𝑏) but from 𝑟 = 𝑏, we cannot infer
𝑟 ∉ [𝑎, 𝑏). This is collected in the following lemma:

Lemma 6.6. The system A𝜔 [Int] proves the following properties of [·, ·):

1. ∀𝑎1, 𝑏1, 𝑟1( [𝑎, 𝑏) (𝑟) ≤0 1),
2. ∀𝑎1, 𝑏1, 𝑟1(𝑟 ∈ [𝑎, 𝑏) → 𝑎 ≤R 𝑟 <R 𝑏),
3. ∀𝑎1, 𝑏1, 𝑟1(𝑎 <R 𝑟 <R 𝑏 → 𝑟 ∈ [𝑎, 𝑏)),
4. ∀𝑎1, 𝑏1 (𝑎 <R 𝑏 → 𝑎 ∈ [𝑎, 𝑏) ∧ 𝑏 ∉ [𝑎, 𝑏)).

We omit the proof as it is rather immediate.

6.2. The inverse map

We now provide a treatment of the inverse map for a given function f of type 1(Ω). For this, we actually
introduce a uniform operator into the language via a constant

◦ (·)−1 of type 0(Ω) (0(1)) (1(Ω))

that provides an inverse map for any given function 𝑓 1(Ω) in the sense that, writing 𝑓 −1 for (·)−1 𝑓 , the
functional 𝑓 −1 receives a subset of the reals coded via a characteristic function 𝐴0(1) and maps this into
a characteristic function 𝑓 −1𝐴 of type 0(Ω) coding a subset of the underlying space Ω.

This type of map is then governed by the following two axioms:

∀ 𝑓 1(Ω)∀𝐴0(1)∀𝑥Ω
(
𝑓 −1𝐴𝑥 ≤0 1

)
, (Inv)1

∀ 𝑓 1(Ω)∀𝐴0(1)∀𝑥Ω
(
𝑥 ∈ 𝑓 −1𝐴↔ 𝑓 (𝑥) ∈ 𝐴

)
. (Inv)2

Here, we wrote 𝑓 (𝑥) ∈ 𝐴 for 𝐴 𝑓 (𝑥) =0 0 and 𝑥 ∈ 𝑓 −1𝐴 for 𝑓 −1𝐴𝑥 =0 0.
Also for this type of extension, we introduce the following generic notation: given a system C𝜔 , we

write C𝜔 [Inv] to denote the extensions of C𝜔 by the constant (·)−1 and the above axioms for treating
the inverse map.
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6.3. Measurability of functions

In the context of the intensional representations for closed intervals, generating the Borel 𝜎-algebra on
the reals, as well as using the general inverse map introduced before, we are now in the position of
formulating the (weak) Borel-measurability of a function 𝑓 1(Ω) formally in the underlying language by

∀𝑎1, 𝑏1∃𝐴𝑆∀𝑥Ω
(
𝑥 ∈ 𝑓 −1([𝑎, 𝑏]) ↔ 𝑥 ∈ 𝐴

)
.

The inner matrix (based on the fact that stating element relations via ∈ is quantifier-free and as we use
the abbreviation 𝑥 ∈ 𝑓 −1([𝑎, 𝑏]) for 𝑓 −1 [𝑎, 𝑏]𝑥 =0 0 as introduced in Section 6.2) is quantifier-free
and thus the above sentence is a generalized Π3-statement. Similar to the monotonicity statement of the
content P, this statement would be admissible in the context of the monotone Dialectica interpretation
if the quantification over elements of type S could be conceived of as being bounded in a suitable sense.
Similar to how we argued with the monotonicity of P, a crucial perspective for our formal approach
to bound extraction theorems later on will be that, besides the whole space Ω, we will also be able to
regard the space S as uniformly bounded, formally encapsulated via a corresponding suitable extension
of the notion of majorizability to S used later. In that context, such a sentence has a trivial monotone
functional interpretation and we will use this later to formulate admissible axioms stating that certain
classes of functions are indeed measurable.

7. Treating integration over probability contents

We now want to extend the previous system F𝜔 [P] for probability contents on algebras so that we can
treat a certain class of integrable functions 𝑓 : Ω → R, in particular so that we obtain a suitable base
for random variables and their moments as used in various applications, especially those illustrated in
Section 9.

For the usual approach to the integral over contents, which mimics that of the Lebesgue integral, we
mainly follow the exposition given in [6] (where the corresponding notion is introduced under the name
of the “D-integral”) which we detail here to some degree to provide the necessary mathematical basics
for the axiomatizations chosen later. Concretely, let Ω be a set and S an algebra on it and let 𝜇 be a finite
content on S (i.e., 𝜇(Ω) < +∞). One then first arrives at a notion of simple function that is completely
analogous to how it is usually defined in the context of measure theory, that is, a simple function is a
function 𝑓 : Ω → R of the form

𝑓 (𝑥) =
𝑛∑
𝑖=0

𝑏𝑖𝜒𝐴𝑖

for given sets 𝐴𝑖 ∈ 𝑆 and values 𝑏𝑖 ∈ R.13 For such a function f, the integral over 𝜇 is simply defined as∫
𝑓 d𝜇 =

𝑛∑
𝑖=0

𝑏𝑖𝜇(𝐴𝑖),

also in similarity to usual Lebesgue integrals over measures. A general function 𝑓 : Ω → R is now
declared integrable if there is a sequence of simple functions 𝑓𝑛 such that (1) the 𝑓𝑛 converge to f in a
suitable sense14 and (2) the sequence satisfies

13In some cases, as, for example, also in [6], one requires the sets 𝐴𝑖 to be mutually disjoint and to cover the whole space Ω
but we do not include these requirements here for simplicity.

14The corresponding notion of convergence is dubbed hazy convergence in [6] and relies on the use of a corresponding outer
content (which is similar to an outer measure) constructed from 𝜇. Here, we will however not rely on any precise details regarding
this notion.
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lim
𝑛,𝑚→∞

∫
| 𝑓𝑛 − 𝑓𝑚 | d𝜇 = 0.

Such a sequence is called a determining sequence for f and using such a determining sequence, one then
defines the integral of f via ∫

𝑓 d𝜇 = lim
𝑛→∞

∫
𝑓𝑛 d𝜇.

Crucially, this limit is well-defined as the following general result shows:

Lemma 7.1 (Lemma 4.4.12 in [6]). Let f be an integrable function and let ( 𝑓𝑛) be a determining
sequence for f. Then 𝑓𝑛 − 𝑓 is integrable and

lim
𝑛→∞

∫
| 𝑓𝑛 − 𝑓 | d𝜇 = 0.

This notion of a (D-)integral defined for contents then shares many of the familiar properties of
Lebesgue integrals defined for measures. One particularly useful property is that every integrable
function f is measurable in the following extended sense, called 𝑇2-measurable in [6]: for any 𝜀 > 0,
there is a partition 𝐴0, . . . , 𝐴𝑛 ∈ 𝑆 of Ω such that 𝜇(𝐴0) < 𝜀 and | 𝑓 (𝑥) − 𝑓 (𝑦) | < 𝜀 for any 𝑥, 𝑦 ∈ 𝐴𝑖
and any i. In particular, for any function f that is measurable in this sense, one gets that f is integrable
if, and only if, | 𝑓 | is integrable (see, e.g., Corollary 4.4.19 in [6]).

Now, a major part of the theory of integrals over contents (like, e.g., a nice correspondence between
the so-called D- and S-integrals, the latter being similar in spirit to a Riemann-Stieltjes integral, and the
fact that the notions of 𝑇2-measurability and integrability coincide as shown by Theorem 4.5.7 in [6],
among many others) depends on the assumption that the integrated functions are bounded. In that way,
we will similarly require that all integrated functions are bounded.

In fact, using the proof-theoretic perspective of the approach taken here, we find that this assumption
of the boundedness of functions is also suggested as a necessity in our formal approach by the notion
of majorizability employed later. Concretely, as discussed before, to develop a proof-theoretically tame
theory of algebras and contents, we have regarded Ω and S as uniformly bounded in the sense that we
later regard all elements of these spaces as uniformly majorized by the content of the full space 𝜇(Ω),
that is, by 1 in the context of a probability content, which we denote in writing by 1 �Ω 𝑥 and 1 �𝑆 𝐴
for 𝑥 ∈ Ω and 𝐴 ∈ 𝑆. While this will be discussed comprehensively and in full formal detail later, we
here already look at what this definition entails for majorizable functions f of type 1(Ω): a function 𝑓 ∗

of type 0(0) (0) is a majorant for f, written 𝑓 ∗ �1(Ω) 𝑓 , if

𝑓 ∗(𝑚) (𝑘) ≥ 𝑓 ∗(𝑛) ( 𝑗) ≥ 𝑓 (𝑥) (𝑖) whenever 𝑚 ≥ 𝑛 �Ω 𝑥 and 𝑘 ≥ 𝑗 ≥ 𝑖.

Therefore, as 1 �Ω 𝑥 for any x, we in particular derive that

| 𝑓 (𝑥) | ≤ [| 𝑓 (𝑥) |] (0) + 1 ≤ 𝑓 (𝑥) (0) + 1 ≤ 𝑓 ∗(1) (0) + 1

for any x, using the monotonicity of the coding of rational numbers (see, e.g., the discussion on p.430
in [26]). Thus, the real number represented by 𝑓 (𝑥) is uniformly bounded by 𝑓 ∗(1) (0) + 1 for any x
and so any majorizable function of type 1(Ω) represents a bounded function Ω → R. In other words,
boundedness of integrable functions is suggested as a necessary assumption by the chosen proof-
theoretic methodology.

Lastly, we will actually require that the integrated functions are not only 𝑇2-measurable in the sense
discussed above but that they even are weakly Borel-measurable in the sense discussed before (i.e., that
the preimages of closed intervals are included in the underlying algebra). Clearly, any bounded and
weakly Borel-measurable function is also 𝑇2-measurable in the previous sense and thus integrable as
discussed before. While this class is slightly restricted compared to that of all integrable functions, we find
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that it has two central advantages: For one, it allows for a particularly smooth and proof-theoretically
tame approach to the integral that is amenable to bound extraction theorems. For another, in virtually
all previous ad hoc proof mining applications to measure and probability theory involving integrals,
already the stronger (or, in the context of 𝜎-algebras, equivalent) property of being Borel-measurable
is assumed so that a treatment of this class still allows for our metatheorems established later to provide
a proof-theoretic explanation of the respective extractions. Moreover, this is in particular true for the
applications discussed later in Section 9. In that way, the approach to the integral via this assumption
should be understood to be merely indicative regarding the possibilities of the present formal approach,
where various other measurability and integrability notions could similarly be accommodated.

Now, the formal approach to the integral over a probability content is to abstractly encode a suitable
subspace of bounded and weakly Borel-measurable functions closed under linear combinations, multi-
plications with characteristic functions, and absolute values15 intensionally via the use of a characteristic
function and then to introduce the integral for all functions from this space as well as the relevant closure
properties using further constants and axioms. For this, we now initially introduce two further constants
◦ I of type 0(1(Ω)),
◦ ‖·‖∞ of type 1(1(Ω)),
into the language of F𝜔 [P, Int, Inv]. The first of these is the previously mentioned characteristic
function providing an intensional account of a space closed under linear combinations, multiplications
with characteristic functions and absolute values as well as containing only bounded and weakly
Borel-measurable functions and the latter is used to formally introduce the supremum norm on these
functionals. As initial axioms, we now therefore stipulate the following:

∀ 𝑓 1(Ω) (𝐼 𝑓 ≤0 1), (I)1
∀𝐴𝑆 ((𝜆𝑥.(𝑥 ∈ 𝐴)) ∈ 𝐼), (𝐼)2

∀ 𝑓 1(Ω) , 𝑎1, 𝑏1∃𝐴𝑆∀𝑥Ω
(
𝑓 ∈ 𝐼 →

(
𝑥 ∈ 𝑓 −1([𝑎, 𝑏]) ↔ 𝑥 ∈ 𝐴

))
, (𝐼)3

∀ 𝑓 1(Ω) , 𝑥Ω ( 𝑓 ∈ 𝐼 → (| 𝑓 (𝑥) | ≤R ‖ 𝑓 ‖∞)), (𝐼)4

∀ 𝑓 1(Ω) , 𝑘0∃𝑥Ω
(
𝑓 ∈ 𝐼 →

(
‖ 𝑓 ‖∞ − 2−𝑘 ≤R | 𝑓 (𝑥) |

))
, (𝐼)5

∀ 𝑓 1(Ω) , 𝑔1(Ω) , 𝛼1, 𝛽1 ( 𝑓 , 𝑔 ∈ 𝐼 → (𝜆𝑥.(𝛼 𝑓 (𝑥) + 𝛽𝑔(𝑥))) ∈ 𝐼), (𝐼)6

∀ 𝑓 1(Ω) ( 𝑓 ∈ 𝐼 → 𝜆𝑥.| 𝑓 (𝑥) | ∈ 𝐼), (𝐼)7

∀ 𝑓 1(Ω) , 𝐴𝑆 ( 𝑓 ∈ 𝐼 → 𝜆𝑥.( 𝑓 (𝑥) (𝑥 ∈ 𝐴)) ∈ 𝐼). (𝐼)8

The axioms (𝐼)3 and (𝐼)5 will again be admissible later because of the extended notion of majoriz-
ability on Ω and S. Note also that axioms (𝐼)4 and (𝐼)5 together specify ‖ 𝑓 ‖∞ as the least upper bound
on | 𝑓 (𝑥) |.16

In the following, we will write 𝜒𝐴 for the function 𝜆𝑥.(𝑥 ∈ 𝐴𝑐).17 Also, in the following we just
briefly write 𝛼 𝑓 +𝛽𝑔 for 𝜆𝑥.(𝛼 𝑓 (𝑥) +𝛽𝑔(𝑥)) as well as | 𝑓 | for 𝜆𝑥.(| 𝑓 (𝑥) |) and 𝑓 𝜒𝐴 for 𝜆𝑥.( 𝑓 (𝑥)𝜒𝐴(𝑥)).

As the operations max and min can be defined on functions using the absolute value via

max{ 𝑓 , 𝑔} = ( 𝑓 + 𝑔 + | 𝑓 − 𝑔 |)/2 and min{ 𝑓 , 𝑔} = −max{− 𝑓 ,−𝑔},

we immediately get that axiom (𝐼)7 implies the closure of I under these operations and thus we have
effectively axiomatized that I in particular is a Riesz space of bounded functions with the respective

15In the context of a probability measure over a 𝜎-algebra, such a space could for example be the space of all bounded and
Borel-measurable functions.

16In fact, these two axioms can be seen as an instantiation of the general approach to tame suprema over bounded sets developed
in [51].

17As customary in the context of integration, we want characteristic functions to take the value 1 if the element is included in
the set. As we previously have used 0 for this, we used 𝐴𝑐 in the above definition.
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operations and thus our approach is similar to how abstract integration spaces are approached in the
context of Daniell integrals [7] where a similar collection of functions is presumed.

To deal with the integral, we add a further constant

◦
∫
· dP of type 1(1(Ω)).

The first two axioms for the integral are now that it behaves as expected on characteristic functions and
that the integral is a linear function:

∀𝐴𝑆
(∫

𝜒𝐴 dP =R P(𝐴)
)
, (

∫
)1

∀ 𝑓 1(Ω) , 𝑔1(Ω) , 𝛼1, 𝛽1
(
𝑓 , 𝑔 ∈ 𝐼 →

∫
(𝛼 𝑓 + 𝛽𝑔) dP =R 𝛼

∫
𝑓 dP + 𝛽

∫
𝑔 dP

)
. (

∫
)2

Using these two axioms, we immediately get that the integral behaves as expected on simple functions.
The major other statement that we need to axiomatize is that any function in I is actually integrable

in the sense that its integral is well-defined and arises as the limit of a sequence of integrals of simple
functions. In the context of our standing assumption that our functions are bounded and weakly Borel-
measurable, we can in particular derive the following general result that guarantees this property, and
inspires the subsequent axiom:

Lemma 7.2 (essentially folklore). Let Ω be a set, S an algebra on Ω and 𝜇 a probability content on S. Let
f be a weakly Borel-measurable function and assume that | 𝑓 | is bounded by 𝑏 ∈ N∗, that is, | 𝑓 (𝑥) | ≤ 𝑏
for all 𝑥 ∈ Ω. For a given k, define

𝐼𝑘,𝑖 =

[
−𝑏 +

𝑖

2𝑘
,−𝑏 +

𝑖 + 1
2𝑘

)
for 𝑖 = 0, 1, . . . , 𝑏2𝑘+1 − 2 and 𝐼𝑘,𝑏2𝑘+1−1 =

[
𝑏2𝑘 − 1

2𝑘
, 𝑏

]
.

Then:

∀𝑘 ∈ N
���
∫ ������ 𝑓 − 𝑏2𝑘+1−1∑

𝑖=0

(
−𝑏 +

𝑖

2𝑘

)
𝜒 𝑓 −1 (𝐼𝑘,𝑖)

������ dP ≤ 2−𝑘���.
Proof. Let 𝑘 ∈ N. As all 𝐼𝑘,𝑖 are disjoint and cover [−𝑏, 𝑏] and since | 𝑓 | is bounded by b, their preimages
under f are disjoint and cover Ω. Thus

1 = P(Ω) = P
���
𝑏2𝑘+1−1⋃
𝑖=0

𝑓 −1(𝐼𝑘,𝑖)
��� =

𝑏2𝑘+1−1∑
𝑖=0

P( 𝑓 −1(𝐼𝑘,𝑖))

and for any 𝑘 ∈ N:

𝑓 (𝑥) =
𝑏2𝑘+1−1∑
𝑖=0

𝑓 (𝑥)𝜒 𝑓 −1 (𝐼𝑘,𝑖) (𝑥).

Further, for 𝑥 ∈ 𝑓 −1(𝐼𝑘,𝑖), it clearly holds that���� 𝑓 (𝑥) − (
−𝑏 +

𝑖

2𝑘

)���� ≤ 1
2𝑘
.

As k was arbitrary, the function f is integrable by Theorem 4.5.7 in [6] (use, e.g., the equivalence
between (viii) and (v)). Thus, using the monotonicity and linearity of the integral on contents (see, e.g.,
Theorem 4.4.13 in [6]), we have
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∫ ������ 𝑓 − 𝑏2𝑘+1−1∑
𝑖=0

(
−𝑏 +

𝑖

2𝑘

)
𝜒 𝑓 −1 (𝐼𝑘,𝑖)

������ dP =
∫ ������𝑏2𝑘+1−1∑

𝑖=0

(
𝑓 + 𝑏 −

𝑖

2𝑘

)
𝜒 𝑓 −1 (𝐼𝑘,𝑖)

������ dP
≤

𝑏2𝑘+1−1∑
𝑖=0

∫ ���� 𝑓 − (
−𝑏 +

𝑖

2𝑘

)����𝜒 𝑓 −1 (𝐼𝑘,𝑖) dP

≤

𝑏2𝑘+1−1∑
𝑖=0

∫
1
2𝑘
𝜒 𝑓 −1 (𝐼𝑘,𝑖) dP

≤

𝑏2𝑘+1−1∑
𝑖=0

1
2𝑘
P( 𝑓 −1(𝐼𝑘,𝑖))

≤
1
2𝑘

𝑏2𝑘+1−1∑
𝑖=0

P( 𝑓 −1(𝐼𝑘,𝑖)) =
1
2𝑘
. �

To axiomatize the integrability of a function 𝑓 ∈ 𝐼, it thus suffices to state the conclusion of the
above lemma and although we could formalize this directly by employing the general inverse mapping
and intensional intervals, we can actually avoid this machinery here at the mild expense of quantifying
over the sequence of sets used in the simple functions instead of explicitly specifying them. Concretely,
we consider the following third axiom18

∀ 𝑓 1(Ω)∀𝑘0∃𝐴𝑆 (0)
��� 𝑓 ∈ 𝐼 →

∫ ������ 𝑓 −
2𝑘+1𝑏 𝑓 −1∑

𝑖=0

(
−𝑏 𝑓 +

𝑖

2𝑘

)
𝜒𝐴(𝑖)

������ dP ≤R 2−𝑘���, (
∫
)3

where we wrote 𝑏 𝑓 := ‖ 𝑓 ‖∞(0) + 1 and have used that, since ‖ 𝑓 ‖∞ ≥R | 𝑓 (𝑥) | for all x, it holds that the
natural number 𝑏 𝑓 similarly bounds | 𝑓 |. Again, by the later considerations on majorizability whereby
also A of type 𝑆(0) can be regarded as uniformly bounded, this axiom will later be admissible in the
context of our approach to proof mining metatheorems via the monotone functional interpretation.

Lastly, to also devise a practical system, it will be convenient to also axiomatically include (instead
of discussing how it might be provable in the system) that the integral of a positive function 𝑓 ∈ 𝐼 is
positive. Naively, this statement can be written as

∀ 𝑓 1(Ω)
(
𝑓 ∈ 𝐼 ∧ ∀𝑥Ω ( 𝑓 (𝑥) ≥R 0) →

∫
𝑓 dP ≥R 0

)
which is not a priori admissible in the context of our approach to bound extraction theorems due to the
hidden negative universal type 0 quantifier in ≥R. However, if we rewrite the above statement in the
prenexed form

∀ 𝑓 1(Ω)∀𝑘0∃𝑥Ω∃ 𝑗0
(
𝑓 ∈ 𝐼 ∧

∫
𝑓 dP <R −2−𝑘 →

(
𝑓 (𝑥) ≤R −2− 𝑗

) )
,

we can witness the quantifier over j simply by 𝑗 = 𝑘 which can be immediately seen using only very
basic properties of the integral (see, e.g., Theorem 4.4.13 in [6]) so that we arrive at the axiom

∀ 𝑓 1(Ω)∀𝑘0∃𝑥Ω
(
𝑓 ∈ 𝐼 ∧

∫
𝑓 dP <R −2−𝑘 →

(
𝑓 (𝑥) ≤R −2−𝑘

))
(
∫
)4

18Note that in the context of this axiom, we can introduce the sum expression by the recursor constants of the underlying system
A𝜔 .
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which, in the context of our perspective that we regard quantification over Ω as bounded, will later be
admissible in the context of the monotone functional interpretation.

We want to note that the axioms (
∫
)2 – (

∫
)4 roughly correspond to the four central properties of an

abstract “I-integral” in the context of Daniell’s approach to integration [7] and so, in some sense, our
approach to the integral here can be regarded as a sort of effectivized implementation of the Daniell
integral.

With all of these constants and axioms, we then arrive at the following system for integrals:

Definition 7.3. We write F𝜔 [P, Integral] for the system resulting from F𝜔 [P, Int, Inv] by adding the
above constants 𝐼, ‖·‖∞,

∫
· dP together with the axioms (𝐼)1 – (𝐼)8 as well as (

∫
)1 – (

∫
)4. Further, we

write F𝜔 [
⋃
, P, Integral] for the system F𝜔 [P, Integral] extended with the constant

⋃
and the axiom

(
⋃
)1 as well as the rule (

⋃
)2.

We end this section with some immediate properties of the integral over contents that are provable
in our system. A more intricate use of the integrals will then be made in Section 9 where they (together
with the boundedness and weak Borel-measurability) feature crucially in the formal explanation of
a previous proof-mining application (and in particular highlight the usability of the above axiomatic
approach to the integral with regard to the proof mining practice). As is common in proof mining,
however, this approach to the integral enjoys a large degree of flexibility in the sense that it can, of
course, be immediately augmented by further constants and axioms specifying other properties of the
integral that might be crucial in a certain application, as also already mentioned before.

Lemma 7.4. The system F𝜔 [P, Integral] proves:

1.
∫
· dP is monotone w.r.t. pointwise inequality, that is,

∀ 𝑓 1(Ω) , 𝑔1(Ω)
(
𝑓 , 𝑔 ∈ 𝐼 ∧ ∀𝑥Ω ( 𝑓 (𝑥) ≤R 𝑔(𝑥)) →

∫
𝑓 dP ≤R

∫
𝑔 dP

)
.

2.
∫
· dP is extensional w.r.t. pointwise equality, that is,

∀ 𝑓 1(Ω) , 𝑔1(Ω)
(
𝑓 , 𝑔 ∈ 𝐼 ∧ ∀𝑥Ω ( 𝑓 (𝑥) =R 𝑔(𝑥)) →

����∫ 𝑓 dP −
∫

𝑔 dP
���� =R 0

)
.

3.
∫
· dP is monotone w.r.t. inequality almost everywhere, that is,

∀ 𝑓 1(Ω) , 𝑔1(Ω)
(
𝑓 , 𝑔 ∈ 𝐼∧∃𝐴𝑆

(
P(𝐴) = 0 ∧ ∀𝑥Ω (𝑥 ∈ 𝐴𝑐 → 𝑓 (𝑥) ≤R 𝑔(𝑥))

)
→

∫
𝑓 dP ≤R

∫
𝑔 dP

)
.

4.
∫
· dP is extensional w.r.t. equality almost everywhere, that is,

∀ 𝑓 1(Ω) , 𝑔1(Ω)
(
𝑓 , 𝑔 ∈ 𝐼∧∃𝐴𝑆

(
P(𝐴) = 0 ∧ ∀𝑥Ω (𝑥 ∈ 𝐴𝑐 → 𝑓 (𝑥) =R 𝑔(𝑥))

)
→

����∫ 𝑓 dP −
∫

𝑔 dP
���� =R 0

)
.

5.
∫
· dP behaves well with absolute values, that is,

∀ 𝑓 1(Ω)
(
𝑓 ∈ 𝐼 →

����∫ 𝑓 dP
���� ≤R ∫ | 𝑓 | dP

)
.
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Proof.
1. If ∀𝑥( 𝑓 (𝑥) ≤ 𝑔(𝑥)), note that we have (𝑔 − 𝑓 ) (𝑥) ≥ 0 for all x. By axiom (

∫
)4, we have thus that∫

(𝑔 − 𝑓 ) dP ≥ 0 and therefore, we get
∫
𝑓 dP ≤

∫
𝑔 dP by axiom (

∫
)2.

2. This immediately follows from item (1).
3. By axiom (𝐼)8, we have 𝑓 𝜒𝐴𝑐 , 𝑔𝜒𝐴𝑐 ∈ 𝐼. As in particular 𝑓 𝜒𝐴𝑐 (𝑥) ≤ 𝑔𝜒𝐴𝑐 (𝑥) holds for any x, we get∫

𝑓 𝜒𝐴𝑐 dP ≤
∫

𝑔𝜒𝐴𝑐 dP

by item (1). Similarly, as the axioms for the supremum norm imply that ( 𝑓 − 𝑔)𝜒𝐴(𝑥) ≤

‖ 𝑓 − 𝑔‖∞𝜒𝐴(𝑥) for all x, item (1) together with axiom (
∫
)1 implies∫

( 𝑓 − 𝑔)𝜒𝐴 dP ≤
∫

‖ 𝑓 − 𝑔‖∞𝜒𝐴 dP = ‖ 𝑓 − 𝑔‖∞P(𝐴) = 0

which yields ∫
𝑓 𝜒𝐴 dP ≤

∫
𝑔𝜒𝐴 dP.

As 𝑓 (𝑥) = 𝑓 𝜒𝐴(𝑥) + 𝑓 𝜒𝐴𝑐 (𝑥) holds for all x (and similarly for g), we thus in particular get the claim
using axiom (

∫
)2.

4. This immediately follows from item (3).
5. Note that we have provably that −| 𝑓 (𝑥) | ≤ 𝑓 (𝑥) ≤ | 𝑓 (𝑥) | for any x so that by item (1) and axiom

(
∫
)2, we have

−

∫
| 𝑓 | dP ≤

∫
𝑓 dP ≤

∫
| 𝑓 | dP,

that is, that
��∫ 𝑓 dP

�� ≤ ∫
| 𝑓 | dP. �

Note that by item (2) of the above lemma together with the axioms on the supremum norm ‖·‖∞, we
in particular have that

∫
· dP is extensional w.r.t. ‖·‖∞ in the sense that

∀ 𝑓 1(Ω) , 𝑔1(Ω)
(
‖ 𝑓 − 𝑔‖∞ =R 0 →

����∫ 𝑓 dP −
∫

𝑔 dP
���� =R 0

)
.

8. A bound extraction theorem

We now establish our main results, the bound extraction theorems, for the systems introduced previously.
For that, as hinted at in the introduction, we follow the approach of the first metatheorems using abstract
types presented in [25] (see also [12, 26]).19 As the outline of our approach is rather standard in that
way, we will sometimes only sketch the arguments instead of giving full, detailed proofs, only spelling
out those parts that are sensitive to the new ideas introduced in this paper. Throughout, to ease notation,
we write C𝜔 for the system F𝜔 or one of its extensions as discussed previously.

As in the works mentioned above, the main tool for the metatheorems presented here is Gödel’s
Dialectica interpretation [13] which is combined with a negative translation by Kuroda [36]. We recall
the definitions of those central proof interpretations here:
Definition 8.1 [13, 60]. The Dialectica interpretation 𝐴𝐷 = ∃𝑥∀𝑦𝐴𝐷 (𝑥, 𝑦) of a formula A in the language
of C𝜔 (and its extensions) is defined via the following recursion on the structure of the formula:

19As mentioned in the introduction already, this approach has been adapted to provide a treatment amenable to proof mining
methods of a wide array of different mathematical notions in the past. We again refer to the references in the introduction for these
results.
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1. 𝐴𝐷 := 𝐴𝐷 := 𝐴 for A being a prime formula.
If 𝐴𝐷 = ∃𝑥∀𝑦𝐴𝐷 (𝑥, 𝑦) and 𝐵𝐷 = ∃𝑢∀𝑣𝐵𝐷 (𝑢, 𝑣), we set

2. (𝐴 ∧ 𝐵)𝐷 := ∃𝑥, 𝑢∀𝑦, 𝑣(𝐴 ∧ 𝐵)𝐷
where (𝐴 ∧ 𝐵)𝐷 (𝑥, 𝑢, 𝑦, 𝑣) := 𝐴𝐷 (𝑥, 𝑦) ∧ 𝐵𝐷 (𝑢, 𝑣),

3. (𝐴 ∨ 𝐵)𝐷 := ∃𝑧0, 𝑥, 𝑢∀𝑦, 𝑣(𝐴 ∨ 𝐵)𝐷

where (𝐴 ∨ 𝐵)𝐷 (𝑧0, 𝑥, 𝑢, 𝑦, 𝑣) := (𝑧 = 0 → 𝐴𝐷 (𝑥, 𝑦)) ∧ (𝑧 ≠ 0 → 𝐵𝐷 (𝑢, 𝑣)),
4. (𝐴→ 𝐵)𝐷 := ∃𝑈,𝑌∀𝑥, 𝑣(𝐴→ 𝐵)𝐷

where (𝐴→ 𝐵)𝐷 (𝑈,𝑌, 𝑥, 𝑣) := 𝐴𝐷 (𝑥,𝑌𝑥𝑣) → 𝐵𝐷 (𝑈𝑥, 𝑣),
5. (∃𝑧𝜏𝐴(𝑧))𝐷 := ∃𝑧, 𝑥∀𝑦(∃𝑧𝜏𝐴(𝑧))𝐷

where (∃𝑧𝜏𝐴(𝑧))𝐷 (𝑧, 𝑥, 𝑦) := 𝐴𝐷 (𝑥, 𝑦, 𝑧),
6. (∀𝑧𝜏𝐴(𝑧))𝐷 := ∃𝑋∀𝑧, 𝑦(∀𝑧𝜏𝐴(𝑧))𝐷

where (∀𝑧𝜏𝐴(𝑧))𝐷 (𝑋, 𝑧, 𝑦) := 𝐴𝐷 (𝑋𝑧, 𝑦, 𝑧).
Definition 8.2 [36]. The negative translation of A is defined by 𝐴′ := ¬¬𝐴∗ where 𝐴∗ is defined by the
following recursion on the structure of A:
1. 𝐴∗ := 𝐴 for prime A;
2. (𝐴 ◦ 𝐵)∗ := 𝐴∗ ◦ 𝐵∗ for ◦ ∈ {∧,∨,→};
3. (∃𝑥𝜏𝐴)∗ := ∃𝑥𝜏𝐴∗;
4. (∀𝑥𝜏𝐴)∗ := ∀𝑥𝜏¬¬𝐴∗.

For the combination of these two interpretations, the following soundness result is one of the two
central technical tools in the context of the proof of the proof mining metatheorems. In that context, we
define C𝜔− as the system C𝜔 without the schemas QF-AC and DC.
Lemma 8.3 (essentially [25]). LetP be a set of universal sentences and let 𝐴(𝑎) be an arbitrary formula
(with only the variables 𝑎 free) in the language of F𝜔 . Then the rule{

F𝜔 + P � 𝐴(𝑎) ⇒

F𝜔− + (BR) + P � ∀𝑎, 𝑦(𝐴′)𝐷 (𝑡𝑎, 𝑦, 𝑎)

holds where 𝑡 is a tuple of closed terms of F𝜔− + (BR) which can be extracted from the respective proof
and (BR) is the schema of simultaneous bar-recursion of Spector [58], here extended to all types from
𝑇Ω,𝑆 (similar to, e.g., [26]).

This result extends to any suitable extension of the language of F𝜔 (e.g., by any kind of new types
and constants) together with any number of additional universal axioms in that language.

We omit the proof as it is almost exactly the same as the proof given for the analogous soundness
result in [25] (although this result from [25] is of course not formulated for the system F𝜔).

Besides the soundness of the Dialectica interpretation (together with the negative translation), the
other one of the two central tools utilized in the metatheorems is that of majorizability. Originally
introduced by Howard [19], the notion of majorizable functionals was later extended by Bezem [5] to
that of strongly majorizable functionals to provide a model for finite type arithmetic extended by the
schema of bar recursion discussed before. In that way, this model of strongly majorizable functionals
provides the crucial basis for proof mining metatheorems of systems allowing for dependent choice. In
the context of the abstract types, we further need to consider an extension of this notion of strongly
majorizable functionals to these new types. The first such extensions to abstract types have been devised
in [12, 25]. However, in this setting (and essentially in all other settings for metatheorems proved
afterwards), this extension was motivated and based on the metric structure assumed for the respective
classes of spaces that were treated. We thus find ourselves here at a “fork in the road,” where we have
to extend the notion of majorizability sensibly to our types Ω and S, both representing spaces which
do not carry any metric structure. The key insight, already mentioned and motivated throughout the
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previous sections many times (e.g., in the context of the admissibility of the axioms containing existential
quantifiers over variables of types Ω, S or 𝑆(0), etc.) is to

1. majorize objects 𝐴𝑆 by natural numbers bounding the measure of A,
2. majorize objects 𝑥Ω by natural numbers bounding the measure of the full set Ω in S.

In the case of a probability measure, any object of type Ω or S is therefore uniformly majorized by 1 but
with the phrasing of (1) and (2), we wanted to highlight the general idea of this approach as it might be
feasible also for more general finite contents.

In any way, similar to [12, 25], the majorants for objects with types from 𝑇Ω,𝑆 are objects with types
from T according to the following extended projection:

Definition 8.4 (essentially [12]). Define 𝜏̂ ∈ 𝑇 , given 𝜏 ∈ 𝑇Ω,𝑆 , by recursion on the structure via

0̂ := 0, Ω̂ := 0, 𝑆 := 0, 𝜏(𝜉) := 𝜏̂(𝜉).

The majorizability relation � is then defined in tandem with the structure of all strongly majorizable
functionals.

Definition 8.5 (essentially [12, 25]). Let Ω be a nonempty set, 𝑆 ⊆ 2Ω be an algebra and P be a
probability content on S. The structure M𝜔,Ω,𝑆 and the majorizability relation �𝜌 are defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M0 := N, 𝑛 �0 𝑚 := 𝑛 ≥ 𝑚 ∧ 𝑛, 𝑚 ∈ N,

MΩ := Ω, 𝑛 �Ω 𝑥 := 𝑛 ≥ P(Ω) ∧ 𝑛 ∈ M0, 𝑥 ∈ MΩ,

M𝑆 := 𝑆, 𝑛 �𝑆 𝐴 := 𝑛 ≥ P(𝐴) ∧ 𝑛 ∈ M0, 𝐴 ∈ M𝑆 ,

𝑓 �𝜏 ( 𝜉 ) 𝑥 := 𝑓 ∈ M
M𝜉

𝜏̂
∧ 𝑥 ∈ MM𝜉

𝜏

∧ ∀𝑔 ∈ M𝜉 , 𝑦 ∈ M𝜉 (𝑔 �𝜉 𝑦 → 𝑓 𝑔 �𝜏 𝑥𝑦)

∧ ∀𝑔, 𝑦 ∈ M𝜉 (𝑔 �𝜉 𝑦 → 𝑓 𝑔 �𝜏̂ 𝑓 𝑦),

M𝜏 ( 𝜉 ) :=
{
𝑥 ∈ MM𝜉

𝜏 | ∃ 𝑓 ∈ M
M𝜉

𝜏̂
: 𝑓 �𝜏 ( 𝜉 ) 𝑥

}
.

So, as already discussed previously, though only informally, as P is a probability content, we have
1 �𝑆 𝐴 for any 𝐴 ∈ 𝑆 (as P(𝐴) ≤ P(Ω) = 1) as well as 1 �Ω 𝑥 for any 𝑥 ∈ Ω (but in the way the model
is defined above, the definition immediately makes sense in the context of general finite contents).

Before we move on further, we now just quickly note that majorizability behaves nicely w.r.t. functions
with multiple arguments as represented by their curried variants.

Lemma 8.6 ([12, 25], see also Kohlenbach [26, Lemma 17.80]). Let 𝜉 = 𝜏(𝜉𝑘 ) . . . (𝜉1). For 𝑥∗ :
M 𝜉̂1

→ (M 𝜉̂2
→ · · · → M𝜏̂) . . . ) and 𝑥 : M𝜉1 → (M𝜉2 → · · · → M𝜏) . . . ), we have 𝑥∗ �𝜉 𝑥 iff

1. ∀𝑦∗1, 𝑦1, . . . , 𝑦
∗
𝑘 , 𝑦𝑘

(∧𝑘
𝑖=1(𝑦

∗
𝑖 �𝜉𝑖 𝑦𝑖) → 𝑥∗𝑦∗1 . . . 𝑦

∗
𝑘 �𝜏 𝑥𝑦1 . . . 𝑦𝑘

)
and

2. ∀𝑦∗1, 𝑦1, . . . , 𝑦
∗
𝑘 , 𝑦𝑘

(∧𝑘
𝑖=1(𝑦

∗
𝑖 �𝜉𝑖 𝑦𝑖) → 𝑥∗𝑦∗1 . . . 𝑦

∗
𝑘 �𝜏̂ 𝑥

∗𝑦1 . . . 𝑦𝑘

)
.

The other main structure featuring in the metatheorems is the structure of all set-theoretic functionals
S𝜔,Ω,𝑆 , defined via S0 := N, SΩ := Ω, S𝑆 := 𝑆 and

S𝜏 ( 𝜉 ) := SS𝜉
𝜏 .

Both structuresS𝜔,Ω,𝑆 andM𝜔,Ω,𝑆 later turn into models of our systems if equipped with corresponding
interpretations for the respective additional constants, with S𝜔,Ω,𝑆 serving as the structure for the
intended standard models.

The proof of the bound extraction theorems now follows the following general high-level outline
of most other such metatheorems: using functional interpretation and negative translation, one ex-
tracts realizers from (essentially) ∀∃-theorems. These realizers have types from 𝑇Ω,𝑆 . We then use
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majorizability to construct bounds for these realizers, depending only on majorants of the parameters,
which are validated in a model based on M𝜔,Ω,𝑆 . In a final step, we can then recover to the truth in a
model based on the usual full set-theoretic structure S𝜔,Ω,𝑆 if the types occurring in the axioms and the
theorem are “low enough,” which we will call admissible. Concretely, following [12, 25], we introduce
the following specific classes of types: We call a type 𝜉 of degree n if 𝜉 ∈ 𝑇 and it has degree ≤ 𝑛 in the
usual sense (see, e.g., [26]). Further we call 𝜉 small if it is of the form 𝜉 = 𝜉0(0) . . . (0) for 𝜉0 ∈ {0,Ω, 𝑆}
(including 0,Ω, 𝑆) and call it admissible if it is of the form 𝜉 = 𝜉0 (𝜏𝑘 ) . . . (𝜏1) where each 𝜏𝑖 is small
and 𝜉0 ∈ {0,Ω, 𝑆} (also including 0,Ω, 𝑆).

Further, also in analogy to [12, 25], we define certain subclasses of formulas satisfying certain type
restrictions: A formula A is called a ∀-formula if 𝐴 = ∀𝑎 𝜉 𝐴𝑞 𝑓 (𝑎) with 𝐴𝑞 𝑓 quantifier-free and all
types 𝜉𝑖 in 𝜉 = (𝜉1, . . . , 𝜉𝑘 ) are admissible. A formula A is called an ∃-formula if 𝐴 = ∃𝑎 𝜉 𝐴𝑞 𝑓 (𝑎) with
similar 𝐴𝑞 𝑓 and 𝜉.

The class Δ already mentioned previously, which was originally introduced in [20, 21] (and then
lifted to abstract types in [16]) to signify a collection of commonly occurring formulas with trivial
monotone functional interpretations, is now similarly introduced in the context of the systems studied
in this paper: a formula of type Δ is any formula of the form

∀𝑎 𝛿∃𝑏 ≤𝜎 𝑟𝑎∀𝑐
𝛾𝐴𝑞 𝑓 (𝑎, 𝑏, 𝑐)

where 𝐴𝑞 𝑓 is quantifier-free, the types in 𝛿, 𝜎, and 𝛾 are admissible, 𝑟 is a tuple of closed terms of
appropriate type, ≤ is defined by recursion on the type via

1. 𝑥 ≤0 𝑦 := 𝑥 ≤0 𝑦,
2. 𝑥 ≤Ω 𝑦 := P(Ω) ≤R P(Ω),
3. 𝐴 ≤𝑆 𝐵 := P(𝐴) ≤R P(𝐵),
4. 𝑥 ≤𝜏 ( 𝜉 ) 𝑦 := ∀𝑧 𝜉 (𝑥𝑧 ≤𝜏 𝑦𝑧),

and 𝑥 ≤𝜎 𝑦 is an abbreviation for 𝑥1 ≤𝜎1 𝑦1 ∧ · · · ∧ 𝑥𝑘 ≤𝜎𝑘 𝑦𝑘 where 𝑥, 𝑦, and 𝜎 are k-tuples of terms
and types, respectively, such that 𝑥𝑖 and 𝑦𝑖 are of type 𝜎𝑖 .

Given a set � of formulas of type Δ , we write �̃ for the set of all Skolem normal forms

∃𝐵 ≤𝜎 (𝛿) 𝑟∀𝑎
𝛿∀𝑐𝛾𝐴𝑞 𝑓 (𝑎, 𝐵𝑎, 𝑐)

for any ∀𝑎𝛿∃𝑏 ≤𝜎 𝑟𝑎∀𝑐
𝛾𝐴𝑞 𝑓 (𝑎, 𝑏, 𝑐) in �.

Remark 8.7. We want to note briefly that all axioms that were previously discussed as admissible based
on our extended notion of majorizability can actually be seen as statements of type Δ in the context of
the above definition. At first, the axiom (P)4 can be equivalently rewritten as

∀𝐴𝑆 , 𝐵𝑆∃𝑥Ω ≤Ω 𝑐Ω (P(𝐴) >R P(𝐵) → (𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵))

and is thus immediately of type Δ .20 Second, also the axiom (𝐼)3 can be rewritten with the additional
boundedness information via

∀ 𝑓 1(Ω) , 𝑎1, 𝑏1∃𝐴𝑆 ≤𝑆 Ω∀𝑥Ω
(
𝑓 ∈ 𝐼 →

(
𝑥 ∈ 𝑓 −1([𝑎, 𝑏]) ↔ 𝑥 ∈ 𝐴

))
and thus is of type Δ . Similarly, also the axiom (𝐼)5 can be rewritten as an axiom of type Δ as

∀ 𝑓 1(Ω) , 𝑘0∃𝑥Ω ≤Ω 𝑐Ω

(
𝑓 ∈ 𝐼 →

(
‖ 𝑓 ‖∞ − 2−𝑘 ≤R | 𝑓 (𝑥) |

))
.

20Note the importance of the constant 𝑐Ω witnessing the nonemptiness of Ω for writing (P)4 in that way.
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Lastly, also the integrability axioms (
∫
)4 and (

∫
)3 can be rewritten as

∀ 𝑓 1(Ω) , 𝑘0∃𝑥Ω ≤Ω 𝑐Ω

(
𝑓 ∈ 𝐼 ∧

∫
𝑓 dP <R −2−𝑘 →

(
𝑓 (𝑥) ≤R −2−𝑘

))
and

∀ 𝑓 1(Ω) , 𝑘0∃𝐴𝑆 (0) ≤𝑆 (0) 𝜆𝑛
0.Ω

��� 𝑓 ∈ 𝐼 →
∫ ������ 𝑓 −

2𝑘+1𝑏 𝑓 −1∑
𝑖=0

(
−𝑏 𝑓 +

𝑖

2𝑘

)
𝜒𝐴(𝑖)

������ dP ≤R 2−𝑘���,
respectively, with 𝑏 𝑓 := ‖ 𝑓 ‖∞(0) + 1 as before, which turns them into axioms of type Δ .

Crucially, axioms of type Δ are trivialized under the monotone functional interpretation21 and we
treat any axiom of type Δ in C𝜔 (or any suitable extension) “in this spirit.” We here only write “in
this spirit” as we actually do not use a monotone variant of the Dialectica interpretation but treat the
functional interpretation part and the majorization part of the combined interpretation separately. In that
way, we follow the approach given in [16] (see also the recent [51]) and treat axioms of type Δ by
employing a construction that converts a theory with axioms of such a type into a theory using only
additional purely universal axioms formulated using the Skolem functions of these axioms. This new
theory is then used in combination with the functional interpretation to extract the respective terms and
then the proof proceeds as outlined before.

Concretely, we now proceed as follows: Let � be a set of axioms of type Δ and write Ĉ𝜔 for C𝜔
without any of its axioms of type Δ . Then, we form a new theory C𝜔� from Ĉ𝜔 by adding the Skolem
functionals 𝐵 of any axiom of type Δ of C𝜔 + �, say of the form

∀𝑎𝛿∃𝑏 ≤𝜎 𝑟𝑎∀𝑐
𝛾𝐴𝑞 𝑓 (𝑎, 𝑏, 𝑐),

as new constants to the language and simultaneously adding the corresponding “instantiated Skolem
normal form,” that is,

𝐵 ≤𝜎 (𝛿) 𝑟 ∧ ∀𝑎 𝛿∀𝑐𝛾𝐴𝑞 𝑓 (𝑎, 𝐵𝑎, 𝑐),

as a new axiom. Therefore, the system C𝜔� only extends F𝜔 by new types, constants, and universal
axioms. Therefore, as mentioned before, Lemma 8.3 also applies to this system where the conclusion
is then proved in C𝜔−

� + (BR), that is, C𝜔� with the principles QF-AC and DC removed and where the
scheme of simultaneous bar-recursion is added.

In the case where the extension C𝜔 contains the rule (
⋃
)2, we for simplicity assume that in the

process of forming the extended theory, this rule is also removed in the sense that C𝜔� does not contain
the rule and for any provable premise

C𝜔 + � � 𝐹𝑞 𝑓 → ∀𝑛0 (𝐴(𝑛) ⊆𝑆 𝐵),

we add the corresponding conclusion

𝐹𝑞 𝑓 →
⋃

𝐴 ⊆𝑆 𝐵

as an axiom of C𝜔� .
We now move on to the central result of the majorization part of the chosen approach to the bound

extraction theorems, stating that every closed term in the underlying language of the system in question
is majorizable. As such, the result is similar to Lemma 9.11 in [12].

21While the interpretation was introduced under this name in [23], the idea of combining the Dialectica interpretation and
majorization is already due to [21].
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Lemma 8.8. Let C𝜔 be (one of the previously discussed extensions of) the system F𝜔 [P] and let � be
a set of additional axioms of type Δ . Let Ω be a nonempty set and let 𝑆 ⊆ 2Ω be an algebra (or, in the
context of the constant

⋃
, a 𝜎-algebra). Let P be a probability content on S. Then M𝜔,Ω,𝑆 is a model

of C𝜔−

� + (BR), provided S𝜔,Ω,𝑆 |= � (with M𝜔,Ω,𝑆 and S𝜔,Ω,𝑆 defined via suitable interpretations of
the additional constants in C𝜔). Moreover, for any closed term t of C𝜔−

� + (BR), one can construct a
closed term 𝑡∗ of A𝜔 + (BR) such that

M𝜔,Ω,𝑆 |= (𝑡∗ � 𝑡).

Proof. The structure of the proof is standard and similar to proofs of related results from the literature
(see, e.g., [26]). As such, we only discuss the interpretations of the new constants added to A𝜔 to form
the respective theories as well as their majorizations. For the constants already contained in A𝜔 , we may
choose suitable interpretations as in [26] and for majorizing a composition of terms, we may similarly
proceed as outlined therein. For that, we now first focus on F𝜔 [P] and assume that there are no further
axioms of type Δ beyond those already contained in F𝜔 [P]. For any C𝜔 , we deal with any set � of
additional axioms of type Δ and the respectively induced constants later on by moving to the theory C𝜔� .

Now, for the new constants added to A𝜔 to form F𝜔 [P], we consider the following interpretations
(writing M for M𝜔,Ω,𝑆):

◦ [eq]M := the characteristic function of the equality relation in Ω;
◦ [∈]M := the characteristic function of the element relation in 𝑆;
◦ [∪]M := union in 𝑆;
◦ [(·)𝑐]M := complement in 𝑆;
◦ [∅]M := the empty set in 𝑆;
◦ [P]M := 𝜆𝐴𝑆 .(P(𝐴))◦ where P is the content fixed in the context of this lemma.

This is only well-defined in M𝜔,Ω,𝑆 if we can construct majorants of these objects. This we can do
as follows:

◦ 𝜆𝑥0, 𝑦0.1 � eq;
◦ 𝜆𝑥0, 𝑦0.1 � ∈;
◦ 𝜆𝑥0, 𝑦0.1 � ∪;
◦ 𝜆𝑥0.1 � (·)𝑐;
◦ 0 � ∅;
◦ 𝜆𝑥0.(𝑥)◦ � P.

Note that in the last item, the operation (𝑥)◦ is definable in A𝜔 via a closed term as x is of type 0.
For justifying that those terms really are majorants of the respective constants, we argue as follows:

The first four items immediately follow from the fact that P(𝐴) ≤ P(Ω) = 1 (i.e., that P is a probability
content) and that P(∅) =R 0. The last item follows immediately from Lemma 2.1 as clearly, if 𝑥 ≥R P(𝐴),
then (𝑥)◦ � (P(𝐴))◦.

In the case where C𝜔 contains the respective additional constant
⋃

, a corresponding interpretation
is naturally defined by

◦ [
⋃
]M := countably infinite union in S,

which is well-defined since we in this context assume that S is a 𝜎-algebra. We can achieve majorization
as before by exploiting that P is a finite content with

◦ 𝜆 𝑓 0(0) .1 �
⋃

.

Lastly, if the system C𝜔 contains the respective constants and axioms for treating integrals, we choose
corresponding interpretations of the additional constants as follows:

◦
[
[·, ·]

]
M := 𝜆𝑎1, 𝑏1, 𝑥1.

{
0 if 𝑟𝑥 ∈ [𝑟𝑎, 𝑟𝑏];
1 otherwise;
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◦ [(·)−1]M := 𝜆 𝑓 1(Ω) , 𝐴0(1) , 𝑥Ω.

{
0 if 𝑥 ∈ 𝑓 −1({𝑟𝑎 | 𝑎1 : 𝐴(𝑎) =0 0});
1 otherwise;

◦ [𝐼]M := the characteristic function of a set of bounded and weakly Borel-measurable functions 𝑓 1(Ω)

which is closed under linear combinations, multiplication with characteristic functions, and absolute
values;

◦ [‖·‖∞]M := 𝜆 𝑓 1(Ω) .

{
(sup𝑥∈Ω | 𝑓 (𝑥) |)◦ if 𝑓 is bounded;
0 otherwise;

◦ [
∫
· dP]M := 𝜆 𝑓 1(Ω) .

{
(
∫
𝑓 dP)◦ if 𝑓 is bounded and weakly Borel-measurable;

0 otherwise;
where the latter

∫
𝑓 dP represents the usual integral defined over the content.

Note that here, we now rely on the extended operator (·)◦ operating on all real numbers as the
integral of a general integrable function may be negative. As for majorization, we rely on the following
constructions:

◦ 𝜆𝑎1, 𝑏1, 𝑟1.1 � [·, ·];
◦ 𝜆 𝑓 1(0) , 𝐴0(1) , 𝑥0.1 � (·)−1;
◦ 𝜆 𝑓 1(0) .1 � 𝐼;
◦ 𝜆 𝑓 1(0) .( 𝑓 (1) (0) + 1)◦ � ‖·‖∞;
◦ 𝜆 𝑓 1(0) .( 𝑓 (1) (0) + 1)◦ �

∫
· dP.

The first three items are immediate as we deal with characteristic functions. For the fourth, note that if
𝑓 ∗1(0) � 𝑓 1(Ω) , then

∀𝑛0, 𝑥Ω (𝑛 � 𝑥 → 𝑓 ∗(𝑛) � 𝑓 (𝑥))

and as 1 � 𝑥 for any 𝑥Ω as 1 = P(Ω), we have 𝑓 ∗(1) � 𝑓 (𝑥) for any 𝑥Ω. Therefore, we have

𝑓 ∗(1) (0) + 1 ≥R 𝑓 (𝑥) (0) + 1 ≥R [| 𝑓 (𝑥) |] (0) + 1 ≥R | 𝑓 (𝑥) |

for any 𝑥Ω, by the monotonicity of the coding of rational numbers (again, see, e.g., the discussion on
p.430 in [26]). This implies 𝑓 ∗(1) (0) + 1 ≥R ‖ 𝑓 ‖∞ so that the result follows from Lemma 2.1.

Lastly, note that for any bounded and weakly Borel-measurable function f, we have that |
∫
𝑓 dP| ≤R∫

| 𝑓 | dP so that ����∫ 𝑓 dP
���� ≤R ∫ | 𝑓 | dP ≤R ‖| 𝑓 |‖∞ =R ‖ 𝑓 ‖∞ ≤R 𝑓

∗(1) (0) + 1

as before. The majorizability result then follows again from Lemma 2.1.
That M𝜔,Ω,𝑆 with these chosen interpretations is a model of C𝜔− + (BR) can be shown similarly

to analogous results (see, e.g., [26]). The intended interpretations of the constants of C𝜔 in S𝜔,Ω,𝑆 ,
turning S𝜔,Ω,𝑆 into a model of these systems, are defined in analogy to the corresponding model
M𝜔,Ω,𝑆 defined above.

For treating the other additional axioms in C𝜔 +� of type Δ beyond the axioms already contained in
C𝜔 , we rely on the following argument (akin to [16], Lemma 5.11) showing that S𝜔,Ω,𝑆 |= � implies
M𝜔,Ω,𝑆 |= �̃. For this, the proof given in [16] for Lemma 5.11 carries over which we sketch here:
While M𝜔,Ω,𝑆 in general is not a model of the axiom of choice [22], one can show (similar to [22])
that M𝜔,Ω,𝑆 |= b-ACΩ,𝑆 where

b-ACΩ,𝑆 :=
⋃

𝛿,𝜌∈𝑇 Ω,𝑆

b-AC𝛿,𝜌
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with

b-AC𝛿,𝜌 := ∀𝑍𝜌(𝛿)
(
∀𝑥 𝛿∃𝑦 ≤𝜌 𝑍𝑥𝐴(𝑥, 𝑦, 𝑍) → ∃𝑌 ≤𝜌(𝛿) 𝑍∀𝑥

𝛿𝐴(𝑥,𝑌𝑥, 𝑍)
)
.

Now, for small types 𝜌, we have 𝑀𝜌 = 𝑆𝜌 while for admissible types 𝜌, we have 𝑀𝜌 ⊆ 𝑆𝜌 (for which
it is important that admissible types take arguments of small types). For this, the proof given in [12]
carries over. Further, we need that it is provable in C𝜔− that

∀𝑥 ′, 𝑥, 𝑦
(
𝑥 ′ �𝜌 𝑥 ∧ 𝑥 ≥𝜌 𝑦 → 𝑥 ′ �𝜌 𝑦

)
(†)

holds for all types 𝜌 which can be shown similar to, for example, [26].
Suppose now that

S𝜔,Ω,𝑆 |= ∀𝑎𝛿∃𝑏 ≤𝜎 𝑟𝑎∀𝑐
𝛾𝐴𝑞 𝑓 (𝑎, 𝑏, 𝑐).

Then also M𝜔,Ω,𝑆 is a model of this sentence: First the types of the variables which are universally
quantified are admissible, so over M𝜔,Ω,𝑆 the domain of the universal quantifiers is reduced. For the
witnesses for 𝑏, which exist in S𝜔,Ω,𝑆 , note first that these could potentially live in M𝜔,Ω,𝑆 as the
types of the variables in 𝑏 are admissible, that is, they take arguments of small types and map into small
types. It thus only remains to be seen whether such a witness is majorizable for majorizable inputs.
However, by the above argument, the terms in 𝑟 are all majorizable and if 𝑎 comes from M𝜔,Ω,𝑆 , then
𝑟𝑎 is majorizable. That we have 𝑏 ≤𝜎 𝑟𝑎 in M𝜔,Ω,𝑆 now implies that 𝑏 is majorizable by (†) (and
consequently the corresponding interpretations exist in M𝜔,Ω,𝑆 too). Lastly, it is rather immediate to
see that M𝜔,Ω,𝑆 |= � implies M𝜔,Ω,𝑆 |= �̃ using b-ACΩ,𝑆 .

From M𝜔,Ω,𝑆 |= �̃, we immediately get that the corresponding Skolem functions have interpreta-
tions in M𝜔,Ω,𝑆 , that the corresponding structures defined by some canonical interpretations of those
additional constants are indeed models of those variants of the systems where the corresponding Skolem
functionals of these axioms are added and where the axioms themselves are replaced by their instanti-
ated Skolem normal forms (i.e., C𝜔−

� and its extensions) and, lastly, that the above majorizability result
extends to these systems.

Note that, technically, these arguments were already needed in the above considerations to see that
M𝜔,Ω,𝑆 really is a model of C𝜔− + (BR). However, we did not discuss this there explicitly as for those
specific axioms of type Δ belonging to C𝜔− + (BR), the types of the variables occurring in them are
not only small but actually all among {0, 1,Ω, 𝑆, 𝑆(0)} so that it was immediately clear that the models
coincide at that level (essentially just by definition) and we thus omitted such a general discussion
there. �

Combined with the Dialectica interpretation, the main result we then arrive at is the following bound
extraction result for classical proofs:

Theorem 8.9. Let C𝜔 be (one of the previously discussed extensions of) the system F𝜔 [P] and let� be a
set of formulas of type Δ . Let 𝜏 be admissible, 𝛿 be of degree 1 and s be a closed term of C𝜔 of type 𝜎(𝛿)
for admissible 𝜎 and let 𝐵∀(𝑥, 𝑦, 𝑧, 𝑢)/𝐶∃(𝑥, 𝑦, 𝑧, 𝑣) be ∀-/∃-formulas of C𝜔 with only 𝑥, 𝑦, 𝑧, 𝑢/𝑥, 𝑦, 𝑧, 𝑣
free. If

C𝜔 + � � ∀𝑥 𝛿∀𝑦 ≤𝜎 𝑠(𝑥)∀𝑧𝜏
(
∀𝑢0𝐵∀(𝑥, 𝑦, 𝑧, 𝑢) → ∃𝑣0𝐶∃(𝑥, 𝑦, 𝑧, 𝑣)

)
,

then one can extract a partial functional Φ : S𝛿 × S𝜏̂ ⇀ N which is total and (bar-recursively)
computable on M𝛿 ×M𝜏̂ and such that for all 𝑥 ∈ S𝛿 , 𝑧 ∈ S𝜏 , 𝑧∗ ∈ S𝜏̂ , if 𝑧∗ � 𝑧, then

S𝜔,Ω,𝑆 |= ∀𝑦 ≤𝜎 𝑠(𝑥) (∀𝑢 ≤0 Φ(𝑥, 𝑧∗)𝐵∀(𝑥, 𝑦, 𝑧, 𝑢) → ∃𝑣 ≤0 Φ(𝑥, 𝑧∗)𝐶∃(𝑥, 𝑦, 𝑧, 𝑣))
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holds whenever S𝜔,Ω,𝑆 |= � for S𝜔,Ω,𝑆 defined via any nonempty set Ω and any algebra 𝑆 ⊆ 2Ω (or,
in the context of the constant

⋃
, any 𝜎-algebra) together with any probability content P on S (and with

suitable interpretations of the additional constants). Further:

1. If 𝜏̂ is of degree 1, then Φ is a total computable functional.
2. We may have tuples instead of single variables 𝑥, 𝑦, 𝑧, 𝑢, 𝑣 and a finite conjunction instead of a single

premise ∀𝑢0𝐵∀(𝑥, 𝑦, 𝑧, 𝑢).
3. If the claim is proved without DC, then 𝜏 may be arbitrary and Φ will be a total functional on S𝛿 ×S𝜏̂

which is primitive recursive in the sense of Gödel [13] and Hilbert [18]. In that case, also plain
majorization can be used instead of strong majorization (see, e.g., [26]).

Proof. First, assume that S𝜔,Ω,𝑆 |= � and (for simplicity) that

C𝜔 + � � ∀𝑧𝜏
(
∀𝑢0𝐵∀(𝑧, 𝑢) → ∃𝑣0𝐶∃(𝑧, 𝑣)

)
.

Clearly, the same statement is then also provable in C𝜔� . By assumption, 𝐵∀(𝑧, 𝑢) = ∀𝑎𝐵𝑞 𝑓 (𝑧, 𝑢, 𝑎) and
𝐶∃(𝑧, 𝑣) = ∃𝑏𝐶𝑞 𝑓 (𝑧, 𝑣, 𝑏) for quantifier-free 𝐵𝑞 𝑓 and 𝐶𝑞 𝑓 . Thus, by prenexiation, we get

C𝜔� � ∀𝑧𝜏∃𝑢, 𝑣, 𝑎, 𝑏(𝐵𝑞 𝑓 (𝑧, 𝑢, 𝑎) → 𝐶𝑞 𝑓 (𝑧, 𝑣, 𝑏)).

Using Lemma 8.3 (which is applicable as C𝜔� is an extension of F𝜔 only by new constants and purely
universal axioms) and disregarding the realizers for 𝑎, 𝑏, we get closed terms 𝑡𝑢 , 𝑡𝑣 of C𝜔−

� + (BR) such
that

C𝜔−

� + (BR) � ∀𝑧𝜏 (𝐵∀(𝑧, 𝑡𝑢 (𝑧)) → 𝐶∃(𝑧, 𝑡𝑣 (𝑧))).

By Lemma 8.8 there are closed terms 𝑡∗𝑢 , 𝑡∗𝑣 of A𝜔 + (BR) such that

M𝜔,Ω,𝑆 |= 𝑡∗𝑢 � 𝑡𝑢 ∧ 𝑡
∗
𝑣 � 𝑡𝑣 ∧ ∀𝑧𝜏 (𝐵∀(𝑧, 𝑡𝑢 (𝑧)) → 𝐶∃(𝑧, 𝑡𝑣 (𝑧)))

for all nonempty sets Ω, any algebra (or 𝜎-algebra) 𝑆 ⊆ 2Ω and any probability content P on S and
where the constants are interpreted as in Lemma 8.8. Define

Φ(𝑧∗) := max{𝑡∗𝑢 (𝑧∗), 𝑡∗𝑣 (𝑧∗)}.

Then

M𝜔,Ω,𝑆 |= ∀𝑢 ≤0 Φ(𝑧∗)𝐵∀(𝑧, 𝑢) → ∃𝑣 ≤0 Φ(𝑧∗)𝐶∃(𝑧, 𝑣)

holds for all 𝑧 ∈ M𝜏 and 𝑧∗ ∈ M𝜏̂ with 𝑧∗ � 𝑧. The conclusion that S𝜔,Ω,𝑆 satisfies the same sentence
can be achieved as in the proof of Theorem 17.52 in [26] which we sketch here: Note that in the
conclusion, we restrict ourselves to those z which have majorants 𝑧∗. As the type of z is admissible, it
takes arguments of small type for which M𝜔,Ω,𝑆 and S𝜔,Ω,𝑆 coincide (recall the proof of Lemma 8.8).
Therefore, any such 𝑧, 𝑧∗ from S𝜔,Ω,𝑆 also live in M𝜔,Ω,𝑆 so that Φ(𝑧∗) is well-defined for 𝑧, 𝑧∗
belonging to S𝜔,Ω,𝑆 with 𝑧∗ � 𝑧. In 𝐵∀, all types are admissible so that truth in S𝜔,Ω,𝑆 implies truth
in M𝜔,Ω,𝑆 and similarly for 𝐶∃ where thus truth in M𝜔,Ω,𝑆 implies truth in S𝜔,Ω,𝑆 . Lastly, as in
Lemma 17.84 in [26], we can show that as Φ is of type 0(𝜏̂), the interpretations of Φ in S𝜔,Ω,𝑆 and
M𝜔,Ω,𝑆 coincide on majorizable elements. All in all, the arguments above imply that

S𝜔,Ω,𝑆 |= ∀𝑢 ≤0 Φ(𝑧∗)𝐵∀(𝑧, 𝑢) → ∃𝑣 ≤0 Φ(𝑧∗)𝐶∃(𝑧, 𝑣)

holds for all 𝑧 ∈ 𝑆𝜏 and 𝑧∗ ∈ 𝑆 𝜏̂ with 𝑧∗ � 𝑧.
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The additional ∀𝑥 𝛿∀𝑦 ≤𝜎 𝑠(𝑥) can be treated as, for example, discussed in [25] and we thus omit
any details. Similarly, item (1) can be shown as in the proof of Theorem 17.52 from [26] (see page 428
therein). Further, (2) is immediate and (3) follows from the fact that without DC, bar recursion becomes
superfluous, and the model M𝜔,Ω,𝑆 can be avoided. �

9. Applications of the metatheorems

In this section, we are now concerned with the applications of the above metatheorems. Concretely,
we want to indicate how the systems introduced prior can be used together with their metatheorems to
recognize previous (ad hoc) applications in the spirit of the proof mining program as proper instances of
proof-theoretic bound extraction theorems. For this, we here focus on the seminal work [2] by Avigad,
Dean, and Rute. There, we find that the quantitative results obtained in [2] for Egorov’s theorem, as well
as the dominated convergence theorem, although in general being of bar-recursive complexity (which is
due to the use of a certain principle of countable choice as we will later see formally), are nevertheless
highly uniform, being in particular independent of the space, the measurable sets, and the measure.
As already mentioned in the introduction, the authors of [2] presumed that this independence can be
explained using some instantiation of the notion of majorizability. In that way, the metatheorems proved
before and the discussion in this section show that this intuition was correct and that the uniformities
are a necessary consequence of the novel form of majorizability introduced in this paper.

However, as already discussed in the introduction, we want to mention that the focus on the work [2]
shall be understood to be merely indicative of the usefulness of the systems and metatheorems discussed
before. In particular, essentially all other quantitative works on probability theory in the spirit of proof
mining that have so far been considered in the literature can be similarly recognized as instances of
the metatheorems proved here. Similarly, there too, the peculiar uniformities observed in practice are a
priori guaranteed by the approach towards the metatheorems chosen here.

Now, the work [2] is concretely concerned with interrelations between different modes of convergence
for sequences of random variables. The most prominent of these modes, also based on its similarity to
a usual notion of pointwise convergence of functions, is that of almost sure convergence.

Definition 9.1 (Almost sure convergence). Let (Ω, 𝑆, P) be a probability space and (𝑋𝑛) be a sequence
of random variables 𝑋𝑛 : Ω → R (i.e., 𝑋𝑛 is measurable w.r.t. S and the Borel 𝜎-algebra on R). Then
(𝑋𝑛) is said to converge almost surely to a random variable 𝑋 : Ω → R if

P({𝑥 ∈ Ω | 𝑋𝑛 (𝑥) → 𝑋 (𝑥)}) = 1.

This notion of almost sure convergence does not lend itself easily to a quantitative account of that
convergence. Thus, in many cases where probability theorists are concerned with quantitative results
(see, e.g., [39, 55]), they opt for a different, but equivalent, formulation of almost sure convergence
known as almost uniform convergence.

Definition 9.2 (Almost uniform convergence). Let (Ω, 𝑆, P) be a probability space and (𝑋𝑛) be a
sequence of random variables 𝑋𝑛 : Ω → R. Then (𝑋𝑛) is said to converge almost uniformly22 to a
random variable 𝑋 : Ω → R if for all 𝜀, 𝛿 > 0 there exists an 𝑁 ∈ N such that

P({𝑥 ∈ Ω | ∀𝑛 ≥ 𝑁 (|𝑋𝑛 (𝑥) − 𝑋 (𝑥) | ≤ 𝜀)}) > 1 − 𝛿.

The seminal result that these two notions of convergence are indeed equivalent is known as Egorov’s
theorem [9]. Note that since (Ω, 𝑆, P) is a probability space and the 𝑋𝑛’s are random variables (and
therefore measurable), the sets we take the probability of in the above definitions are measurable sets.

22Almost uniform convergence is usually formulated by requiring that for every 𝜀 > 0, there exists a measurable set 𝐹𝜀 ∈ 𝑆
with P(𝐹𝜀) ≤ 𝜀 such that (𝑋𝑛) converges uniformly on 𝐹𝑐

𝜀 to X. The (equivalent) formulation given here is, however, more
fruitful from an applied proof-theoretic perspective as it immediately allows for a very natural Cauchy-type variant.
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This result was analyzed quantitatively in [2] and then was used in turn also to provide a quantitative
dominated convergence theorem for the Lebesgue integral. With the results from this section, we will
be able to recognize this analysis as an instance of the preceding metatheorems for probability contents
on algebras.

We now move towards formalizing the results from [2] and for that purpose introduce a sequence of
random variables into the system F𝜔 [P, Integral] by adding an additional constant 𝑋1(Ω) (0) together
with the axiom

∀𝑛0(𝑋 (𝑛) ∈ 𝐼)

to stipulate that the sequence in question belongs to our subspace of bounded and weakly Borel-
measurable functions. It is clear that Theorem 8.9 extends from F𝜔 [P, Integral] to its extension by
this constant X as any 𝑋 (𝑛) is trivially majorizable as it is bounded and the whole constant X is thus
majorized by a maximum construction. In that system, using axiom (𝐼)3 that asserts the weak Borel-
measurability of any 𝑋 (𝑛), it is then in particular a consequence of ΠΩ

1 -AC (and actually of b-ACΩ,𝑆 by
regarding quantification over the type S as bounded) that there exists a functional 𝑃𝑆 (0) (0) (0) such that

∀𝑎0, 𝑏0, 𝑐0, 𝑥Ω (𝑥 ∈ 𝑃(𝑎, 𝑏, 𝑐) ↔ 𝑥 ∈ (|𝑋 (𝑐) − 𝑋 (𝑏) |)−1([0, 2−𝑎])).

We add such a P directly into the language of the system via a new constant of the appropri-
ate type together with the above defining property as an axiom and denote the resulting system by
F𝜔 [P, Integral, 𝑋].

Using this functional P, we can then formally introduce the alternative way of formulating almost
uniform convergence using finite unions as (implicitly) introduced in [2], which allows for both a natural
metastable variant as well as to extend any discussion regarding this notion naturally to the context of
contents:

Definition 9.3. We say that X converges almost uniformly with respect to finite unions if

∀𝑘0, 𝑎0∃𝑏0∀𝑐0���P ���
𝑐⋃
𝑖=𝑏

𝑐⋃
𝑗=𝑏

𝑃(𝑎, 𝑖, 𝑗)𝑐
��� ≤R 2−𝑘���.

It is rather immediately clear that this notion of almost uniform convergence w.r.t. finite unions is
equivalent over probability spaces to the usual notion of almost uniform convergence. Further, we want to
emphasize that this mode was not explicitly introduced in [2] but rather implicitly as already mentioned
above as it is naturally suggested through the quantitative rendering of almost uniform convergence
used in [2] in their main quantitative result given in Theorem 3.1. Concretely, one immediately finds
that a solution of the monotone functional interpretation of the negative translation of almost uniform
convergence w.r.t. finite unions is exactly a function 𝑀 (𝑘, 𝑎) providing a 2−𝑘 -uniform bound for the
2−𝑎-metastable convergence of the sequence coded by X as introduced in [2].

Similarly, we can also give a formal representation of the notion of almost uniform metastable
pointwise convergence as introduced in [2] in the context of the system F𝜔 [P, Integral, 𝑋]:

Definition 9.4. We say that X converges almost uniform metastable pointwisely if

∀𝑘0, 𝑎0, 𝐹1∃𝑏0

(
P

(
𝑏⋂

𝑚=0

𝐹 (𝑚)⋃
𝑖=𝑚

𝐹 (𝑚)⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐

)
≤R 2−𝑘

)
.

Contrary to Definition 9.3, this mode of convergence was explicitly introduced in [2] as a “more
quantitatively friendly” version of the notion of almost sure convergence. In particular, as shown by
Proposition 4.1 in [2], the notion of almost uniform metastable pointwise convergence coincides over
probability spaces with that of almost sure convergence. Also, as essentially already observed in [2], a
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solution to the monotone functional interpretation (of the negative translation of) the statement of almost
uniform metastable pointwise convergence is exactly a function𝑀 ′ (𝑘, 𝑎) providing a 2−𝑘 -uniform bound
on the 2−𝑎-metastable pointwise convergence of the sequence coded by X as introduced in [2].

In [2], the authors now provide a quantitative version of Egorov’s theorem by constructing a solution
of the monotone functional interpretation of (the negative translation of) almost uniform convergence
w.r.t. finite unions from a solution of the monotone functional interpretation of (the negative translation
of) the statement of almost uniform metastable pointwise convergence. In that way, they in particular
provide a uniform quantitative rendering of the corresponding implication. We justify this application
by showing in the following that already the system F𝜔 [P, Integral, 𝑋] proves this implication between
the above two modes of convergence. Besides thereby explaining the success and the uniformities of
the quantitative version of Egorov’s theorem from [2], the provability in F𝜔 [P, Integral, 𝑋] established
here shows in particular that the corresponding results from [2] are true for probability contents and not
just probability measures as illustrated in [2]. That is, the authors inadvertently provided an “Egorov-like
theorem” for probability contents. Concretely, this seems to be in particular due to the above renderings
of the notions of almost sure and almost uniform convergence introduced via a finitary perspective
informed by proof mining in [2], which provide exactly those alternative phrasings of these notions
that are much more nicely compatible with the notion of a content due to a computationally effective
formulation using finite unions. In that way, the results from this section tie into the comments made in
the introduction that the notions and proofs produced through the finitary perspective of proof mining
seem to be suitable so that they allow for a simultaneous lift of the results to the theory of contents.

We now first note that one direction of that equivalence can be easily witnessed in the system
F𝜔 [P, Integral, 𝑋] discussed previously.

Theorem 9.5. The system F𝜔 [P, Integral, 𝑋] proves that if X converges almost uniformly with respect
to finite unions, then X converges almost uniformly metastable pointwisely.

Proof. We reason in F𝜔 [P, Integral, 𝑋]. Let k, a, and F be given. Using that X converges almost
uniformly w.r.t. finite unions, there exists a b such that

P
���

𝑐⋃
𝑖=𝑏

𝑐⋃
𝑗=𝑏

𝑃(𝑎, 𝑖, 𝑗)𝑐
��� ≤ 2−𝑘

for all c. Now, we in particular have

𝑏⋂
𝑚=0

𝐹 (𝑚)⋃
𝑖=𝑚

𝐹 (𝑚)⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐 ⊆

𝐹 (𝑏)⋃
𝑖=𝑏

𝐹 (𝑏)⋃
𝑗=𝑏

𝑃(𝑎, 𝑖, 𝑗)𝑐

and therefore

P

(
𝑏⋂

𝑚=0

𝐹 (𝑚)⋃
𝑖=𝑚

𝐹 (𝑚)⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐

)
≤ P

���
𝐹 (𝑏)⋃
𝑖=𝑏

𝐹 (𝑏)⋃
𝑗=𝑏

𝑃(𝑎, 𝑖, 𝑗)𝑐
��� ≤ 2−𝑘

follows from the monotonicity of P. This yields that X converges almost uniformly metastable point-
wisely. �

As mentioned before, a quantitative version of the converse of the above theorem is one of the main
results of [2] and to obtain this, the authors of [2] mainly utilized a quantitative version of the following
property about sequences of events.
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Theorem 9.6 (Theorem 2.2 of [2]). For every sequence of events (𝐴𝑛), any functional 𝑀 : NN → N

and any 𝜆 > 𝜆′ > 0, there exists an 𝑛 ∈ N such that

P

(
𝑀 (𝐹 )⋂
𝑚=0

𝐹 (𝑚)⋃
𝑗=𝑚

𝐴 𝑗

)
< 𝜆′ for all 𝐹 : N→ N

implies P(𝐴𝑛) < 𝜆.

We now discuss in the following how (the proof of) this result can be formalized in our system for
probability contents on algebras F𝜔 [P], justifying the existence and the uniformity of the quantitative
result given in [2] by means of our metatheorems. Concretely, we show:

Theorem 9.7. The system F𝜔 [P] proves:

∀𝐴𝑆 (0) , 𝑀0(1) , 𝑢0, 𝑣0 >0 𝑢∃𝑛
0

(
∀𝐹1

(
P

(
𝑀 (𝐹 )⋂
𝑚=0

𝐹 (𝑚)⋃
𝑗=𝑚

𝐴( 𝑗)

)
≤R 2−𝑣

)
→ P(𝐴(𝑛)) <R 2−𝑢

)
.

In particular, as this theorem of F𝜔 [P] has the correct logical form, our main Theorem 8.9 on the
extraction of uniform computable bounds applies and we thus find that the existence of a computable
bound on the existential quantifier on n can be guaranteed to exist a priori and even further, based on our
notion of majorizability, it can be guaranteed that this bound is independent of the content space and
the sequence of events which matches exactly the properties of the bound explicitly calculated in [2].

To now demonstrate Theorem 9.7, we in particular rely on the following lemma:

Lemma 9.8. The system F𝜔 [P] proves:

∀𝐴𝑆 (0) , 𝑘0∃𝑁0∀𝑛0

(
P

(
𝑛⋃
𝑖=0

𝐴(𝑖) ∩

(
𝑁⋃
𝑖=0

𝐴(𝑖)

)𝑐)
<R 2−𝑘

)
.

Proof. We reason in F𝜔 [P]. Let 𝐴𝑆 (0) and 𝑘0 be given. At first, note that Proposition 4.5 implies that

∃𝑁∀𝑛

(
𝑛 ≥ 𝑁 →

����� 𝑛∑
𝑖=0
P((𝐴↑)(𝑖)) −

𝑁∑
𝑖=0
P((𝐴↑)(𝑖))

����� < 2−𝑘
)
. (*)

Take such an N and let n be arbitrary. If 𝑛 < 𝑁 , then

𝑛⋃
𝑖=0

𝐴(𝑖) ∩

(
𝑁⋃
𝑖=0

𝐴(𝑖)

)𝑐
= ∅

and so by extensionality of P, we get

P

(
𝑛⋃
𝑖=0

𝐴(𝑖) ∩

(
𝑁⋃
𝑖=0

𝐴(𝑖)

)𝑐)
= 0

and are done. So suppose 𝑛 ≥ 𝑁 . Then by (∗), we get����� 𝑛∑
𝑖=0
P((𝐴↑)(𝑖)) −

𝑁∑
𝑖=0
P((𝐴↑)(𝑖))

����� < 2−𝑘 .
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Since all the (𝐴↑)(𝑖) are disjoint (by definition of 𝐴↑) and since we have
⋃ 𝑗

𝑖=0(𝐴↑)(𝑖) =
⋃ 𝑗

𝑖=0 𝐴(𝑖) for
any j, we immediately derive

𝑗∑
𝑖=0
P((𝐴↑)(𝑖)) = P

(
𝑗⋃

𝑖=0
𝐴(𝑖)

)
for any j by finite additivity and extensionality of P. Thus, we in particular have�����P

(
𝑛⋃
𝑖=0

𝐴(𝑖)

)
− P

(
𝑁⋃
𝑖=0

𝐴(𝑖)

)����� < 2−𝑘

and since 𝑛 ≥ 𝑁 implies
⋃𝑁

𝑖=0 𝐴(𝑖) ⊆
⋃𝑛

𝑖=0 𝐴(𝑖), we obtain

P

(
𝑛⋃
𝑖=0

𝐴(𝑖) ∩

(
𝑁⋃
𝑖=0

𝐴(𝑖)

)𝑐)
= P

(
𝑛⋃
𝑖=0

𝐴(𝑖)

)
− P

(
𝑁⋃
𝑖=0

𝐴(𝑖)

)
< 2−𝑘

by Proposition 4.3. �

With that lemma, we are now in the position for a formal proof of the main combinatorial theorem
from [2]:

Proof of Theorem 9.7. Let 𝐴𝑆 (0) , 𝑀0(1) , 𝑢0 and 𝑣0 with 𝑣 > 𝑢 be given and suppose

∀𝐹1

(
P

(
𝑀 (𝐹 )⋂
𝑚=0

𝐹 (𝑚)⋃
𝑗=𝑚

𝐴( 𝑗)

)
≤ 2−𝑣

)
.

So, by the previous Lemma 9.8 applied to the sequence of events 𝑓 𝑆 (0)𝑚 defined by 𝑓𝑚(𝑘) = 𝐴(𝑘 + 𝑚),
we have

∀𝑚∃𝑁∀𝑛

(
P

(
𝑛+𝑚⋃
𝑖=𝑚

𝐴(𝑖) ∩

(
𝑁+𝑚⋃
𝑖=𝑚

𝐴(𝑖)

)𝑐)
<

2−𝑢 − 2−𝑣

2𝑚+1

)
and so in particular

∀𝑚∃𝑁 ≥ 𝑚∀𝑛 ≥ 𝑚

(
P

(
𝑛⋃

𝑖=𝑚

𝐴(𝑖) ∩

(
𝑁⋃
𝑖=𝑚

𝐴(𝑖)

)𝑐)
<

2−𝑢 − 2−𝑣

2𝑚+1

)
.

Thus, using AC (actually, by switching from < to ≤ in the above formulation and manipulating the
bound slightly, Π0

1-AC suffices), there exists a functional 𝐹1 such that for all m and 𝑛 ≥ 𝑚:

P
���

𝑛⋃
𝑖=𝑚

𝐴(𝑖) ∩

(
𝐹 (𝑚)⋃
𝑖=𝑚

𝐴(𝑖)

)𝑐��� < 2−𝑢 − 2−𝑣

2𝑚+1 .

It is now easy to see that for this functional F, we have

𝐴(𝑀 (𝐹)) ⊆

𝑀 (𝐹 )⋂
𝑚=0

𝑀 (𝐹 )⋃
𝑖=𝑚

𝐴(𝑖)

⊆

(
𝑀 (𝐹 )⋂
𝑚=0

𝐹 (𝑚)⋃
𝑗=𝑚

𝐴( 𝑗)

)
∪

𝑀 (𝐹 )⋃
𝑚=0

���
𝑀 (𝐹 )⋃
𝑖=𝑚

𝐴(𝑖) ∩

(
𝐹 (𝑚)⋃
𝑗=𝑚

𝐴( 𝑗)

)𝑐���
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and so, by the sub-additivity and monotonicity of P, we derive

P(𝐴(𝑀 (𝐹))) < 2−𝑣 +
𝑀 (𝐹 )∑
𝑚=0

2−𝑢 − 2−𝑣

2𝑚+1 < 2−𝑢

and so taking 𝑛 := 𝑀 (𝐹) for this functional F yields the claim. �

Using this combinatory lemma, we can now also prove the converse of Theorem 9.5 and thereby
exhibit how a quantitative solution for Theorem 9.7 as obtained in [2] immediately can be used in
conjunction with the proof-theoretic metatheorem established in Theorem 8.9 to derive a quantitative
version of Egorov’s theorem in the sense of the above notions incorporating finite unions as presented
in Theorem 3.1 of [2] and in particular guarantees the observed uniformities of the rates a priori.

Theorem 9.9. The system F𝜔 [P, Integral, 𝑋] proves that if X converges almost uniformly metastable
pointwisely, then X converges almost uniformly with respect to finite unions.

Proof. Suppose that X does not converge almost uniformly with respect to finite unions, that is, that we
have k and a such that

∀𝑚∃𝑔

(
P

(
𝑔⋃

𝑖=𝑚

𝑔⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐

)
> 2−𝑘

)
.

Using QF-AC (after suitably prenexing the hidden quantifiers), we get a functional G such that

∀𝑚

(
P

(
𝐺 (𝑚)⋃
𝑖=𝑚

𝐺 (𝑚)⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐

)
> 2−𝑘

)
.

For a contradiction, suppose now that X converges almost uniformly metastable pointwisely. By instan-
tiating the corresponding notion with 𝑘 + 1 and a, we get

∀𝐹∃𝑏

(
P

(
𝑏⋂

𝑚=0

𝐹 (𝑚)⋃
𝑖=𝑚

𝐹 (𝑚)⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐

)
≤ 2−(𝑘+1)

)
.

Thus, by QF-AC (again after suitably prenexing), we get a functional M such that

∀𝐹

(
P

(
𝑀 (𝐹 )⋂
𝑚=0

𝐹 (𝑚)⋃
𝑖=𝑚

𝐹 (𝑚)⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐

)
≤ 2−(𝑘+1)

)
.

Defining 𝑀 ′(𝐹) = 𝑀 (𝜆𝑛.𝐺̃ (𝐹 (𝑛))) where 𝐺̃ (𝑛) = max𝑚≤𝑛 𝐺 (𝑚), we get

∀𝐹
���P ���

𝑀 ′ (𝐹 )⋂
𝑚=0

𝐺̃ (𝐹 (𝑚))⋃
𝑖=𝑚

𝐺̃ (𝐹 (𝑚))⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐
��� ≤ 2−(𝑘+1)���.

We now define a sequence of events A via

𝐴(𝑛) :=
𝐺 (𝑛)⋃
𝑖=𝑛

𝐺 (𝑛)⋃
𝑗=𝑛

𝑃(𝑎, 𝑖, 𝑗)𝑐 .
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Then we have

𝐹 (𝑚)⋃
𝑛=𝑚

𝐴(𝑛) =
𝐹 (𝑚)⋃
𝑛=𝑚

𝐺 (𝑛)⋃
𝑖=𝑛

𝐺 (𝑛)⋃
𝑗=𝑛

𝑃(𝑎, 𝑖, 𝑗)𝑐 ⊆

𝐺̃ (𝐹 (𝑚))⋃
𝑖=𝑚

𝐺̃ (𝐹 (𝑚))⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐

for all m and F and therefore this implies

∀𝐹
���
𝑀 ′ (𝐹 )⋂
𝑚=0

𝐹 (𝑚)⋃
𝑛=𝑚

𝐴(𝑛) ⊆

𝑀 ′ (𝐹 )⋂
𝑚=0

𝐺̃ (𝐹 (𝑚))⋃
𝑖=𝑚

𝐺̃ (𝐹 (𝑚))⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐
���.

By the monotonicity of P, we get

∀𝐹

(
P

(
𝑀 ′ (𝐹 )⋂
𝑚=0

𝐹 (𝑚)⋃
𝑛=𝑚

𝐴(𝑛)

)
≤ 2−(𝑘+1)

)
,

which yields, by Theorem 9.7, that there exists an m such that

P(𝐴(𝑚)) = P

(
𝐺 (𝑚)⋃
𝑖=𝑚

𝐺 (𝑚)⋃
𝑗=𝑚

𝑃(𝑎, 𝑖, 𝑗)𝑐

)
< 2−𝑘

which is a contradiction. �

As a last formal elucidation of some of the results from [2], we turn to Theorem 3.2 therein, where
the authors provide a quantitative version for a special case of the dominated convergence theorem,
strengthening preceding results from Tao [59]. Concretely, they assume for this special case that the
random variables are positive and bounded (w.l.o.g.) by 1 (which immediately yields the “uniform”
majorizability of the sequence X and thus guarantees the full independence of the rate from X via
the preceding metatheorems). The following result now establishes that the corresponding infinitary
convergence result can be proved in our system for integrals over probability contentsF𝜔 [P, Integral, 𝑋]
and therefore makes it possible to recognize the quantitative results extracted in [2] as an application of
the metatheorems established in this paper.

Theorem 9.10. The system F𝜔 [P, Integral, 𝑋] proves: if X converges almost uniformly metastable
pointwisely and satisfies ∀𝑛0, 𝑥Ω (0 ≤R 𝑋 (𝑛) (𝑥) ≤R 1), it holds that

∀𝑘0∃𝑛0∀𝑖0, 𝑗0
(
𝑖, 𝑗 ≥0 𝑛→

����∫ 𝑋 (𝑖) dP −
∫

𝑋 ( 𝑗) dP
���� ≤R 2−𝑘

)
.

Proof. Let k be given. Since, by Theorem 9.9, X converges almost uniformly w.r.t. finite unions, there
exists an n such that

∀𝑚

(
P

(
𝑚⋃
𝑎=𝑛

𝑚⋃
𝑏=𝑛

𝑃(𝑘 + 1, 𝑎, 𝑏)𝑐
)
≤ 2−(𝑘+2)

)
.

Take 𝑖, 𝑗 ≥ 𝑛 and define 𝑚 = max{𝑖, 𝑗} as well as

𝐴 :=
𝑚⋃
𝑎=𝑛

𝑚⋃
𝑏=𝑛

𝑃(𝑘 + 1, 𝑎, 𝑏)𝑐 .
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Similar to the proof of item (4) from Lemma 7.4, we have����∫ 𝑋 (𝑖) dP −
∫

𝑋 ( 𝑗) dP
���� ≤ ∫

|𝑋 (𝑖) − 𝑋 ( 𝑗) | dP

=
∫

|𝑋 (𝑖) − 𝑋 ( 𝑗) |𝜒𝐴 dP +
∫

|𝑋 (𝑖) − 𝑋 ( 𝑗) |𝜒𝐴𝑐 dP.

As we have |𝑋 (𝑖) (𝑥) − 𝑋 ( 𝑗) (𝑥) | ≤ 2 for all x, we get∫
|𝑋 (𝑖) − 𝑋 ( 𝑗) |𝜒𝐴 dP ≤

∫
2𝜒𝐴 dP = 2P(𝐴) ≤ 2−(𝑘+1) .

On the other hand, 𝑥 ∈ 𝐴𝑐 yields

𝑥 ∈
𝑚⋂
𝑎=𝑛

𝑚⋂
𝑏=𝑛

𝑃(𝑘 + 1, 𝑎, 𝑏)

which in particular gives, by definition of m, that 𝑥 ∈ 𝑃(𝑘 + 1, 𝑖, 𝑗). From the definition of P, this in
particular implies that

|𝑋 (𝑖) (𝑥) − 𝑋 ( 𝑗) (𝑥) | ≤ 2−(𝑘+1)

and so we have |𝑋 (𝑖) (𝑥) − 𝑋 ( 𝑗) (𝑥) |𝜒𝐴𝑐 (𝑥) ≤ 2−(𝑘+1) which yields∫
|𝑋 (𝑖) − 𝑋 ( 𝑗) |𝜒𝐴𝑐 dP ≤ 2−(𝑘+1)

and we are done. �

10. Proof-theoretic transfer principles

In this last section, we present how our systems and metatheorems allow for the proof of a general type
of result, which we call a proof-theoretic transfer principle, that allows one to transfer quantitative infor-
mation on implications between modes of convergence of real numbers to corresponding quantitative
information on implications between analogous modes of convergence for bounded random variables.
In particular, as this type of reasoning is very common in the literature on the convergence of various
iterations of random variables (see, e.g., [32] among many others), this transfer principle allows for a
logical explanation of the strategy of providing a proof-theoretic analysis of such results in practice by
mainly analyzing the underlying result on real numbers and then lifting this result together with some
(often) simple modifications to random variables.

Concretely, to allow for a discussion of general modes of convergence for real numbers and random
variables, we consider the following abstract formal setup: We throughout this section fix two Π3-
formulas

𝑃(𝑥1(0) , 𝑝𝜎) = ∀𝑎0∃𝑏0∀𝑐0𝑃0(𝑎, 𝑏, 𝑐, 𝑥, 𝑝)

and

𝑄(𝑥1(0) , 𝑝𝜎) = ∀𝑢0∃𝑣0∀𝑤0𝑄0(𝑢, 𝑣, 𝑤, 𝑥, 𝑝)

where 𝑃0 and𝑄0 are quantifier-free formulas which only have the indicated variables free. We understand
P and Q as abstract representations of modes of convergence, with parameters 𝑝, for a sequence of real
numbers represented by x.
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For an example, we may take

𝑃0 (𝑎, 𝑏, 𝑐, 𝑥) := ∀𝑖0, 𝑗0(𝑏 ≤0 𝑖, 𝑗 ∧ 𝑖, 𝑗 ≤0 𝑐 → |𝑥(𝑖) − 𝑥( 𝑗) | ∈ [0, 2−𝑎]), (∼)

using the previous intensional intervals (where the above statement can thus be regarded as a quantifier-
free statement). In that case, P represents the usual Cauchy property for x.

To allow for a discussion of these modes applied to random variables, we extend the system F𝜔 [P]

with four further constants

𝑋1(Ω) (0) , 𝑃𝑆𝜎
𝑡 (0) (0) (0) , 𝑄𝑆𝜎𝑡 (0) (0) (0) , 𝜏0(0) ,

together with the axioms

∀𝑝𝜎 , 𝑎0, 𝑏0, 𝑐0, 𝑧Ω(𝑧 ∈ 𝑃(𝑎, 𝑏, 𝑐, 𝑝) ↔ 𝑃0 (𝑎, 𝑏, 𝑐, 𝜆𝑛.𝑋 (𝑛) (𝑧), 𝑝)),

∀𝑝𝜎 , 𝑎0, 𝑏0, 𝑐0, 𝑧Ω(𝑧 ∈ 𝑄(𝑎, 𝑏, 𝑐, 𝑝) ↔ 𝑄0 (𝑎, 𝑏, 𝑐, 𝜆𝑛.𝑋 (𝑛) (𝑧), 𝑝)),

∀𝑛0, 𝑧Ω(𝜏(𝑛) ≥R |𝑋 (𝑛) (𝑧) |),

specifying that the properties 𝑃0 and 𝑄0 (inducing the predicates P and Q) induce measurable sets
pointwisely relative to the sequence of random variables23 specified by X and that these random variables
are all bounded via a suitable monotone sequence of bounds (i.e., that X as a constant is majorized by
𝜏). It is clear that Theorem 8.9 extends to this system, which we denote by U𝜔 , as all constants are
majorizable and since the new axioms are purely universal.

In this extended language, we can then provide a formula that represents the property P if suitably
lifted to the sequence of random variables represented by X:
Definition 10.1. We say that X satisfies P almost uniformly, and write 𝑃(𝑋) a.u., if

∀𝑝𝜎 , 𝑘0, 𝑎0∃𝑏0∀𝑐0
(
P

(
𝑃(𝑎, 𝑏, 𝑐, 𝑝)𝑐

)
≤R 2−𝑘

)
.

Similarly, we define 𝑄(𝑋) a.u.
If we consider the previous example for 𝑃0 given in (∼), then by formulating 𝑃(𝑋) a.u. in this case we

recover the notion of almost uniform convergence with respect to finite unions as given in Definition 9.3
(i.e., the variant of almost uniform convergence implicitly considered in [2]).

We now turn to our main result that provides a relationship between statements of the form

∀𝑝𝜎 , 𝑥1(0) (𝑃(𝑥, 𝑝) → 𝑄(𝑥, 𝑝))

and statements of the form

𝑃(𝑋) a.u. → 𝑄(𝑋) a.u.

and which thereby not only establishes an upgrade-type theorem from relations between modes of
convergence for sequences of reals to sequences of random variables but also allows for a transfer of
the computational information obtainable for the implication in the premise to the implication in the
conclusion.
Theorem 10.2. Provably in U𝜔 , given functionals 𝑉, 𝐴, 𝐶 such that

∀𝑥, 𝑝, 𝑥∗, 𝐵, 𝑢, 𝑤︸���������︷︷���������︸
𝜔

(
∀𝑛(𝑥∗(𝑛) ≥ |𝑥(𝑛) |) ∧ 𝑃0(𝐴𝜔, 𝐵(𝐴𝜔), 𝐶𝜔, 𝑥, 𝑝) → 𝑄0 (𝑢,𝑉 𝑝𝑥

∗𝐵𝑢, 𝑤, 𝑥, 𝑝)
)
,

23If we assume that X is weakly Borel-measurable in the context of the above example (∼), the corresponding point sets 𝑃, 𝑄
above are indeed measurable.
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we can construct 𝑉 ′, 𝐴′, 𝐶 ′ such that

∀ 𝑝, 𝐵, 𝑘, 𝑢, 𝑤︸��������︷︷��������︸
𝛼

(
P(𝑃(𝐴′𝛼, 𝐵𝑘 (𝐴′𝛼), 𝐶 ′𝛼, 𝑝)𝑐) ≤ 2−𝑘 → P(𝑄(𝑢,𝑉 ′𝑝𝐵𝑘𝑢, 𝑤, 𝑝)𝑐) ≤ 2−𝑘

)
.

Proof. Given such 𝑉, 𝐴, 𝐶, and 𝛼 = (𝑝, 𝐵, 𝑘, 𝑢, 𝑤), we define

𝐴′𝛼 := 𝐴𝑝𝜏(𝐵𝑘)𝑢𝑤,

𝐶 ′𝛼 := 𝐶𝑝𝜏(𝐵𝑘)𝑢𝑤,

𝑉 ′𝑝𝐵𝑘𝑢 := 𝑉𝑝𝜏(𝐵𝑘)𝑢.

Let z be arbitrary with 𝑧 ∈ 𝑄(𝑢,𝑉 ′𝑝𝐵𝑘𝑢, 𝑤, 𝑝)𝑐 . By the axioms of U𝜔 and the definition of𝑉 ′, we have

𝑧 ∈ 𝑄(𝑢,𝑉 ′𝑝𝐵𝑘𝑢, 𝑤, 𝑝)𝑐 ↔ 𝑧 ∈ 𝑄(𝑢,𝑉 𝑝𝜏(𝐵𝑘)𝑢, 𝑤, 𝑝)𝑐

↔ ¬𝑄0 (𝑢,𝑉 𝑝𝜏(𝐵𝑘)𝑢, 𝑤, 𝜆𝑛.𝑋 (𝑛) (𝑧), 𝑝)

and the latter implies

¬𝑃0 (𝐴𝑝𝜏(𝐵𝑘)𝑢𝑤, 𝐵𝑘 (𝐴𝑝𝜏(𝐵𝑘)𝑢𝑤), 𝐶𝑝𝜏(𝐵𝑘)𝑢𝑤, 𝜆𝑛.𝑋 (𝑛) (𝑧), 𝑝)

using the assumptions on 𝑉, 𝐴, 𝐶 and that 𝜏(𝑛) ≥ |𝑋 (𝑛) (𝑧) | for any z. This in turn is by definition of
𝐴′, 𝑉 ′, 𝐶 ′ equivalent to

¬𝑃0 (𝐴
′𝛼, 𝐵𝑘 (𝐴′𝛼), 𝐶 ′𝛼, 𝜆𝑛.𝑋 (𝑛) (𝑧), 𝑝)

and thus to

𝑧 ∈ 𝑃(𝐴′𝛼, 𝐵𝑘 (𝐴′𝛼), 𝐶 ′𝛼, 𝑝)𝑐 .

Thus, we have

𝑄(𝑢,𝑉 ′𝑝𝐵𝑘𝑢, 𝑤, 𝑝)𝑐 ⊆ 𝑃(𝐴′𝛼, 𝐵𝑘 (𝐴′𝛼), 𝐶 ′𝛼, 𝑝)𝑐

as z above was arbitrary and therefore, we get

P(𝑄(𝑢,𝑉 ′𝑝𝐵𝑘𝑢, 𝑤, 𝑝)𝑐) ≤ P(𝑃(𝐴′𝛼, 𝐵𝑘 (𝐴′𝛼), 𝐶 ′𝛼, 𝑝)𝑐)

by the monotonicity of P. This yields the claim. �

This result, while at first glance rather technical and abstract, has a very concrete use recently observed
in applications by the first author [43] and to illustrate this, we will now shortly discuss the extent of the
above result and its use in mathematics:

1. Observe that the conclusion of Theorem 10.2 is just a witnessed version of the Dialectica interpre-
tation of

𝑃(𝑋) a.u. → 𝑄(𝑋) a.u. (+)

and therefore, under AC, this witnessed Dialectica interpretation in particular implies (+). In that
way, whenever the premise of Theorem 10.2 is established in U𝜔 , one immediately obtains the truth
of (+) and so the above result allows for a lift from a (quantitative) result on real numbers to a true
result for random variables. Furthermore, another main benefit of the conclusion of Theorem 10.2 is
that it allows for the extraction of quantitative information in the sense that the functional𝑉 ′ provides
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a transformation of a rate for the premise 𝑃(𝑋) a.u. into a rate for the conclusion 𝑄(𝑋) a.u. Even
further, as 𝑉 ′ can be constructed from V, this transformation of rates can be directly inferred from
the transformation of rates V of the presumed result for real numbers.

2. The premise of Theorem 10.2 is “essentially” the Dialectica interpretation of the statement

∀𝑝𝜎 , 𝑥1(0) (𝑃(𝑥, 𝑝) → 𝑄(𝑥, 𝑝)) (++)

in the sense that the functionals 𝑉, 𝐴, 𝐶 represent realizers for this interpretation, with the additional
assumption that these realizers are suitably uniform, depending only on upper bounds of the se-
quence 𝑥1(0) . Although one can construct examples where such realizers do not possess this kind of
uniformity, in practice, for many theorems of the form (++) that have a semi-constructive proof, such
uniform realizers can be given. In particular, this is true for the forthcoming work by the first author
on Kronecker’s Lemma [43] and an upcoming work by Oliva and Arthan on quantitative stochastic
optimization [48]. In both these cases, one uses reasoning about sequences of real numbers to obtain
the analogous result about sequences of random variables and a computational interpretation can be
given to this line of reasoning. Theorem 10.2 then in particular provides an abstract generalization
of this procedure and explains how this reasoning is substantiated by logical results.

Lastly, in the following remark we discuss a counterexample illustrating the necessity of the majoriz-
ability of the sequence of random variables in Theorem 10.2:

Remark 10.3. For the above transfer principle to hold, the assumption of the boundedness of the
sequence of random variables is necessary as the following example shows: Take Ω := N and let S be
the collection of all finite and co-finite subsets of N, that is,

𝑆 := {𝐴 ⊆ N | 𝐴 is finite or 𝐴𝑐 is finite}.

Furthermore, define the content P by P(𝐴) = 0 if A is finite and P(𝐴) = 1 if 𝐴𝑐 is finite, for all 𝐴 ∈ 𝑆.
Now, we consider the two properties

𝑃(𝑥) ≡ 𝑃0 (𝑥) ≡ 0 = 0 and 𝑄(𝑥) ≡ ∃𝑛∀𝑚𝑄0 (𝑛, 𝑚, 𝑥) ≡ ∃𝑛∀𝑚(𝑛 ≥Q [𝑥0] (𝑚))

for a sequence 𝑥 = (𝑥𝑛) of type 1(0). Clearly, both P and Q are Π0
3-formulas and are trivially true for

all sequences x. Therefore also 𝑃(𝑥) → 𝑄(𝑥) is trivially true. Further, we can easily give 𝑉, 𝐴, 𝐶 that
satisfy the assumptions of Theorem 10.2. Now, consider

𝑋𝑛 : N→ N, 𝑘 ↦→ (𝑘)Q

for each n. Then the set 𝑄(𝑛, 𝑚) corresponding to 𝑄0 is just

𝑄(𝑛, 𝑚) = {𝑘 ∈ N | 𝑄0 (𝑛, 𝑚, 𝜆𝑙.𝑋𝑙 (𝑘)} = {𝑘 ∈ N | 𝑛 ≥Q [𝑋0 (𝑘)] (𝑚)} = {𝑘 ∈ N | 𝑛 ≥ 𝑘}

which belongs to S as it is finite. 𝑃0 is just represented by the full set N. Therefore, X satisfies P almost
uniformly and does not satisfy Q almost uniformly as any 𝑄(𝑛, 𝑚) has measure 0.
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