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Over the last decade, extensive research effort has been placed on developing methane mitigation strategies in ruminants. Many
disciplines on animal science disciplines have been involved, including nutrition and physiology, microbiology and genetic
selection. To date, few of the suggested strategies have been implemented because: (1) methane emissions currently have no
direct or indirect economic value for farmers, with no financial incentive to change practices and (2) most strategies have limited,
or no, long-term effects. Consequently, there is a fundamental need for research on methane mitigation strategies across
disciplines. Coordinated international initiatives similar to METHAGENE could represent highly relevant coordination tool of
collaboration between countries, facilitating knowledge exchange, sharing concerns and building future collaborations.
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Implications

This paper presents ideas and perspectives on how genetic
selection can become one of many mitigation strategies
for methane emission in dairy cattle together with nutrition,
management and others. With analysis of routine data
recording of methane emission in commercial farms, it will
be possible to use these results as a mitigation strategy.
The effect of selection is easily widespread with artificial
insemination, and the effect is there from day to day. On
top of this, genetic effects inherited from generation to
generation.

Introduction

Soon after Steinfeld et al. (2006) published the infamous
report implicating the production of greenhouse gases (pre-
dominantly methane (CH4) emissions) by ruminants as an
anthropogenic threat to our climate, genetic selection was
proposed as a mitigation solution (Wall et al., 2010).
Genetic selection is an attractive solution because changes
are cumulative and permanent; however, this approach
requires additive genetic variation and time to have effect,
as selection is carried out over generations. Furthermore,
genetic selection requires recording the CH4 of large numbers
of cows, which is costly. Thus, complementary short-term
multi-disciplinary approaches and international co-operation

are required to document this phenomenon objectively
(Pickering et al., 2015).

Many disciplines within animal science have focused on
establishing methods for mitigating methane production in
dairy cattle, including nutrition, physiology, microbiology
and genetic selection. Examples of multi-disciplinary and
international projects are Ruminomics (http://ruminomics.
eu), the European Union cost action large-scale methane
measurements on individual ruminants for genetic
evaluations (METHAGENE) (www.methagene.eu), Animal
Selection Genetics and Genomics Network (http://www.
asggn.org/) and Efficient Dairy Genome Project (https://
genomedairy.ualberta.ca/). Consequently, many cross-disci-
pline reviews have been compiled on the key challenges
faced in mitigating this phenomenon over the last decade.
Due to the relatively slow uptake and long-term nature of
research on genetic selection, results from pilot genetic selec-
tion studies are beginning to emerge following a decade of
research, on which this review is focused.

The first, and most obvious, requirement for selective
breeding is a method to measure the traits or phenotypes
of interest. Such information could be used to establish
the biological sources of variation affecting the phenotype,
such as non-genetic factors, which must be experimentally
eliminated or statistically controlled. Thus, it is necessary
to establish whether the phenotype is significantly repeatable
and heritable under the environmental conditions in which
animals are expected to perform. Repeatability is established
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by recording the same individuals multiple times during their
productive lifetime, while heritability is established by record-
ing information about related individuals. Provided the phe-
notype is heritable, it is then necessary to establish the
genetic parameters that are highly correlated (high certainty
and low SEs) to existing traits in the selection index. Further
avenues of genetic research include methods for improving
the accuracy of estimated breeding values (EBVs), through
incorporating genetically correlated indicator traits, evaluat-
ing prediction methods and models and assessing how
potential genotypes interact with the environment. Once
these genetic parameters are established, it is possible to
determine the selection weighting and conduct cost-benefit
analyses to determine the economic value of recording and
selecting for certain traits.

This review, first published in an abstract form (Lassen and
Difford, 2019), provides an update on the status of genetic
selection research for lowering methane emissions in dairy
cows. Specifically, we report on the productive and unpro-
ductive paths, challenges and future research perspectives.

Biological aspects of methane emission in dairy cattle
An understanding of the underlying biology of CH4 emissions
in dairy cattle precedes that of recording systems and genetic
evaluations, with Hammond et al. (2016) presenting a
detailed review. In brief, CH4 release from animals primarily
occurs through three routes: (1) direct eructation from the
rumen, (2) absorption of CH4 from the rumen and hindgut
to the blood and exhalation from the lungs and (3) emission
of CH4 from the hindgut as flatulence. Using radio-labelled
CH4, it has been estimated that approximately 98% of CH4
is expired through the breath and eructation of cattle and
sheep, while just 2% is expired from flatulence (Murray et al.,
1976). This phenomenon has implications for the methods of
measuring CH4 emitted by cows, because, even though 98%
is expired in the breath and eructation, recording only this
part of the emission (expiration v. flatulence) is not necessary
the same as measuring the entire emission (expiration and
flatulence) (Muñoz et al., 2012). This issue is particularly
important if variation exists in the proportions emitted
through these three routes in different animals.

The rate at which CH4 is emitted changes throughout the
day, and from day to day. Consequently, cows are in a con-
tinually changing biological state in terms of CH4 emissions.
Within day diurnal variation is affected by feeding behaviour,
diet, and feeding allowance and patterns (Crompton et al.,
2010; Bell et al., 2018). The simplest way to avoid diurnal
variations, in principle, is to record CH4 emissions every sec-
ond of the 24 h period to obtain true daily CH4 emissions. In
practice, few approaches sample or record emissions con-
tinually throughout a 24 h period, instead relying on timestep
average estimates, which are subject to experimental error.
The number of measurements and timing of sampling
required to obtain a representative sample of daily CH4 emis-
sions vary in relation to many factors, such as feeding time,
feeding behaviour, feed intake and activity (e.g. eating and
ruminating) (Hegarty, 2013). One approach is to sample

throughout the day over multiple consecutive days and
obtain an average estimate or moving average (Arthur et al.,
2017). Another approach is to model the time of day, for
instance, using sine-cosine curves, regression or class effects
within day (Lassen et al., 2012; van Engelen et al., 2018).
Using these approaches, the effects of diurnal variation
are reduced or corrected.

The rate of CH4 emission also changes across days
(Grainger et al., 2007), with physiological state (growing, lac-
tating and non-lactating) (Ricci et al., 2013), during lactation
(early, mid, peak and late) (Rischewski et al., 2017), and from
one lactation period to the next. Thus, it is important to
understand the phenotypic and genetic relationships
between methane emissions recorded at different points in
time during an animal’s life to understand the implications
for selection based on CH4 emissions recorded at a
particular point in time, allowing the optimization of record-
ing strategies.

Further sources of systematic variation in CH4 production
by an individual cow include total feed intake, DM content,
feed composition, and the proportion and rate of fermenta-
tion of feed in the rumen and rate of passage (for reviews, see
Hristov et al. 2013; Cabezas-Garcia et al. 2017). In some
cases, the size of the cow and other metabolic-related traits
(such as feed efficiency and energy-corrected milk (ECM) pro-
duction) explain large amounts of variation in CH4 production
(de Haas et al., 2011). This information has led many authors
to try to ‘correct’ estimates of CH4 production for these traits
known as residual phenotypes (main residual feed intake), by
dividing them in relation to CH4 or regressing them in a multi-
ple linear regression model. However, the consequent ratios
and residual phenotypes require careful consideration.

Methods of recording

Respiration chambers as the gold standard
Many methods are available for recording the CH4 emissions
of individual dairy cattle in vivo. However, each method has
its own set of advantages, disadvantages and scope of appli-
cation, as reviewed by Hammond et al. (2016). It is well
established that the gold standard is indirect calorimetry in
respiration chambers (RCs), which have been in use in live-
stock research for more than a century (Krogh, 1916) and are
regarded as the most accurate and precise method from
which to benchmark other methods. Respiration chambers
are ideal for small-scale experiments, in which the number
of animals is low, and the need for accuracy and precision
is high. However, RCs are costly, time consuming, not neces-
sarily representative of all environmental conditions (like
grazing systems) and are not comparable across facilities.
Not surprisingly, many potential technologies are under
development, which might be cheaper, less invasive, easier
to implement or have a wider scope of applications than
the gold standardmethod. These alternative methods are evi-
denced by frequent reviews of methods (e.g. Patra, 2012;
Storm et al., 2012; Hammond et al., 2016; Hill et al., 2016).
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Two main sources of measurement error associated with
RC exist, namely (1) airflow rate or ducting efficiency and
(2) the mixing of gases within the chamber. Both issues
are reflected in the response time (Hammond et al., 2016).
In a joint calibration ‘ring testing’ procedure in the UK, high
variation within and between chambers and across facilities
was observed for the airflow rate and chamber mixing at
15.3% and 3.4%, respectively (Gardiner et al., 2015). If
the absolute accuracy of the CH4 release rate of the test
gas is known with certainty and is constant over time, the
recovery rate could be used as a correction factor to calibrate
measurements. After correction for differential recovery rates
was made in a UK study, the combined uncertainty between
chambers and facilities was reduced to 2.1% (Gardiner et al.,
2015). However, the use of correction factors is discouraged,
and with good practice being to identify the source of error
and correct it (McLean and Tobin, 1987). Thus, routine and
expensive ring testing is required when using multiple RC
testing facilities and would hold for genetic evaluations.

Confinement within a chamber can stress animals and
alter their feeding behaviour, resulting in a drop in DM intake
(DMI), which is the largest driver of CH4 emissions. This issue
has led many to question how these results are extrapolated
to commercial conditions, particularly grazing systems
(Pinares-Patiño et al., 2013). Some developments in RC
methods have led to animal friendly chambers constructed
from cheaper transparent materials. As a result, the cost
and invasiveness of the method is lowered, while minimally
disrupting the accuracy and precision of the measurement,
with no drop in the DMI of cows under confinement
(Hellwing et al., 2012).

The throughput and cost of RCs are the biggest challenge
for their use in genetic evaluations. Assuming a single day of
acclimation and two consecutive days of recording, a single
chamber can record the CH4 production of 120 cows over a
year (Garnsworthy et al., 2019). In practice, this quantity is
likely to be far less (30 to 50 cows) a year, as reported in the
only large-scale genetic evaluation of CH4 emissions of 1042
growing angus steers and heifers (Donoghue et al., 2016a).
This cohort of cattle showed that CH4 production is repeat-
able (t= 0.97) over consecutive days (Donoghue et al.,
2016b), heritable (h2= 0.27 ± 0.07) (Donoghue et al.,
2016a) and had moderate genomic prediction accuracy
0.32 ± 0.04 (Hayes et al., 2016).

Critical overview of the sniffer method
Most results reported in the published literature over the last
decadewere based on the sniffer method (Garnsworthy et al.,
2012 and Madsen et al., 2010). The power of the sniffer
method is that: (1) equipment can be installed in commercial
farms without disturbing the behaviour and everyday life of
cows or the farmer and (2) 1000s of animals can be registered
with relatively small investment. The expensive component
of registrations is the salary for technicians to install and
remove equipment, rather than the equipment itself. These
two assets are extremely important for inclusion in next gen-
eration measurement equipment on commercial farms. If

farmers will be taxed on methane emissions, accurate record-
ing equipment must be available, so that actions taken by the
farmer to reduce methane emissions can be assessed and
inventoried. This cannot be accomplished with expensive
equipment requiring the handling or training of dairy cows,
removing them from everyday life, not even for a few hours.
However, while affordable at large scales, the sniffer method
is not equivalent to the gold standard RC, in terms of accu-
racy and precision. Consequently, it has been excluded from
inventory studies and has limited application in small-scale
dose response studies, such as nutritional trials (Hristov et al.,
2018; Garnsworthy et al., 2019).

Sniffers take spot samples of methane emissions when the
cows are milked; consequently, the data are not necessarily
representative of methane emissions over a full day. Also, the
lack of flux (active airflow with measured volume) informa-
tion means that methane concentration, not production, is
recorded. Subsequently, researchers use calibration equa-
tions (using weight and milk production data) or recovery
factors to estimate CH4 production (Madsen et al., 2010;
Garnsworthy et al., 2012). Because the air that is sampled
is very low, certain factors (such as dilution due to the move-
ment of cow heads, barn air dynamics and wind speed) affect
the accuracy and precision of readings (Huhtanen et al.,
2015, Wu et al., 2018). Furthermore, many different types
of sensors and installations are used. However, as there
are no accepted standard practices for sniffers, each set-up
must be validated against RC (Difford et al., 2016 and
2019; Negussie et al., 2016). Despite this, Difford et al.
(2019) reported individual level correlations (proxies for
genetic correlations) of 0.77 ± 0.18 between sniffer CH4 pro-
duction and RC CH4 production, as well as 0.75 ± 0.20 of
sniffer CH4 concentration with RC CH4 production. These
results support the scope for using sniffers for the large-scale
measurement of CH4 emissions under commercial conditions.

Sniffers are often criticized and dismissed for their high
experimental variation and random errors (Huhtanen et al.,
2015; Huhtanen and Hristov, 2018; Wu et al., 2018). This issue
tends to arise when researchers use sniffers outside the scope
of genetic evaluation, failing to take repeated measures into
account. For instance, Hammond et al. (2016) stated ‘the need
for high throughput methodology, e.g. for screening large
numbers of animals for genomic studies, does not in itself jus-
tify the use of methods that are inaccurate, imprecise, or
biased’. Huhtanen and Hristov (2018) stated ‘We conclude that
true between-cow variation in CH4 emissions is too small to be
reliably measured by the sniffer method with its low precision’.
These statements are only partially true, as imprecision can be
overcome at the individual cow level by repeated measure-
ments, as demonstrated in classic equation (1) (Falconer
and Mackay, 1996; Bovenhuis et al., 2018):

VpðnÞ ¼ t þ 1� t
n

� �
Vp (1)

where n is the number of records, t is the repeatability, while
Vp and Vp(n) are phenotypic variance before and after repeated
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measures, respectively. As n increases, Vp(n) decreases, due to
a decrease in residual error Ve (imprecision). The increase in
accuracy, due to high throughput, is further compounded
when viewed at the bull breeding value level in equation (2)
(Mrode, 2003):

ray ¼
0:5h2VpðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2VpðnÞ 0:25h2 þ 1�0:25h2
N

� �
VpðnÞ

r (2)

where ray is the accuracy of the bull breeding value, h2 is the
heritability, Vp(n) is the phenotypic variation in the presence of
repeated measures and N is the number of daughters. By
evaluating (1) and (2) together, increasing n and/or increasing
N causes Vp(n) to decline, while ray will fast approach a maxi-
mum of 1. Clearly, high-throughput screening of phenotypes
can overcome imprecision in genetic evaluations, to a certain
extent. A certain threshold for when this is due is very difficult
to set. It will depend highly on the economic value of the trait
and the interest in changing the trait in one or another
direction.

The results presented using sniffers are promising,
because the measurements are repeatable (Lassen et al.,
2012) and even heritable (Lassen and Løvendahl, 2016;
Pszczola et al., 2019). The correlations to other traits are
as expected (Lassen and Løvendahl, 2016; Zetouni et al.,
2017), with the distribution over the lactation period follow-
ing biological lactation curves (Negussie et al., 2016;
Pszczola et al., 2017). Furthermore, correlation between
different sniffers, as well as other methods (including flux
methods), shows that sniffers explain in excess of 60% of
phenotypic variation in methane emission, with a potentially
higher portion of genetic variance (Difford et al., 2016;
Negussie et al., 2016). Still, there are many applications in
which sniffers add value, improving accuracy and precision,
which could facilitate expansion to other applications
(Løvendahl et al., 2018). This value includes the level and
change of mean and variation during lactation. Some initial
results have been obtained, but more research based on data
from more cows is required, along with genetic correlations
between different methods (Pickering et al., 2015).

Alternative methods of recording methane emissions
For genetic analyses, it is very important to utilize precise and
consistent phenotypes, where possible. The better the phe-
notype, the better the genetic evaluation. In parallel, less
precise phenotypes can sometimes be used for selection pur-
poses, if the less precise phenotype is very cheap to measure
and describes a proportion of variation that is present in the
phenotype one wants to improve (de Haas et al., 2017). So,
genetic selection is only possible if 100% of genetic variance
in the target trait is described. This phenomenon is deter-
mined by the square of the genetic correlation between
two traits. For instance, if a correlation between two traits
is 0.8, then 64% of variance between traits is described by
the other trait. In comparison, if the correlation is 0.2, only

4% of variance in one trait is described by the other trait. The
threshold of genetic correlation between two traits that
determines whether the alternative trait is an indicator or
a direct measures is termed ‘the break even correlation’
and is traditionally estimated at around 0.80 in progeny test-
ing schemes (Robertson, 1959; Mulder et al., 2006).

However, under genomic selection schemes, this thresh-
old of 0.80 between two traits for them to be appropriate
to use one trait as an indicator for the other tends to be
far higher under certain conditions (Slagboom et al.,
2019). Yet, measurements using both methods on 103 to
104 related individuals are required to estimate genetic cor-
relations with meaningful SEs (Visscher, 1998). Larger num-
bers are required if measurements are made on different
animals or animals at different points in time, or environ-
ments (Bijma and Bastiaansen, 2014). Estimating genetic
correlations between RC and alternative methods is largely
prohibited by the cost of recording suitably large numbers
of individuals with both methods. To date, only Jonker et al.
(2018) achieved this, by recording CH4 production in 3601
lambs with portable accumulation chambers (alternative
method) and RC, and obtained a genetic correlation of
0.67 ± 0.11. Despite calls for genomic reference populations
and genetic correlations between RC and other methods, this
requirement has not been achieved in dairy cattle (Pickering
et al., 2015).

One way to overcome these cost limitations is to either
test whether similar results are obtained across methods
directly (method agreement) at the phenotype level or esti-
mate individual level correlations as a proxy for genetic cor-
relations (Difford et al., 2019). When assessing method
agreement between the RC and alternative methods, it is
important to assess the relative accuracy, precision and linear
association between alternative methods and the gold stan-
dard (Barnhart et al., 2007a). This is achieved by combining
these metrics into Lin’s concordance correlation coefficient
(CCC) or coefficient of individual agreement (Barnhart et al.,
2007b; Difford et al., 2016). When these values are suitably
high (>0.90), it is likely that the alternative method is equiv-
alent to RC. A review by Garnsworthy et al. (2019) compared
methods used for dairy cattle, obtaining a low CCC (0.38 to
0.88) between alternative methods and the RC. However,
when evaluating phenotypic correlations and individual level
correlations, the sulphur hexafluoride technique (SF6),
GreenFeedTM and sniffers were highly correlated with RC
(0.72 to 0.89), indicating potentially high genetic correlations
between methods. However, true genetic correlations
between methods to validate which methods are appropriate
alternatives to RC are still needed.

Substantial work is needed to determine the genetic
equivalent, or lack of, between different methods, before rec-
ommendations can be made on selection strategies. Thus, it
is necessary to genotype animals and estimate genetic cor-
relations between methods and countries. In particular, a
genomic reference population based on the RC is needed
to benchmark methods genetically. For instance, Niu et al.
(2018) collated RC, GreenFeed, and SF6 data on 5233
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lactating dairy cattle. Even though their primary objective
was an intercontinental database, the scope of their data-
base did not include the genetic benchmarking of methods.

Phenotypes for measurement

The phenotypes of various methane emissions have been
reviewed to reduce CH4 emissions (de Haas et al., 2017).
These phenotypes are included here, as they have practical
implementation in breeding programmes. The four main phe-
notypes are (1) methane production as a mass flux rate per
day (litres or grams per day), (2) methane yield (MY), which is
CH4 production divided by feed intake (e.g. CH4 production/
kilogram DMI, (3) methane intensity (MI) per unit product
(e.g. CH4 production per kilogram ECM yield and (4) residual
methane production (RMP) (e.g. methane regressed on DMI,
BW and ECM). But other measures are also known for such
methane production per unit of digestible DM.

Defining methane emission traits as ratios is a useful met-
ric for describing groups of animals, such as different treat-
ment groups, herds, breeds and species. However, ratio traits
typically violate two statistical assumptions, which can have
consequences on defining the linear relationship (correlation
or regression) between the two sets of traits, making them
unsuitable for incorporation in selection indices (Gunsett
et al., 1981; Zetouni et al., 2017). First, it is assumed that
a ratio is independent, or uncorrelated, to its numerator or
denominator. Second, it is assumed that the relationship
between a ratio and its component traits is linear.
Sutherland (1965) demonstrated the genetic interdepend-
ence between a ratio and its component traits. The severity
of nonlinearity between a ratio and its denominator trait is a
function of the genetic correlation between the two compo-
nent traits and the relative difference between their genetic
and phenotypic variances. Consequently, there is a very nar-
row range where a ratio is independent of its denominator
traits and when the relationship between the traits is linear.
Furthermore, adding a biased correlation to a selection index
results in suboptimal index weightings, preventing the
response to a prediction being predictable (Gunsett, 1987).
The implications of this issue are that the correlation esti-
mates, and thus the relationship between feed efficiency
and methane emissions when either or both are expressed
as ratios, are likely to be a biased reflection of the relation-
ship between traits. Unfortunately, the use of ratio traits is
perpetuated in genetic research, as these traits are used
by other disciplines, with it often being necessary to compare
results across disciplines.

Residual methane production can be estimated using
multiple linear regression models in conceptually similar
ways to estimating RFI. When using this approach, CH4
becomes phenotypically independent of production and
other related traits that are corrected for. Another method
comparable to gRFI is to make genetic corrections using
selection indices (Kennedy et al., 1993). Genetic residual
traits result in genetic independence between gRMP and

regressor traits, such as DMI, ECM and BW. Still there might
be a phenotypic correlation structure between the traits. This
metric is useful for breeders because it indicates how much
progress can be made in reducing methane emissions, while
having no correlated changes to other economically impor-
tant traits, such as DMI, ECM and BW. A limitation of this
method is that substantial amounts of data are needed to
make proper corrections and to estimate appropriate param-
eters to generate accurate models.

Studies estimating the response to selection for feed effi-
ciency-based ratios and phenotypic and genetic residual
traits in pigs (Shirali et al., 2018) observed that genetic
residual traits had consistent direct and correlated responses
to selection for all traits. However, the phenotypic residual
traits had some suboptimal correlated responses to other
traits, while the ration traits have unpredicted responses
to selection. In a study where ways to obtain the highest
response for a ratio trait were simulated, the breeding goal
was only represented by two traits, methane and milk pro-
duction (Zetouni et al., 2017). This simulation did not aim
to mimic a complete breeding goal but showed the conse-
quences of selection for simply selecting to improve a ratio
trait (e.g. MI) without it being influenced by other traits
(Zetouni et al., 2017). Zetouni et al. (2017) showed that
CH4 production that was genetically independent of milk pro-
duction yielded a high reduction in CH4 production without
compromising milk production, and the ratio trait performed
the worst. Future research verifying the extent to which
methane-based phenotypic residual and ratio traits deviate
from genetic restricted selection indexes is needed. In par-
ticular, an over reliance on ratio traits should be avoided,
which is also the general case in practical breeding.

With pedigree-based selection, there is a huge depend-
ency on direct information from animals in, preferably, the
whole population. This approach generates the highest
genetic improvement and generates the best structure to
the population. With the introduction of genomic selection,
in which selection is based on DNA information, not all ani-
mals must be phenotyped. It might be more beneficial to find
herds with good registrations and then use these to generate
prediction models. With these genomic prediction models, it
is then possible to take a DNA sample of a new born calf and
predict the genetic/genomic merit of that animal, even before
decisions on whether this animal will be used for mating are
made. The genomic prediction models today is in many ways
black box biology and markers as such are not needed to be
identified for genomic selection to work. In the future,
genomic selection will be less black box biology since path-
ways, networks and interaction will be incorporated in the
models. Genomic selection has slightly lower accuracy since
breeding values to a much larger extend are predicted to
selection candidates without known performance but
strongly impact the generation interval, leading to much
higher genetic progress. These methods could also be applied
to methane emissions, for which data seem more complex to
obtain than, for instance, milk yield, carcass traits and BW.
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Repeatable and heritable genetic variation in
methane emissions

Different approaches to obtain the data needed for genetic
analyses have been performed (for overview, see Table 1).
These data are derived using different approaches to quantify
methane emission phenotypes, but all were similar. Methane
emission is under some genetic control, with the surrounding
environment being the strongest controlling factor. Genetic
selection for a trait has the potential to make changes,
because the effect is cumulative and lasting. Thus, the effect
is persistent over days, with the inherited effect cumulating
across generations. Not all methods of recording CH4 produc-
tion have resulted in a heritability estimate, with most
genetic research in dairy cattle being conducted with sniffer
and SF6, followed by laser methane detector methods.

Genetic correlations between the CH4 emissions of
existing traits

There is extensive debate on how methane should be placed
in the context of breeding goals. Of note, selection will never
be put on methane or any other single trait. Selection will
always be part of the existing total merit index and will be
given a proper weight to ensure balanced breeding.
Therefore, starting to select for decreasedmethane emissions
would not lead to cows that do not digest roughage or cows
that select differential concentrate in their diet, because this
would have enormous consequences for many other traits in
the existing total merit index. The same is the case for select-
ing for lower resistance to mastitis. In principal, this should
lead to cows that have very lowmilk yield, but because of the
balance that is put into a breeding goal it is still possible to
select cows that produce substantial amounts of milk and
have low incidence of mastitis. Bulls that produce offspring
that cannot live up to the general breeding goal would not be
selected as superior bulls. Current results on correlations
between methane emission and other traits (Table 2) show
that selection for reduced methane emissions likely has min-
imal consequences on other traits, such as reproduction and

health (Zetouni et al., 2018b; Pszczola et al., 2019); however,
CH4 production is related to milk production (Lassen and
Løvendahl, 2016; Breider et al., 2019; Difford et al., 2019),
as well as DMI (Breider et al., 2018; Difford et al., 2019).
Still more analyses on the correlation structure to other traits
are needed on larger data sets to confirm or deny such rela-
tionships. With more certainties on these correlation struc-
tures, it will be more relevant and appropriate to give the
right weight to methane emission in a breeding goal without
reducing milk production or decreasing fertility or health.

Improving the selection accuracy of CH4 emissions

Improving the accuracy of EBVs could be achieved via several
routes. Such routes include multi-trait genetic evaluations
with genetically correlated traits, indicator traits and the
incorporation of genomic information (Gebreyesus et al.,
2016). A number of indicator traits for CH4 production have
been suggested (see review by Negussie et al. 2017). These
traits largely include milk IR spectra, rumination time, feed
efficiency and rumen microbiota. The most well researched
and promising are milk IR spectral predictions using partial
least square regression models trained on RC, SF6 and
GreenFeed data (Dehareng et al., 2012; Vanlierde et al.,
2018). High prediction accuracies (R2cv of 0.70) in 532
CH4 measurements of 165 Holstein, Jersey and Holstein-
Jersey cows measured with the SF6 method were reported
and were significantly heritable (Vanlierde et al., 2015). A
subsequent data set of 584 measurements of 148 Holstein
cattle across multiple countries yielded a phenotypic predic-
tion accuracy of R2cv= 0.64 (Vanlierde et al., 2018). The
potential of using milk IR spectral information to predict
CH4 emissions is facilitated by the fact that many countries
already use milk IR spectra to determine total milk fat and
protein for pricing milk. Infrared spectral records are obtained
weekly on every cow in some country. However, other studies
have not been as successful in replicating the results of
Vanlierde et al. (2018). For instance, van Gastelen et al.
(2018) obtained an R2cv of 218 cows recorded with RC.
Similarly, Shetty et al. (2017) obtained an R2val of 0.13 from

Table 1 Heritability estimates for methane emissions in dairy cows, including SEs, number of cows in the analysis, measurement unit, breed and
measurement type

Authors Number of cows Measurement unit Breed Measurement type Heritability ± SE

Lassen et al. (2012) 1745 g/day Holstein Sniffer 0.21 ± 0.06
Pickering et al. (2015) 1308 mg/kg Holstein Laser methane detector 0.05 ± 0.07
Lassen et al. (2016) 339 g/day Holstein Sniffer 0.25 ± 0.16
Manzanilla-Pech et al. (2016) 205 g/day Holstein Sulphur hexafluoride 0.23 ± 0.23
Pszcola et al. (2017) 485 g/day Holstein Sniffer 0.27 ± 0.09
van Engelen et al. (2018) 355 ppm/day Holstein Sniffer 0.11 (0.02)
Difford et al. (2018) 750 g/day Holstein Sniffer 0.21 ± 0.09
Breider et al. (2019) 184 g/day Holstein Sniffer 0.12 ± 0.16 to 0.45 ± 0.11
Difford et al. (2019) 434 ppm/day Holstein Sniffer 0.26 ± 0.11
Saborío-Montero et al. (2019) 337 ppm/day Holstein Sniffer 0.12 ± 0.01
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2200 records of 490 Holsteins using the sniffer method.
Wang and Bovenhuis (2019) estimated CH4 emissions from
milk IR spectra in 1508 dairy cows using cross-validation
strategies, obtaining an R2cv of 0.49; however, when random
block validation was used, the R2cv dropped to 0.01, demon-
strating the importance of validation.

Milk IR spectral wavelengths were confirmed to be herit-
able in over 200 000 cows (Rovere et al., 2019). This infor-
mation opens up the possibility of using genetic covariance
between informative spectral wavelengths and CH4 emis-
sions, if estimated. Based on the initial success of milk IR
spectra, milk volatile fatty acids were suggested as potential
indicator traits of CH4 production. van Engelen et al. (2015)
predicted methane emissions from saturated fatty acids in
the milk of 1900 cows and obtained significant heritability
estimates, ranging from 0.12 to 0.44, indicating a strong link
for exploitation. Lassen et al. (2016) detected a direct genetic
correlation between specific saturated fatty acids and meth-
ane production with tridecanoic acid (−0.77 ± 0.37) and
pentadecanoic acid (0.87 ± 0.30).

Rumination was proposed as a potential indicator of CH4
emissions (Negussie et al., 2017). Rumination is recorded
using acoustic tags mounted on the collar of dairy cows.
The tags record the amount of time a cow spends chewing
the cud and are thus implicated in CH4 emissions through

the digestion and fermentation of fibre. Interestingly,
Zetouni et al. (2018a) compared the rumination time
(415.1 ± 116.7; mean ± SD) with CH4 production
(405.2 ± 115.8), with these similar means and variances
being promising. However, estimates of individual level cor-
relations were very close to zero (−0.10 ± 0.07). Thus, little
to no exploitable covariation existed between the two
measurements.

Other traits that have received considerable research
interest are rumenmicrobiota. This is because rumen bacteria
and protozoa produce the hydrogen and carbon dioxide con-
verted to CH4 by archaea (see Wallace et al., 2017). Roehe
et al. (2016) identified 20 microbial genes associated with
MY in beef cattle using whole genome sequencing on ~8
extreme samples in relation to MY. In addition, the authors
employed 16S rRNA ribotyping on 68 cattle postmortem and
identified the influence of sire indicating a genetic compo-
nent in the rumen microbial composition. Consequently, a
research field was founded on potential microbial selection
for reducing methane emissions. Difford et al. (2018) used
16S rRNA ribotyping on 750 Holstein cows and found that
certain bacteria and archaea taxa were associated with
CH4 and were significantly heritable. These observations
were recently confirmed in a multi-country multi-breed study
by Wallace et al. (2019). A separate study used nanopore

Table 2 Genetic correlations between methane emission traits and existing selection index traits in dairy cattle

Authors
Number of

cows
Measurement

unit
Measurement

type Trait

Genetic
correlation

± SE

Methane production
Pszczola et al. (2017) 485 g/day Sniffer Methane production DIM 5 – DIM 200 0.30 ± NA
Pszczola et al. (2017) 485 g/day Sniffer Methane production DIM 5 – DIM 305 0 ± NA
Pszczola et al. (2017) 485 g/day Sniffer Methane production DIM 200 – DIM 305 0.60 ± NA

Milk production
Lassen and Løvendahl (2016) 1745 g/day Sniffer Energy-corrected milk yield 0.37 ± 0.07
Breider et al. (2019) 184 g/day Sniffer Milk yield 0.49 ± 0.12
Difford et al. (2019) 432 ppm/day Sniffer Fat- and protein-corrected milk yield 0.37 ± 0.15
Difford et al. (2019) 432 ppm/day Sniffer Fat- and protein-corrected milk yield 0.61 ± 0.32

BW
Lassen and Løvendahl (2016) 1745 g/day Sniffer BW −0.16 ± 0.07
Breider et al. (2019) 184 g/day Sniffer BW 0.01 ± 0.43
Difford et al. (2019) 432 ppm/day Sniffer BW 0.34 ± 0.16
Difford et al. (2019) 656 ppm/day Sniffer BW 0.16 ± 0.25

DM intake
Difford et al. (2019) 432 ppm/day Sniffer DM intake 0.60 ± 0.13
Difford et al. (2019) 656 ppm/day Sniffer DM intake 0.08 ± 0.38

Body type traits
Zetouni et al. (2018b) 1397 g/day Sniffer BCS −0.28 ± 0.10
Zetouni et al. (2018b) 1397 g/day Sniffer Chest width −0.20 ± 0.13
Pszczola et al. (2019) 483 g/day Sniffer Chest width 0.16 ± 0.06
Pszczola et al. (2019) 483 g/day Sniffer Height 0.15 ± 0.06

Health
Zetouni et al. (2018b) 1397 g/day Sniffer Udder health −0.32 ± 0.16
Pszczola et al. (2019) 483 g/day Sniffer Somatic cell score 0.11 ± 0.07
Pszczola et al. (2019) 483 g/day Sniffer Longevity −0.06 ± 0.07

DIM = days in milk; NA = not available; BCS = body condition score.
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technology to assess the whole metagenomes of 334 dairy
cows. This study found genetic correlations between CH4
concentrations and genera in protists, archaea, anaerobic
fungi and bacteria.

Furthermore, by contrasting the heritability of CH4 produc-
tion and microbiability (proportion of total variance due to
rumen microbiota), estimated jointly and separately, and
assessing the relative change in variance, Difford et al.
(2018) estimated the overlap between host genetic and
rumen microbial influences on host CH4 production. In other
words, the methane emission is affected by the host geno-
type, the rumen microbial composition and the interaction
between the host genotype and the rumen microbial compo-
sition. Specifically, Difford et al. (2018) proposed a quantita-
tive genetic framework for inferring whether cattle act as a
holobiont or one unit under selection for particular pheno-
types. Bordenstein and Theis (2015) review the concepts
of holobionts and hologenomes, where the cow is seen upon
as a unit and not split into nutrition, genetics, microbiology,
etc. Selection for optimal microbial community content is a
new concept in animal breeding, whereas selection for resis-
tance against specific microbiota, such as pathogens, is not.
Further research on the stability of rumen microbiota
throughout the lifespan of cows, as well as models of inher-
itance, and studies where diet are included are needed in
future research.

After Johnson and Johnson (1995) first estimated that CH4
production constitutes a net energy loss of 2% to 12% of the
gross energy intake of cows, links have been inferred
between CH4 production and feed efficiency. de Haas et al.
(2011) predicted methane emissions from feed intake and
phenotypic RFI, reporting favourable genetic correlations
of 0.72. These findings suggest a win-win situation, where
concurrent improvements could be made to feed efficiency
(which has a high economic value) and reducedmethane pro-
duction (which, currently, has no economic value). However,
nutritionists and physiologists were quick to warn that
reduced methane emissions are associated with reduced cell
wall degradation and faster passage rates (Huhtanen and
Hristov, 2018). In other words, cows that are poor at
digesting fibre and quick to pass fibre from the rumen are
likely to have reduced CH4 production. This could also lead
to bad feed efficiency since DM digestion is decreased.
Recently, Difford et al. (2019) estimated genetic correlations
between feed efficiency traits and CH4 concentration (ppm) in
two separate Holstein populations. The authors found CH4
concentration was a strong indicator trait for feed efficiency.
However, in Denmark, strong favourable genetic correlations
were estimated (range: 0.42 to 0.69) for different definitions
of RFI. However, in the Netherlands where different recording
periods and diets were used, genetic correlations ranged
from −0.69 to 0.46, depending on the RFI definition used.
For grazing Holsteins, Breider et al. (2018) obtained a genetic
correlation between RFI and CH4 production, which was very
close to zero.

These results imply that relationship between feed effi-
ciency and CH4 emissions is not straightforward, with

considerable research being needed to define these relation-
ships over time and under different production and feeding
conditions before selection for reduced methane emissions.

Future perspectives

We iterate previous calls for an international genomic refer-
ence population on CH4 production in dairy cattle to bench-
mark genetic correlations between methods of recording
methane emissions and potential indicator traits. Such an
exercise would be invaluable in unravelling genetic relation-
ships between methane and existing selection traits, as well
as potential new traits, like feed efficiency. The development
of methods must continue to improve existing methods (such
as sniffers), increase the scope of applications and decrease
the costs of large scale recording (such as RC and SF6). Initial
findings in rumen microbial ecosystems and feed efficiency
offer exciting new fields of genetic research but require con-
siderably larger studies in the future. Genetic selection is a
powerful tool to change the level of trait of economic impor-
tance. This is also the case for methane emission, but we are
not there yet. Genetic selection cannot standalone as a mit-
igation strategy and solve all problems. Other initiatives will
also have effect on the release of greenhouse gasses from
agriculture. In the future, it will be even more important
to collaborate across disciplines within animal science and
related areas to improve mitigation strategies.
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O’Kiely P, Peiren N, Reynolds CK, Schwarm A, Shingfield KJ, Storlien TM,
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