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STABLE EXTENSIONS AND FIELDS WITH THE
GLOBAL DENSITY PROPERTY

MICHAEL FRIED AND MOSHE JARDEN

Introduction. For a field M we denote by M, and M respectively the
separable closure and the algebraic closure of M. If 7 is a variety which is
defined over M, then we denote by V(M) the set of all M-rational points of V.
M is said to be pseudo-algebraically closed (PAC) field, if V(M) 5 @ for every
non-void abstract variety V defined over M. It can be shown that then V(M)
is dense in V7 (81) in the Zariski M-topology.

Suppose now that M is equipped with an absolute value w. M is said to have
the density property with respect to w, if V(M) is w-dense in V(M,) for every
abstract variety V defined over M. Here M, is the completion of M with
respect to w.

Let K be a field and let ¥ (K,/K) be the Galois group of K, over K. Let ¢ be
a fixed positive integer and equip ¥ (K,/K)¢ with the normalized Haar
measure p. For every (¢) € ¥ (K,/K)¢ we denote by K,(¢) the fixed field of
o1, ..., 0. The following theorem was proved in [3].

If K is a denumerable hilbertian field and if w is an absolute value of K, then
K (8) has the density property with respect to w for almost all (8) € G (K,/K)".

The aim of this work is to strengthen this result as follows:

If K is a denumerable hilbertian field and if v is an absolute value of K, then
K (8) has the density property with respect to every extension w of v to K for almost
all 6. In particular, if K is a global field, then for almost all (¢) € 9 (K,/K)¢,
K (8) has the density property with respect to every absolute value w of K. (One can
say that these K (¢) have the global density property).

Thus we have solved Problem 2 of [3] affirmatively. In order to prove the
theorem we show that every PAC field M has the following property:

For every finitely generated regular extension F of K of dimension r there exists a
separating transcendence base t, . . . , t, such that the Galois closure, F, of F/M(t)
1s regular over K.

This we prove in two steps, first for » = 1 by using the Riemann-Roch
theorem and then by reducing the case r = 1 to the case » = 1 and using the
theory of simple points.

The authors wish to acknowledge their indebtedness to P. Roquette for
Lemmas 3.1 and 3.2.
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1. Stable extensions. By the Galois closure of a separable algebraic field
extension F|E we mean the smallest extension F of F which is Galois over E.

A finitely generated regular field extension F/K of dimension 7 is said to be
stable, if it has a separating transcendence base fy, . . . , {, such that the Galois
closure F of the (separable) extension F/K (t) is regular over K. The system
ty, ..., t,is said to be a stabilizing base for F/K.

Note that if 4, ..., ¢, is a separating transcendence base for F/K, then a
necessary and sufficient condition for ¢, ...,¢, to stabilize F/K is that
G (F/K(t)) = G (F-K(t)/K(t)). This follows, since £/K is regular if and
only if F is linearly disjoint from K over K.

A field K is said to be stable, if every finitely generated regular extension F
of K is stable.

An abstract variety V is said to be stable over a field K, if V is defined over K
and if the function field of V is stable over K.

One sees immediately that the stability of a variety over a field is preserved
under birational transformations. Further, if an abstract variety 17 is stable
over a field K, then it is stable over every algebraic extension of K.

An absolutely irreducible polynomial f € K[T},...,T,, X] is said to be
stable over K with respectto T, ..., T,if 9f/0X 5 0 and if there exist elements
ti, ..., t;, x such that: (i) f(t,x) =0, (ii) 4, ..., ¢, are algebraically inde-
pendent over K and (iii) ¢y, . . ., ¢, is a stabilizing base for K (t, x)|K.

The most common example of a stable polynomial is that of the general
polynomial, A(T,X) = X"+ TmX" '+ ...+ T,, of degree n. It is well
known that the Galois group % (h(t, X), K(t)), of h(t, X) over K (t) is iso-
morphic to the symmetric group S, for every field K (c.f. Lang [8], p. 201]).
Hence f is stable over K with respect to 74, ..., T, over every field K.

Note that it is possible that a polynomial is stable with respect to one system
of variables but not with respect to another. Thus, for an odd prime p, X? — T
is stable with respect to X over Q but not with respect to 7.

Note also that questions concerning the stability of abstract varieties can be
expressed as questions concerning the stability of absolutely irreducible poly-
nomials, since every abstract variety is birationally equivalent to a hyper-
surface.

LEMMA 1.1. Let M be an algebraic extensionof a field K, letf € M[Th,..., T, X]
be an absolutely irreducible polynomial which is stable over M with respect to
T, ..., T, Then there exists a finite extension L of K which contains the co-
efficients of f and 1s contawined in M such that f is stable over L with respect to
Ty, ..., T,

Proof. Let ty, . . ., t, beralgebraically independent elements over M and let x
be an element such that f(t, x) = 0. Then M (t, x) is a separable extension of
M(t). Let M be the Galois closure of M(t, x)/M(t). Then there exists an
element y € M such that M = M(t,y). Let ¢ € M[T, ¥] be an irreducible
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polynomial such that g(t,y) = 0 and let vy = vy, ..., yq be all the roots of
g(t, V). Then x and ¥y, ..., v, can be expressed as polynomials in y with
coefficients ¢(t) in M (t). Extend K by adjoining to it all the elements of M/
appearing in the ¢(t) and all the coefficients of f and g. Call this extension L.
Then L is a finite extension of K which is contained in M. Write L = L(t, ).
Then x, 1, . . ., va € L and hence L is the splitting field of g(t, V) over L(t),
hence it is also Galois over L(t). Moreover, L is linearly disjoint from .17 (t)
over L(t), since g(t, V) is certainly irreducible over L(t). It follows that Lis
the Galois closure of L(t, x)/L(t), since any intermediate field L(t,x) C L' C L
which is Galois over L (t) gives rise to a Galois extension M’ = M - L’ of M (t)
such that M(t,x) € M’ C M.

Now L is also linearly disjoint from M over Land /T = - L is, by assump-
tion, linearly disjoint from K over M. Hence L is linearly disjoint from K
over L. Thus L(t, x) is a stable extension of L.

If Lisa hilbertian field and f € L[T, ..., T,, X]is an absolutely irreducible
stable polynomial over L with respect to T, then one can construct, by induc-
tion, a sequence (a;), (@), (@), ... of r-tuples of L such that the sequence
Ly, Lo, Ly, . .. of the splitting fields over L of f(a;, X), f(a., X), f(as;, X), . ..
(respectively) is linearly disjoint over L. This is the crucial property of the
stable polynomials and we shall use it later in an application to approximation
theory. But first we have to worry about getting sufficiently many stable
polynomials. This is done by proving that every PAC field M is stable. The
above hilbertian field Z will be obtained from M by using Lemma 1.1.

A sufficient condition for a separating transcendence base to be a stabilizing
base is given by the following lemma:

LemMA 1.2. Let ty, ..., t, be a separating transcendence base of « finitely
generated regular extension F/K, let n = [F: K(t)] and denote by F the Galois
closure of F/K(t). If G (F - K/K(t)) is isomorphic to the symmetric group S,,
then ti, . .., t, stabilizes F/K, and hence F/K 1s stable.

Proof. By Galois theory
G(F-R/R(t)) =9 (F/FNEK(t)).
Hence
n!=[F: FNK(@t)] = [F: Kt)] £ n!
since [F : K(1)] = n. It follows that # N K(t) = K(t) and hence
G(F-K/K(t)) = G (F/K(1)),
ie. ty,...,t is a stabilizing basis for F/K (t).
2. Function field of one variable. The theory of divisors of function fields

of one variable makes it possible to realize the conditions of Lemma 1.2 and
thus to construct stable extensions.
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Levmya 2.1. Let L be an algebraically closed field, let t be a transcendental element
over L, let E be a separable extension of L(t) of prime degree | and let E be its
Galois closure. Suppose that there exists a prime divisor p of L(t)/L which
decomposes in E as

p =P+ ...+ P2+ 2P,
where By, . . ., B s are distinct prime divisors of E/L. Then G (E/L(t)) = S,

Proof. Write G = G (E/L(t)) and H = G (E/E), and let £ = {¢H|o € G}
be the set of all left cosets of H in G. The order of Z is obviously /. Note that
G, = {r € GlreH = ¢H for all ¢ € G} is a normal subgroup of G which is
contained in H. Its fixed field E; is normal over L(¢) and contains E, hence
E, = E. It follows that G; = 1 or, in other words, G acts faithfully on Z. We
can therefore consider G as a subgroup of the group S(Z) of all permutations
of 2. Choose now, forevery 1 £ ¢ <1 — 2, an extension Q;of B, to £ and let O
be an extension of B to E. Then O, is conjugate to O over L(2), i.e. there exists a
o€ Gsuch that Poi = P, If,forl £4,7 <1 — 2,0,;H = ¢,H, then o;|E = o,|E,
hence B, = B, hence 7 = j. It follows that ¢1H, . .., 0, oH are / — 2 distinct
elements of Z. Let ¢,_;H and ¢, H be the remaining two.

Our assumption that L is algebraically closed leads to the conclusion that
I(Q) ={r€G|C7=C)and I(Q)) = {r € G|Q = Q. are the inertia groups
of Cand O, 7 =1,...,l — 2respectively. The B, are, by assumption, unrami-
fied over L(f), hence the inertia fields of {; contain E, which means that
I(Q,) CTHfori=1,...,1—2.0n the other hand Q. is certainly ramified over
L(t). Therefore thereexistsar € I(Q)suchthat r # 1. Foreveryl <1 <1 —2
we have o, 'ro; € I1(LQ;), hence 7o, H = ¢ H. It follows that 7o ,_;H = ¢,H and
70, H = o,1H, i.e. 7 is a transposition. In addition, the order of G is a multiple
of /, hence, by Sylow's theorem, G contains an element p of order /, which is
necessarily a cycle of length /. It follows that G must coincide with S(Z), since
obviously G acts transitively on 2 (c.f. van der Waerden [10, p. 201]).

LEMMA 2.2, Let F be a function field of one variable with genus g over an infinite
field of constants K. Let py, . . ., 0, be prime divisors of F/K and let ay, . . ., a, be
postitive integers such that

(1) z‘i a;degp; > 3g — 2.
Then there exists an x € F whose pole divisor (x)., 1s equal to Y i—i ad; and
hence [F: K(x)] = X j—1a,deg v,

Proof. Write a = > i_iap; and a; = a — p; for j = 1,...,n The set
F(a) = {x € Fl(x) =2 —a} is a finite dimensional K-vector space ((x) is the
divisor of x). We denote its dimension by dim a. By (1) we have dega > 2g — 2.
Hence, by the Riemann-Roch theorem

(2) dima=dega—+1— g
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If deg a; > 2¢ — 2, then by the Riemann-Roch theorem and by (2)
dima; = dega —degyp;, +1 — g < dima.
If deg a; < 2¢g — 2, then by the Riemann-Roch theorem, by (2) and by (1)

dima; = dega; + 1 — g 4+ dim(c — aj)
<20 —2+4+1—g+4 g <dima,

where ¢ is a canonical divisor, since
dim(c — a;) = dimec=¢

(c.f. Lang [6, p. 241]). Thus in both cases we have dim a; < dim a, hence . (a;)
is properly contained in % (a) for j = 1, ..., n. It follows that U’ % (a;)
is also properly contained in % (a), since K is infinite. Every ¥ € % (a) —
%21 % (a;) will satisfy the requirements of the lemma (c.f. Lang [6 p. 237]).

THEOREM 2.3. Let F be a function field of one variable over an infinite field of
constants K. If F has a prime divisor B of degree 1, then F/K 1s a stable extension.

Proof. Let g be the genus of K, let p = char(K) and choose a prime / such
that

(3) 1>3¢g and pri(l — 2)

By Lemma 2.2 there exists an s € F such that (s), = (Il — 2)P and
[F: K(s)] =1 — 2, since deg = 1. There are infinitely many prime divisors
of K(s)/K of degree 1, since K is infinite. By (3), F is a finite separable exten-
sion of K (s), hence we can find a prime divisor q of degree 1 of K (s)/K which is
unramified in F and such thatif Q, ..., Q, are the distinct prime divisors of F/
which lie over g, then their residue fields Q;F are separable over K = qK (s)
(c.f. Chevalley [2, p. 72]). Furthermore we have > 7. deg Q; =1 — 2 (c.f.
[2, p. 52]).

Consider now the divisor A = Q1 4 ... + Q, + 2P. Its degree L is, by (3),
greater than 3g — 2. Hence, by Lemma 2.2 there exists a ¢ € F such that
t), =Wand [F: K({)] =L

Extend the field of constants from K to K and write E = K - F. Then
[E: K(t)] = [F: K()] = I, since F is linearly disjoint from K over K. Hence
E/K(t) is separable. Denote by E the Galois closure of E/K (t). If Q is any
prime divisor of F/K such that QF is a separable extension of K, then there
exists exactly deg Q = [QF : K]distinct prime divisors of E/K which lic over Q
(c.f. [2, p. 95]). In particular exactly one prime divisor, B, of E/K lies over B
and exactly I — 2 prime divisors, Bv/, ..., P,_o’, of E/K lieover Qy, ..., Q.
It follows that the pole divisor (¢)../ of ¢ in K (t), which is a prime divisor there,
factorsin Eas (¢).,' = B/ + ... + B’ +2PB. ByLemma 2.1 F (E/K (1)) =S,
Hence, by Lemma 1.2, F is a stable extension of K.
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3. Function fields of several variables. In thissection we apply Theorem 2.3

to develop a certain condition under which a finitely generated regular extension
F/K is stable.

LemMa 3.1. Let F/K be an arbitrary field extension. If F has a K-rational
K-place ¢, then I is a regular extension of K.

Proof. Extend ¢ to a K-place of K - F and denote this place also by . Then
the restriction of ¢ to K is an isomorphism (c.f.: Lang {6, p. 8]). Consider now #
elements ay, ..., a, of K which are linearly independent over K. Then
e(a1), ..., o(a,) are also linearly independent over K. Assume that they
become linearly dependent over F, i.e. that there exists x, ..., x, € F, notall
zero, such that

1) x4+ ...+ %0, =0.

It is known that for one of the x/'s, say %1, all the quotients x,/x1,7 = 1, ... 1,
are finite under ¢ and hence the ¢(x,/x;) belong to K. In particular x; # 0.
From (1) we therefore get that

e(a1) + o(xo/x1)e(ar) + ... + o(x,/x1)0(a,) = 0,
which is a contradiction. It follows that K is linearly disjoint from F over K.

By a model of a finitely generated regular field-extension F/K we mean an
absolutely irreducible affine variety V defined over K, the function field of
which is F.

LEMMA 3.2. Let F/K be a finitely generated regular field extension of dimension
r = 1. Suppose that

(*) F/K has a model V with a K-rational simple point P.

Then:

a) there exists an intermediate field K C L C F such that L/K 1is a purely
transcendental extension of dimension r — 1 and F/L is a regular extension which
has a prime divisor p of degree 1;

b) if K is an infinite field, then F is a stable extension of K.

Proof. a) The local ring R of P in F is regular. This means that its maximal
ideal JM is generated by 7 elements, say si, . .., s, (c.f. Lang [6, p. 201]). R can
be imbedded into the ring of formal power series R = K[[s1,...,s,]]. R hasa
discrete valuation » which can be described as follows: Each element f € R can
be written in a unique way as f = fo + f1 + fo + .. .., where f; is 2 homoge-
nous polynomial in si,...,s, of degree i. The value, v(f), of v at f is the
smallest integer n such that f, # 0 (c.f. Zariski-Samuel [12, p. 130]). This
valuation can be restricted to R and then extended in the usual way to the
quotient field Fof R, where it keeps the same notation ». The ring R is certainly
contained in (but probably not identical with) the valuation ring S of v in F.
Let N be the maximal ideal of S and let ¢ be the K-place of Finto F = S/N
induced by v.

https://doi.org/10.4153/CJM-1976-074-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-074-6

780 M. FRIED AND M. JARDEN

Now write {; = s;/s,,7=1,...,7 — 1. Obviously 4, . . ., t,_; are in .S and
if we writef; = ¢(t;) forte =1,...,7r — 1, then {, ..., {,_; are algebraically
independent over K and F = K(fy, ..., %_;) (c.f. [12, 132]). It follows that
ty, ..., t,_1 are also algebraically independent over K and that if we put

L =K(t,...,t_1), then the map ¢t;,—1#;, 1 =1,...,r — 1, induces a K-
isomorphism of L onto F. L is therefore a purely transcendental extension of K
of dimension r — 1. If we identify / with L under the above isomorphism, we
get that ¢ is an L-rational L-place of F. This gives us the desired prime divisor p
of F/L of degree 1 and also implies, by Lemma 3.1, that Fis a regular extension

of L.
b) By Theorem 2.3 there exists a ¢, in F which serves as a stabilizing basis for
the regular extension F/L of dimension 1. The system ¢, . . . , ¢, will therefore

be a stabilizing basis for F/K.

LeEmMma 3.3, Let V be an abstract variety defined over a« PAC field L. Then the
set V(L) of all L-rational points of V s dense in V in the Zariski L-topology.

Proof. Without loss of generality we can assume that V is affine and hence
contained in a certain affine space S”. Let 4 be an L-closed subset of S* which
does not contain V. We have to show that V(L) — 4 # #. Indeed, let
(x) = (x1,...,x,) be a generic point of ¥V over L. Then L(x) is a regular
extension of L and there exists a polynomial g € L[ X}, ..., X,] which vanishes
on A4 but not at (x). Write y = g(x)~. Then L(x,y) = L(x) and hence (x, y)
generates an absolutely irreducible variety W over L. W has an L-rational
point (a, b). It is a specialization of (x,y) over L. The point (a) belongs to
V(L) and satisfies g(a)b = 1, hence (a) ¢ 4.

THEOREM 3.4. Every PAC field L is stable.

Proof. Let F be a finitely generated regular extension of L and let V' be an
affine model of F/L. By Lemma 3.3, 1" has an L-rational simple point P, since
the set "gm of all simple points of 17 is L-open in IV (c.f. Lang [2, p. 199]). In
addition L must be infinite, since if L contains only ¢ elements, then the ab-
solutely irreducible polynomial (X? — X)(¥Y? — ¥) + 1 has no zeros in L. It
follows, by Lemma 3.2, that /' is stable over L.

4. Valued fields. Let (K, v, T') be a valued field of one of the following two
types:

I. The archimedean type: K is a subfield of the field C of complex numbers,
v is the usual absolute value and T' C R.

II. The non-archimedean type: K is an arbitrary field and v is a non-trivial
multiplicative valuation of K with values in the ordered, multiplicative,
divisible, abelian group I

We shall use the notations ||, instead of v(a) for elements a of K and reserve
the notation v(A4) for the value set of a subset 4 of K. T is assumed to be the
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divisible closure of v (K*). We shall also denote by K, the completion of K under
v and always assume that » has been extended to K,.

Along with v we shall consider also the set Q of all extensions of v to X. All the
completions K,, w € ©, are assumed to be contained in some universal field and
thus contain the same copy of K. Every « € Q defines a field topology on K.,
the basis sets of which are {x € K,| |x — al, < €}, wherea € K,and e € T. We
shall refer to it as the w-topology.

LEMMA 4.1. Let
f(T,x) = f,(T)X" 4+ ...+ fil(DX* + ... + fo(T)

be a polynomial with coefficients in K in the variables (T, X) = (T, ..., T, X).
Let (a, b) be a K-rational zero of f for which there exists a k, 0 < k £ n, such that
fi(@) # 0. Then for every e € T there exists a & € T such that [or every w € Q
and for every ay, . .., a;’ € K which satisfy

|ail'—ai|w<5 i:l,...,T
there exists a b’ € K such that
f@,v) =0, fi@)=0 and |V — bl, < e

Proof. Without loss of generality we can assume that (a,b) = (0,0) and
e < 1. Then f,(0) = 0and 1 £ k& = n. Let L be a finite extension of K which

contains all the coefficients of fand let vy, . . ., v, be all the extensions of » to L.
For every 1 < j < [ we choose an extension w; of v, to K. Then there exists a
6 € T'such thatforj =1,...,1
(1) leile; <8, 2=1,...,r implies f(a’) # 0 and
fo(@") £ in Case I
f@) s, <
k @i €' in Case 11

since fo and f, are w;-continuous.
Letw € Q. Then thereexistsal = 7 = 1 and an automorphism ¢ of K over L

such that w = w; o ¢ (c.f. Lang [8, p. 293]). Suppose that i/, ..., a, are
elements of K such that |¢/|, <6 for 2 =1,...,r. Then |oa/|,; < 6 for
i =1,...,7 and hence by (1), ofi(a’) # 0, hence f,(a’) ¥ 0 and
@ L@ _ k) “7 in Case I

fe@dle Jiloa) | ¢" in Case II

Let m be the greatest integer for which f,(a”) # 0. Then ¥ < m = #n and

f@,X) = f,@)X" 4+ ...+ @)X + ...+ f@")

— @) Y (X — b)),

=1
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where by, ..., b, € K. Then

fo(@’) my » ' fx(@”)

e = (—=1)" ... b, Tt =

fa@y = T Jn@)
where 7 runs over all the injective maps of the set {1, ..., m — k} into the set
{1,...,m}. If fo(@’) = 0, then b,/ = 0 for at least one 7 between 1 and m. If
fo(@’) ## 0 then we extend each of the above 7 to a permutation of {1, ..., m}.

Then

and

(=)™ 20 bhy - - brnen

JCL("Q:(—l)"Zbr S

fo@" = brnoitd) - « - brcm
and by (2) we deduce that there must be a b,/ which satisfies [0/], < e
LEMMA 4.2, Let w € Q and let M be a PAC field which is algebraic over K.

Suppose that for every polynomial f € M|T, ..., T, X) which is stable over M
with respect to 1, . .., T, the set

{(a, b) € M f@,b) =0 and b%ff (@, b) 0}

15 w-dense in the set

{(a,b) €K f@ b)) =0 and :%% (a, b) # O}

Then M has the density property with respect to w, i.e. V(M) is w-dense in
V(K,) for every abstract variety V which is defined over M.

Proof. Let V' be an abstract variety of dimension » which is defined over 3.
Then V is stable over M, by Theorem 3.4. Let P be a generic point of 17 over M
and let ¢, ..., ¢, be a stabilizing base for M(P)/M. Then M(P)/M(t) is
finite separable extension and hence there exists an element x such that
M(P) = M(t,x). There exists an absolutely irreducible polynomial f € M|T, X]
such that f(t, x) = Oand 9f/9X (t, x) # 0. By definition f is stable over M with
respect to (T'). Denote by W the hypersurface defined by f over M. It has (t, x)
as a generic point and the map (t, x) — P defines a birational correspondence ¢
between W and 1 over M. The set W’ = {(a, b) € W|df/0X (a,b) # 0} is a
non-void open subset of W in the Zariski M-topology. W'’ contains a non-void
subset W' which is open in the Zariski M-topology and 1" contains a subset 1/’
which is open in the Zariski-M-topology such that ¢ is biregular at W, and has
7y as a set theoretic image of W' (c.f. Lang [6, p. 94]). The correspondence ¢
induces therefore w-homeomorphisms of W, (M), W (K,) onto V (M),
Vo' (K,), respectively (c.f. Weil [11, p. 352]).

By assumption W’ (M) is w-dense in W’ (K,), hence W, (M) is w-dense in
Wy (K.). Hence V' (M) is w-dense in 1V (K,). By Lemma 2.2 in [3], V' (K.) is
w-dense in V(K,), since K, is algebraically closed (c.f. Lemma 1.4 in [3]).
Hence V(M) is w-dense in 1 (K,).
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5. Hilbertian valued field. Let K be a field. A hilbertian subset H of K™ is a
set of the form
= {(a) € K'|f,(a, X) is defined and irreducible in K[X] for
j=1,...,m},
where fi, ..., f, are irreducible polynomials in K(74, ..., 1T,)[ X1, ..., X,

The field K is said to be hilbertian if for every n = 1, all hilbertian subsets of
K" are non-empty.

LEMMA 5.1. Let K be a hilbertian field and let f € K[T,, ..., T, X] be a stable
polynomial over K with respect to T, ..., T, Let G = G (f(t, X), K(t)) be the
Galois group of f(t, X) over K(t) (44, . . ., t, are algebraically independent elements

over K), and let L be a finite separable extension of K. Then there exists a hilbertian
set H © K7 such that every (a) € H, 9 (f(a, X), K) = 9 (f(a, X), L) =G,
hence the splitting field of f(a, X) over K is linearly disjoint from L over K.

Proof. There exists a hilbertian set H; € K7 such that 9 (f(a, X), K) =~ G
for every (a) € H, (c.f. Kuyk [5, p. 396]). There exists also a hilbertian set
Hy C L"such that 9 (f(a, X),L) =G for every (a) ¢ H,, since f is stable
and hence Z(f(t, X), L(t)) = G. Hy contains a hilbertian set H, C K (c.f.
Lang (7, p. 152]). H = H; M H, will satisfy the requirements of the lemma.

From now on we shall suppose that K is a hilbertian valued field and we
shall keep all the notations of § 4. We refer to § 5 of [3] for the introduction of
the Haar measure to % (K,/K)’. Here ¢ is a fixed positive integer.

LEMMA 5.2. Let L be a finite separable extenston of K andletf € L[T, ..., T, X]
be a stable polynomial over L with respectto Ty, ..., T, Letcy,...,c,,d € K be
such that f(c,d) = 0 and 9f/9X (c,d) # 0. Let 5 < € be two elements of T such
that for every w € Q and for every ¢, ..., ¢, € K, which satisfy |c/ — c4|o < &
fori=1,...,r, there exists ad’" € K suchthat f(c’,d') =0, of/dX (c’,d’) = 0
and |d' — d|, < e Suppose also that for every w € Q there exist ¢, ...,c,”” € L
such that !ci — ¢io < 8/2 in Case I and |c/' — ci|o < 8 in Case II, for
1 =1, , 7. Then, for almost all (¢) € G (K,/L)¢ and for every w € Q there exist
ay, ... ,a, b € Ks(8) such that

_ I by =
(1) f(ayb)_or aX (a)b)_o
la;—cio<e fori=1,...,r and |b—4d|,<e

Proof. Let n be the order of G = Z (f(t, X), L(t)) and let vy, . . . , v, be all
the extensions of v to L. We construct by induction a linearly disjoint sequence
{L;/L}5-1 of Galois extensions of degree nl such that for every j = 1 and for
every w € Q there exist a1, ...,a,, b € L; which satisfy (1). Suppose that
Ly, ..., Ly have already been constructed. Then L’ = L, ... L;_; is a
finite Galois extension of L. For every 1 < X\ = [ there exist, by assumption
o'y ..., 6 € Lsuch that |eni' — ¢4],, < 8/21in Case I and |/ — ¢4f,, < 81in
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Case II, for 7 = 1,...,r. By Lemma 4.1 of [3] every hilbertian set of L" is

vi-dense in L7, hence, by Lemma 5.1, there exist ay, . . ., a1, € L which satisfy.
lar; — 1] < 6/2in Case I and |a1; — 1|,y < 8in Case II, forz =1,...,7,

such that 9 (f(a, X), L) = % (f(a, X), L') = G. Let L;; be the splitting field
of f(a, X) over L. Then L is a Galois extension of L of degree n which is
linearly disjoint from L’ over L.

If w € Qis an absolute value whose restriction to L coincides with »;, then
la1; — ¢i]o < 8/2in Case L and |a;; — ¢4o < din Case Il fors =1, ..., 7; hence,
by assumption, there exists a b; € K such that f(ay, b;) = 0, 9f/9X (a,,01) #0
and |b; — d|, < e In particular b, is a root of f(a;, X) and hence belongs to
L.

In the same way we can construct, step by step, for every 1 = X £/, a
Galois extension L j of L of degree » which islinearly disjoint from L'L ;... L; x—1

and elements ayi, . .., ax,, Ox € L such that (1) is satisfied for every w € Q
whose restriction to L coincides with vy.
The field L; = L;;... L, is a Galois extension of L of degree nl which is

linearly disjoint from L’ over L which satisfies the requirements, since the
restriction of each of the w € Q to L coincides with one of the v,.

By Lemma 5.1 of [3] the union U%.; ¥ (K,/L;)¢isalmost equal to ¥ (K,/L)".
If (¢) € U1 9 (K,/L,)*then L; € K,(¢) for at least one j. Hence for every
w € Q there exist ay, ..., a, b € K (38) such that (1) is satisfied.

Leyva 530 If K @5 a denumerable hilbertian  field, then almost all
(8) € G (K,/K)® have the following property:

For every d € K and for every ¢ € T there exists u finite subset B of K (6) such
that for every w € Q there exists « b € B such that |b — d|, < e.

In particular, K () is w-dense in K for every o € Q.

Proof. Letd € K,letf(X) = X" + ¢, X"'4 . ... 4 ¢, beapolynomial with
coefhicients in K such that f(d) = 0 and let € > 0. We shall construct by
induction a linearly disjoint sequence {K,/K}7., of Galois extensions of
degree n and in every K; a subset B; with n elements such that for every w € Q
there exists a b € B, such that |b — d|, < e.

Suppose that K, ..., K,y have already been constructed. Then
K' = K, ... K, 1is a finite separable extension of K. The general polynomial,
T, X) = X"+ 1nX"' 4 ... 4+ T, of degree nis, as we already noted in§ 1,
stable over K with respect to 77, ..., 7}, and it has the Galois group .S, over
K(T). Hence, we can find, as in the proof of Lemma 5.2, ay, .. ., ¢, ¢ K which
are v-close to ¢y, . . ., ¢, such that #(a, X) is a separable polynomial with .S, as a
Galois group both over K and over K’. Let K, be the splitting field of 4 (a, X)
over K. Then K is a Galois extension of K of degree n! Let by, ..., b, be all the
roots of h(a, X) and write B; = {by, ..., b,}. Then, by Lemma 4.1, for every
w € Q there exists a b € B; such that [0 — d|, < e

https://doi.org/10.4153/CJM-1976-074-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-074-6

STABLE EXTENSIONS 785

Write now S(d, ¢) for the set of all (¢) € ¥ (K,/K)¢ for which there exists a
finite subset B of K(8) such that for every w € Q thereexistsad € B for which
b —d|, < e Clearly U7y 9 (K,/K;)¢ C S(d, €). The right hand side of this
inclusion has, by Lemma 5.1 of [3], the measure 1, hence u(S(d, ¢)) = 1. Since
K is denumerable field, there are only countably many d ¢ K and e € T.
Hence the intersection of all the sets S(d, ¢) has the measure 1. This concludes
the proof of the lemma.

THEOREM 5.4. If K is a denumerable hilbertian field, then K (8) has the density
property with respect to every w € Q for almost all (8) € G (K /K)*.

Proof. Let S be the set of all (¢) € ¥ (K,/K)¢such that K(¢) isa PAC field
and which have the following property:

For every polynomial f(7',...,1,, X) which is stable over K(g) with respect
to T4, ..., T,and for every w € Q the set

W/ (Ks(6)) = {(a,b) € Ki(e)""![f(a, ) =0, 6f/9X (a,b) # 0}

is w-dense in the set W;(K,) = {(a, b) € Ki*|f(a,b) = 0, df/9X (a, b) = 0}.
By Lemma 2.4 in [3], W/ (K;) is w-dense in the set

W/ (K.) = {(a,0) = Ki*'|f(a,b) = 0, 0f/9X (a,b) # 0},

hence W,/ (K,(4)) is w-dense in W/ (K,). It follows, by Lemma 4.2, that K,(4)
has the density property with respect to w.

It suffices therefore to prove that u(S) = 1.

Let L be a finite separable extension of K and letf € L[T,..., 7, X]bea
stable polynomial over L with respect to T4, ..., 1, Lete¢y, ... ¢, d € K
such that f(c, d) = 0and df/9X (c,d) = 0. Let e € T. Then by Lemma 4.1 there
exists a § € I' which satisfies

(2) 6<ce

such that for every w € @ and for every ¢/, ..., ¢,/ ¢ K which satisfy
le/ — ¢ilo < 6 fori=1,...,r, there exists a d’ € K such that f(¢/, d') = 0,
df/8X (c',d") #0 and |d' —d|, < e. In particular,if ¢/,..., ¢,/ € K thend' € K.
Suppose further that for every w € Q there exist ¢1”/, ..., ¢,”” € L such that
le" — c4o < 8/21in case I and |¢/" — ¢,] < éin Case I, fori =1,...,7.

Denote by S(L, f(c, d), €) the set of all (¢) ¢ % (K,/K)® for which there
exist aj, ..., a, b € K (8) such that

@ @0 =0 @b o,

lai—cdo<e 2=1,...,7r and [b —dl, <e.
By Lemma 5.2:
4) w(@(K,/L) — S(L,f(c,d),e) = 0.
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Denote by 7' the set of all (8) € % (K,/K)¢ such that K,(g8) is a PAC field
and which satisfy:

For every ¢ € K and for every 6 € T there exists a finite extension L of K
which is contained in K,(é) such that for every w € Q there exists an ¢ € L for
which |a — ¢|l, < 8.

By Theorem 2.5 of [4] and by Lemma 5.3

5) wT) =1
We prove that
(6) T —SC UIF(K,/L)*—S(L,f (c,d), )]

where the union runs over all possible L, f, (c, d) and e.

Let (6) € T — S. Then K (8) is a PAC field and there exists a polynomial
f(Ty, ..., T, X) which is stable over K(8) with respect to T, ..., T,, and
there exists a wy € Q for which the set W/ (K (4)) is not we-dense in W,/ (K),
i.e. such that there exists ¢i,...,¢, d € K, which satisfy f(c,d) = 0 and
df/dX (c,d) ¢ 0 and there exists an ¢ € T' for which there do not exist
ay, ...,a, b € Ky (8) which satisfly (3). Let 6 be an element of T which
satisfies (2). By Lemma 1.1 and since (8) € T there exists a finite extension L
of K which is contained in K (8) such that f is stable over L with respect to
Ti,..., Trand such thatforevery w € Qthereexist ¢;”’,..., ¢,/ € L which satisfy
le/" — ¢ilo < 8/2 in Case I and |¢/" — ¢)Jo < 8 in Case II, for i =1,...,r.
It follows that (8) € F (K,/L)¢ — S(L, f, (¢, d), €).

Now, there are only countably many summands on the right hand side of (6),
since K is denumerable. Each one of them is, by (4), of measure zero. Hence the
right hand side of (6) has measure zero and hence, by (5), u(S) = 1.

Let K now be a global field, i.e. a number field or a function field of one
variable over a finite field. Then K is denumerable, hilbertian (c.f. Lang
[7, p. 15]) and it has only countably many absolute values (c.f. Cassels and
Frohlich [1, pp. 45, 46]). The intersection of countably many subsets of
% (K,/K)* of measure 1 is again a set of measure 1. Theorem 5.4 therefore
implies:

THEOREM 5.5. If K is a global field, then for almost all (8) € G (K,/K)¢, the
field K ((8) has the density property with respect to every absolute value of K.
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