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STABLE EXTENSIONS AND FIELDS WITH THE 
GLOBAL DENSITY PROPERTY 

MICHAEL FRIED AND MOSHE JARDEN 

I n t r o d u c t i o n . For a field M we denote by Ms and M respectively the 
separable closure and the algebraic closure of M. If F is a var ie ty which is 
defined over M, then we denote by V(M) the set of all i f - ra t iona l points of V. 
M is said to be pseudo-algebraically closed (PAC) field, if V(M) ^ 0 for every 
non-void abst ract var ie ty V defined over M. It can be shown tha t then V(M) 
is dense in V(M) in the Zariski M -topology. 

Suppose now tha t M is equipped with an absolute value w. M is said to have 
the density property with respect to w, if V(M) is w-dense in V(MW) for every 
abs t rac t var ie ty V defined over M. Here Mw is the completion of M with 
respect to w. 

Let K be a field and let & (Ks/K) be the Galois group of Ks over K. Let e be 
a fixed positive integer and equip &(KS/K)e with the normalized Haar 
measure JLI. For every (d) £ & (Ks/K)e we denote by Ks(ô) the fixed field of 
cri, . . . , ae. T h e following theorem was proved in [3]. 

If K is a denumerable hilbertian field and if w is an absolute value of K, then 
K(ô) has the density property with respect to w for almost all (d) 6 & (Ks/K)e. 

T h e aim of this work is to s trengthen this result as follows: 

If K is a denumerable hilbertian field and if v is an absolute value of K, then 
K(ô) has the density property with respect to every extension w of v to K for almost 
all d. In particular, if K is a global field, then for almost all (d) Ç & (Ks/K)e, 
K(à) has the density property with respect to every absolute value w of K. (One can 
say tha t these K(d) have the global density property). 

T h u s we have solved Problem 2 of [3] affirmatively. In order to prove the 
theorem we show tha t every PAC field M has the following proper ty : 

For every finitely generated regular extension F of K of dimension r there exists a 
separating transcendence base t\, . . . , tT such that the Galois closure, F, of F/M(t) 
is regular over K. 

This we prove in two steps, first for r = 1 by using the Riemann-Roch 
theorem and then by reducing the case r ^ 1 to the case r = 1 and using the 
theory of simple points. 

T h e authors wish to acknowledge their indebtedness to P. Roquet te for 
Lemmas 3.1 and 3.2. 
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STABLE EXTENSIONS 775 

1. S tab le ex tens ions . By the Galois closure of a separable algebraic field 
extension F\E we mean the smallest extension F of F which is Galois over E. 

A finitely generated regular field extension F/K of dimension r is said to be 
stable, if it has a separating transcendence base h, . . . , tT such tha t the Galois 
closure F of the (separable) extension F/K(t) is regular over K. The system 
/i, . . . , tr is said to be a stabilizing base for F/K. 

Note tha t if /i, . . . , /r is a separating transcendence base for F/K, then a 
necessary and sufficient condition for t\, . . . ,tr to stabilize F/K is t ha t 
&(P/K(t)) ^ ^ ( F - i ? ( t ) / i ? ( t ) ) . ^ T h i s follows, since / ? / # is regular if and 
only if F is linearly disjoint from K over K. 

A field K is said to be stable, if every finitely generated regular extension F 
of K is stable. 

An abst ract variety V is said to be stable over afield K, if V is defined over K 
and if the function field of V is stable over K. 

One sees immediately tha t the stability of a var iety over a field is preserved 
under birational transformations. Further , if an abstract variety V is stable 
over a field K, then it is stable over every algebraic extension of K. 

An absolutely irreducible polynomial / Ç K[TU . . . , 7 \ , X] is said to be 
stable over K with respect to Ti, . . . , TT if di/dX ^ 0 and if there exist elements 
h, . . . , / r, x such tha t : (i) / ( t , x) = 0, (ii) tïf . . . , tr are algebraically inde­
pendent over i£ and (iii) t\, . . . , tr is a stabilizing base for i£( t , x) | i£. 

T h e most common example of a stable polynomial is t ha t of the general 
polynomial, h(V,X) = Xn + TxX

n-x + . . . + Tn, of degree n. I t is well 
known tha t the Galois group & (h(t, X), K(t)), of hit, X) over K(t) is iso­
morphic to the symmetric group Sn for every field K (c.f. Lang [8], p. 201]). 
H e n c e / is stable over K with respect to 7 \ , . . . , 7% over every field i£. 

Note t ha t it is possible tha t a polynomial is stable with respect to one system 
of variables bu t not with respect to another. Thus , for an odd prime p, Xp — T 
is s table with respect to X over 0 bu t not with respect to T. 

Note also tha t questions concerning the stabili ty of abst ract varieties can be 
expressed as questions concerning the stabili ty of absolutely irreducible poly­
nomials, since every abstract variety is birationally equivalent to a hyper-
surface. 

LEMMA 1.1. Let M be an algebraic extension of a field K, letf G M[Ti,... , TT, X] 
be an absolutely irreducible polynomial which is stable over M with respect to 
Ti, . . . , TT. Then there exists a finite extension L of K which contains the co­
efficients of f and is contained in M such that f is stable over L with respect to 
Tu . . . , Tr. 

Proof. Let t\, . . . , tT be r algebraically independent elements over M and let x 
be an element such t h a t / ( t , x) = 0. Then M(t, x) is a separable extension of 
M(t). Let M be the Galois closure of M{t,x)/M{t). Then there exists an 
element y 6 M such tha t M = M(t, y). Let g G M[T, Y] be an irreducible 
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polynomial such tha t g(t, y) = 0 and let y = yu . . . , yd be all the roots of 
g(t , F ) . Then x and 3/1, . . . , yd can be expressed as polynomials in y with 
coefficients c(t) in AI(t). Extend fC by adjoining to it all the elements of M 
appearing in the c(t) and all the coefficients of / and g. Call this extension i . 
Then i is a finite extension of K which is contained in AI. Wri te L = i ( t , y ) . 
Then x, 3/1, . . . , yd G L and hence i is the split t ing field of g(t, Y) over i ( t ) , 
hence it is also Galois over i ( t ) . Moreover, i is linearly disjoint from Af(t) 
over i ( t ) , since g(t , Y) is certainly irreducible over L(t). I t follows tha t i is 
the Galois closure of i ( t , x ) / i ( t ) , since any intermediate field i ( t , x) C i ' C i 
which is Galois over i ( t ) gives rise to a Galois extension i l f = M • V of M(t) 
such tha t I f (t, x) Q M' C M. 

Now L is also linearly disjoint from I f over L and M = M • L is, by assump­
tion, linearly disjoint from K over M. Hence L is linearly disjoint from K 
over L. T h u s L ( t , x) is a stable extension of L. 

If L is a hilbertian field a n d / £ L[Ti , . . . , 7%, X] is an absolutely irreducible 
stable polynomial over L with respect to T , then one can construct , by induc­
tion, a sequence (ai) , (a2) , (a3) , . . . of r-tuples of L such tha t the sequence 
i i , i 2 , i 3 , . • • of the split t ing fields over i o f / ( a b Z ) , / ( a 2 , Z ) , / ( a 3 , Z ) , . . . 
(respectively) is linearly disjoint over i . This is the crucial proper ty of the 
stable polynomials and we shall use it later in an application to approximation 
theory. Bu t first we have to worry about gett ing sufficiently many stable 
polynomials. This is done by proving tha t every PAC field M is stable. The 
above hilbertian field i will be obtained from M by using Lemma 1.1. 

A sufficient condition for a separating transcendence base to be a stabilizing 
base is given by the following lemma: 

LEMMA 1.2. Let ti, . . . , tr be a separating transcendence base of a finitely 
generated regular extension F/K, let n = [F : K(t)] and denote by F the Galois 
closure of F/K(t). If & (F • K/K(t)) is isomorphic to the symmetric group S„, 
then ti, . . . , tr stabilizes F/K, and hence F/K is stable. 

Proof. By Galois theory 

&(F-K/K(t)) ^ &(P/Pr\R(t)). 

Hence 

n\ = [F : F H K(t)] ^ [F : K(t)] ^ n\ 

since [F : K(t)] = n. I t follows tha t F H K(t) = K{t) and hence 

&(P-R/K(t)) 9*&(P/K(t)), 

i.e. /1, . . . , tr is a stabilizing basis for F/K(t). 

2. F u n c t i o n field of o n e variable . T h e theory of divisors of function fields 
of one variable makes it possible to realize the conditions of Lemma 1.2 and 
thus to construct stable extensions. 
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LEMMA 2.1. Let L be an algebraically closed field, let t be a transcendental element 
over L, let E be a separable extension of L(t) of prime degree I and let Ê be its 
Galois closure. Suppose that there exists a prime divisor p of L(t)/L which 
decomposes in E as 

p = $1 + . . . + ^ _ 2 + 2 ^ , 

where $ i , . . . , ^ _ 2 (ire distinct prime divisors of E/L. Then &(Ê/L(t)) ~ Sh 

Proof. Wri te G = &(Ê/L(t)) and H = &(Ê/E), and let 2 = {aH\a G G} 
be the set of all left cosets of H in G. The order of 2 is obviously /. Note tha t 
Gi = \r G G\TCFH = aH for all a Ç G} is a normal subgroup of G which is 
contained in H. I ts fixed field E\ is normal over L(t) and contains E, hence 
Ei — E. I t follows tha t G\ — 1 or, in other words, G acts faithfully on 2 . We 
can therefore consider G as a subgroup of the group 5 ( 2 ) of all permutat ions 
of 2 . Choose now, for every 1 ^ i :§ / — 2, an extension Q* of Ĵ3Z- to E and let C 
be an extension of $ t o £ . Then dt is conjugate to Q over L(t), i.e. there exists a 
<n G G such t h a t ^ = ^ . If, f o r i g i , j ^ / - 2, erfi? = er,-ff, then c ^ E = ^ | £ , 
hence s$7- = tyj, hence i = j . I t follows tha t aiH, . . . , o-z_2iïare / — 2 distinct 
elements of 2 . Let ai-\H and atH be the remaining two. 

Our assumption tha t L is algebraically closed leads to the conclusion tha t 
7 ( C ) = {r e G | C r = C } a n d / ( O ï ) = { r f G | 0 / = Q,} are the inertia groups 
of C and O M , 7 = 1, . . . , / — 2 respectively. The ^ are, by assumption, unrami-
hed over L(t), hence the inertia fields of Q* contain £ , which means tha t 
/ ( C i ) C i J for i = 1 , . . . , / — 2. On the other hand O is certainly ramified over 
L( / ) . Therefore there exists a r Ç / ( Q ) such tha t r 9e 1. For every 1 ^ i ^ / — 2 
we have afWai £ J ( 0 2 ) , hence r<7jif = o - ^ . I t follows tha t TŒI-IH = atH and 
Tcr7i7 = Œi^iH, i.e. r is a transposition. In addition, the order of G is a multiple 
of /, hence, by Sylow's theorem, G contains an element p of order /, which is 
necessarily a cycle of length / . I t follows tha t G must coincide with 5 ( 2 ) , since 
obviously G acts transitively on 2 (cf. van der Waerden [10, p. 201]). 

LEMMA 2.2. Let F be a function field of one variable with genus g over an infinite 
field of constants K. Let pi, . . . , pw be prime divisors of F IK and let ai, . . . , an be 
positive integers such that 

n 

(1) E ^ d e g p < > Zg- 2. 

Then there exists an x £ F whose pole divisor (x)œ , is equal to Y^\=i avPi and 
hence [F : K(x)] = £ " = i at deg p*. 

Proof. Wri te a = X^=i aiPt a n d tt;- = cr — p^ for j = 1, . . . , n. T h e set 
Jzf (a) = {x Ç F| (x) ^ —a} is a finite dimensional iv-vector space ((x) is the 
divisor of x). Wre denote its dimension by dim a. By (1 ) we have deg a > 2g — 2. 
Hence, by the Riemann-Roch theorem 

(2) dim a = deg a + 1 — g. 
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If deg et; > 2g — 2, then by the Riemann-Roch theorem and by (2) 

dim dj = deg a — deg p;- + 1 — g < dim a. 

If deg ùj ^ 2g — 2, then by the Riemann-Roch theorem, by (2) and by (1) 

dim a;- = deg cij + 1 — g + dim(c — ct;) 

^ 2g - 2 + 1 - g + g < dim a, 

where c is a canonical divisor, since 

dim(c — <Xj) = dim c = g 

(cf. Lang [6, p. 241]). T h u s in both cases we have dim ct̂  < dim a, hence i f (a,) 
is properly contained in ^ (a) for j = 1, . . . , w. I t follows tha t U *=i i f (ct;) 
is also properly contained in i f (a), since X is infinite. Every x G i f (a) — 
U " = i i f (ct;) will satisfy the requirements of the lemma (cf. Lang [6 p. 237]). 

T H E O R E M 2.3. Let F be a junction field of one variable over an infinite field of 

constants K. If F has a prime divisor ^ of degree 1, then F IK is a stable extension. 

Proof. Let g be the genus of K, let p = char( i£) and choose a prime / such 
tha t 

(3) 1 > 3g and p \1(1 - 2) 

By Lemma 2.2 there exists an 5 £ F such tha t (s)m = (/ — 2 ) ^ and 
[F : K(s)] = 1 — 2, since deg ^ = 1. There are infinitely many prime divisors 
of K(s)/K of degree 1, since K is infinite. By (3), F is a finite separable exten­
sion of K(s), hence we can find a prime divisor q of degree 1 of K(s)/K which is 
unramified in F and such t ha t if Q i , . . . , Q m are the distinct prime divisors of F 
which lie over q, then their residue fields Q 2 F are separable over K = qK(s) 
(cf. Chevalley [2, p. 72]). Fur thermore we have ST=i deg Q f = 1 — 2 (cf. 
[2, p. 52]). 

Consider now the divisor 21 = Q i + . . . + Q w + 2 (̂5. I ts degree / is, by (3), 
greater than 3g — 2. Hence, by Lemma 2.2 there exists a t G F such t h a t 
(/)„ = Stand [F:K(t)] = I, 

Extend the field of constants from K to K and write E = K • F. Then 
[E : K(t)] = [F : K(t)] = I, since F is linearly disjoint from K over K. Mence 
E/K(t) is separable. Denote by Ê the Galois closure of E/K(t). If Q is any 
prime divisor of F/K such tha t Q 7 7 is a separable extension of K, then there 
exists exactly deg O = [CiF : K] distinct prime divisors oiE/K which lie over G 
(cf. [2, p. 95]). In particular exactly one prime divisor, Ĵ3r, of E/K lies over $ 
and exactly / — 2 prime divisors, ^ Z , . . . , ^1-2 , of E/K lie over O i , . . . , Q w . 
I t follows tha t the pole divisor (i)J of / in K(t), which is a prime divisor there, 
factors in £ as (t)J = %' + ... + ^ _ 2 ' + 2 ^ . By Lemma 2.1 & (Ê/K(t)) ^St. 
Hence, by Lemma 1.2, F is a stable extension of K. 
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3. F u n c t i o n fields of several variables . In this section we apply Theorem 2.3 
to develop a certain condition under which a finitely generated regular extension 
F/K is stable. 

LEMMA 3.1. Let F/K be an arbitrary field extension. If F has a K-rational 
K-place <p, then F is a regular extension of K. 

Proof. Extend cp to a Jf-place of K • F and denote this place also by <p. Then 
the restriction of ç to K is an isomorphism (cf.: Lang [6, p. 8]). Consider now n 
elements ai , . . . , an of K which are linearly independent over K. Then 
<p(a,i), . . . , <p(an) are also linearly independent over K. Assume tha t they 
become linearly dependent over F, i.e. tha t there exists xi, . . . , xn £ F, not all 
zero, such tha t 

(1) xidi + . . . + xnan = 0. 

I t is known tha t for one of the x/s, say Xi, all the quotients Xj/xi,j = 1, . . . ,n} 

are finite under <p and hence the (p(x3/xi) belong to K. In particular Xi 9e 0. 
From (1) we therefore get tha t 

<p(a,\) + <p(x2/x1)(p(a1) + . . . + <p(xn/xi)<p(an) = 0, 

which is a contradiction. I t follows tha t K is linearly disjoint from F over K. 

By a model of a finitely generated regular field-extension F/K we mean an 
absolutely irreducible affine variety V defined over K, the function field of 
which is F. 

LEMMA 3.2. Let F/K be a finitely generated regular field extension of dimension 
r ^ l . Suppose that 

(*) F/K has a model V with a K-rational simple point P. 

Then: 
a) there exists an intermediate field K Ç L C F such that L/K is a purely 

transcendental extension of dimension r — 1 and F/L is a regular extension which 
has a prime divisor p of degree 1 ; 

b) if K is an infinite field, then F is a stable extension of K. 

Proof, a) The local ring 7? of P in F is regular. This means tha t its maximal 
ideal M is generated by r elements, say Si, . . . , sr (cf. Lang [6, p . 201]). R can 
be imbedded into the ring of formal power series R = K[[si, . . . , sT]]. R has a 
discrete valuation v which can be described as follows: Each e l e m e n t / G R can 
be writ ten in a unique way a s / = / 0 + / i + fi + . . . . , where /* is a homoge­
nous polynomial in S\, . . . , sr of degree i. The value, v(f), of v a t / is the 
smallest integer n such tha t /„ F^ 0 (cf. Zariski-Samuel [12, p. 130]). This 
valuation can be restricted to R and then extended in the usual way to the 
quotient field T^of R, where it keeps the same notation v. The ring R is certainly 
contained in (but probably not identical with) the valuation ring 5 of v in F. 
Let N be the maximal ideal of S and let $ be the X-place of F into F = S/N 
induced by v. 
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Now write tt = Si/sr, i = 1, . . . , r — 1. Obviously ti, . . . , tr_i are in S and 
if we write lt = <p(tt) for i = 1, . . . , r — 1, then Ji, . . . , / r_i are algebraically 
independent over K and ^ = K(tu . . . , ?r_i) (cf. [12, 132]). I t follows t h a t 
/i, . . . , / r_i are also algebraically independent over K and tha t if we pu t 
L = K(ti, . . . , tr-i), then the map tt —> lu i = 1, . . . , r — 1, induces a i£-
isomorphism of L onto L. L is therefore a purely t ranscendental extension of K 
of dimension r — 1. If we identify F with L under the above isomorphism, we 
get t ha t if is an L-rational L-place of F. This gives us the desired prime divisor p 
of F/L of degree 1 and also implies, by Lemma 3.1, t ha t F is a regular extension 
of L. 

b) By Theorem 2.3 there exists a tr in L which serves as a stabilizing basis for 
the regular extension F/L of dimension 1. T h e system tu . . . , tr will therefore 
be a stabilizing basis for F/K. 

LEMMA 3.3. Let V be an abstract variety defined over a PAC field L. Then the 
set V(L) of all L-rational points of V is dense in V in the Zariski L-topology. 

Proof. Wi thou t loss of generality we can assume tha t V is affine and hence 
contained in a certain affine space Sn. Let A be an Z-closed subset of Sn which 
does not contain V. We have to show tha t V(L) — A ^ 0. Indeed, let 
(x) = (xi, . . . , xn) be a generic point of V over L. Then L(x) is a regular 
extension of L and there exists a polynomial g Ç L[Xi, . . . , Xn] which vanishes 
on A bu t not a t (x). Wri te y = g ( x ) - 1 . Then L(x , y) = L (x ) and hence (x, y) 
generates an absolutely irreducible var ie ty W over L. W has an L-rational 
point (a, b). I t is a specialization of (x, y) over L. T h e point (a) belongs to 
V(L) and satisfies g(a)b = 1, hence (a) d A. 

T H E O R E M 3.4. Every PAC field L is stable. 

Proof. Let F be a finitely generated regular extension of L and let V be an 
affine model of F/L. By Lemma 3.3, V has an L-rational simple point P, since 
the set F s i m of all simple points of V is L-open in V (cf. Lang [2, p. 199]). In 
addit ion L must be infinite, since if L contains only q elements, then the ab­
solutely irreducible polynomial (Xq — X)(YQ — Y) + 1 has no zeros in L. I t 
follows, by Lemma 3.2, t ha t F is stable over L. 

4. Va lued fields. Let (K, v, T) be a valued field of one of the following two 
types : 

I. T h e archimedean type : K is a subfield of the field C of complex numbers , 
v is the usual absolute value and T Q R. 

I I . T h e non-archimedean type : K is an arb i t rary field and v is a non-trivial 
multiplicative valuation of K with values in the ordered, multiplicative, 
divisible, abelian group P. 

We shall use the notat ions \a\v instead of v(a) for elements a of K and reserve 
the notat ion v(A) for the value set of a subset A of K. T is assumed to be the 
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divisible closure of v(Kx). We shall also denote by Kv the completion of K under 
v and always assume that v has been extended to Kv. 

Along with v we shall consider also the set iï of all extensions of v to K. All the 
completions Ku, co G Œ, are assumed to be contained in some universal field and 
thus contain the same copy of K. Every œ G Q, defines a field topology on Kœ, 
the basis sets of which are {x G Kj\ \x — a\w < e}, where a G Ku and e G T. We 
shall refer to it as the w-topology. 

LEMMA 4.1. Let 

/ (T , x) = fn(T)X« + . . . + fk(T)X* + . • / o ( T ) 

be a polynomial with coefficients in Kin the variables (T, X) = (7\, . . . , Tr, X). 
Let (a, b) be a K-rational zero of f for which there exists a k, 0 S k ^ n, such that 
/*(a) 5* 0. Then for every e G T there exists a ô G T such that for every œ G ^ 
and for every a / , . . . , ak G K which satisfy 

\di — a*|w < 8 i = 1, . . . , r 

JAere exists a b' ^ K such that 

/ (a ' , &') = 0, / . (a ' ) * 0 and |6' - b\„ < e. 

Proof. Without loss of generality we can assume that (a, b) = (0, 0) and 
e < 1. Then/o(0) = 0 and 1 ^ k ^ n. Let L be a finite extension of X which 
contains all the coefficients of /and let Vi, . . . , vx be all the extensions of v to L. 
For every 1 ^ j ^ I we choose an extension co; of Vj to K. Then there exists a 
8 G r such that for 7 = 1, . . . , /, 

(1) |a/|wy < Ô, i = 1, . . . , r implies fk(a
f) ^ 0 and 

in Case I /o(a') 
A (a') 

since /o and /* are a>rcontinuous. 
Let co G Œ. Then there exists a 1 ^ / ^ 1 and an automorphism 0- of K over L 

such that OJ = ooj o a (c.f. Lang [8, p. 293]). Suppose that a/ , . . . , a / are 
elements of K such that |a/|w < ô for i = 1, . . . , r. Then |<ra/|wy < ô for 
i = 1, . . . , r and hence by (1), afk(a') 9^ 0, hence/*(a') ^ 0 and 

(2) U(a')l 
in Case I 

Let m be the greatest integer for which fm(a') =̂  0. Then k ^ m ^ n and 

/(a' ,X) = /m(a')Xm + . . . + /*(a')X* + . . . + f„(a') 

m 

i=l 
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where & / , . . . , bm
r Ç K. Then 

Ç&X = (-1)"V ...bm' and &&X = (-l)m~k £ «<» • • • W<m-*> 

where T runs over all the injective maps of the set {1, . . . , m — k} into the set 
{1, . . . , m\. I f / o ( a ' ) = 0, then b/ = 0 for a t least one i between 1 and m. If 
/o (a ' ) 9^ 0 then we extend each of the above TT to a permuta t ion of {1, . . . , m). 
Then 

M =(-D* S 7-7-7T — v — 1 ; ^ - 7 77 
/0( ,a J TT 6>7r(m-fc+l) • • • t?7r(m) 

and by (2) we deduce t ha t there must be a b/ which satisfies | 6 / | w < e. 

LEMMA 4.2. Let co £ 12 and /e/ M be a PAC field which is algebraic over K. 

Suppose that for every polynomial f £ M[TU . . . , TT1 X] which is stable over M 

with respect to 7 \ , . . . , Tr the set 

(a, b) 6 Mr+1 If (a, b) = 0 and ~^ (a, b) * 0 1 / 
ax 

is co-dense in the set 

^ ( a , 6 ) e £ / + 1 / ( a , & ) = 0 and | £ (a, 6) ^ o | 

r ^ n M has the density property with respect to co, i.e. V(M) is œ-dense in 

V(KU) for every abstract variety V which is defined over M. 

Proof. Let V be an abs t rac t var ie ty of dimension r which is defined over M. 

Then V is stable over M, by Theorem 3.4. Let P be a generic point of V over M 

and let tu . . . , tT be a stabilizing base for M(P)/M. Then M(P)/M(t) is 
finite separable extension and hence there exists an element x such tha t 
M(P) = M(t,x). There exists an absolutely irreducible po lynomia l / £ M[T,X] 

such t h a t / ( t , x) = 0 and df/dX(t, x) 7^ 0. By def in i t ion/ i s stable over M with 
respect to ( T ) . Denote by W the hypersurface defined b y / over M. I t has (t, x) 

as a generic point and the map (t, x) >—> P defines a birational correspondence <p 
between FT and V over M. T h e set W = {(a, 6) G I T | a / / a X ( a , 6) ^ 0} is a 
non-void open subset of W in the Zariski .M-topology. W contains a non-void 
subset Wo' which is open in the Zariski M-topology and V contains a subset I V 
which is open in the Zariski- if- topology such t ha t <p is biregular a t IIV and has 
I V as a set theoretic image of IIV (cf. Lang [6, p. 94]). T h e correspondence <p 

induces therefore co-homeomorphisms of W<f{M), WQ'(Ku) onto VQ'(AI), 

I V ( i L ) , respectively (cf. Weil [11, p. 352] )._ 

By assumption W'(AI) is co-dense in W' (Kw), hence WQ (AI) is co-dense in 
W0'(KU). Hence VQ'(AI) is co-dense in V0'(Ka). By Lemma 2.2 in [3], V0'(Kœ) is 
co-dense in V(Kœ), since Kœ is algebraically closed (cf. Lemma 1.4 in [3]). 
Hence V(AI) is co-dense in V(KU). 
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5. Hi lber t ian valued field. Let K be a field. A hilbertian subset H of Kr is a 
set of the form 

H = {(a) G # r | / * ( a , X ) is defined and irreducible in K[X] for 

7 = 1, . . . , r a } , 

where fi, . . . ,fm are irreducible polynomials in K(Ti, . . . , TT)[Xi, . . . , X n ] . 
T h e field i£ is said to be hilbertian if for every n ^ 1, all hilbertian subsets of 
i£w are non-empty. 

LEMMA 5 A. Let K be a hilbertian field and let f G K[Ti, . . . , Tr, X] be a stable 
polynomial over K with respect to 7\, . . . , Tr. Let G = S^(/(t, X), K(t)) be the 
Galois group o / / ( t , X) over K(t) (tlf. . . , tT are algebraically independent elements 
over K), and let L be a finite separable extension of K. Then there exists a hilbertian 
set H C KT such that every (a) G H, @ (f(a, X), K) ^ ^ ( / ( a , X), L) ^ G, 
/̂ ewce /fee splitting field 0 / / ( a , X ) O^A- X zs linearly disjoint from L over K. 

Proof. There exists a hilbertian set # i Ç KT such tha t S^(/(a, X),K)^LG 
for every (a) G Hi (c.f. Kuyk [5, p. 396]). There exists also a hilbertian set 
H2' ç= Z / s u c h tha t ^ ( / (a , X ) , L) ^ G for every (a) G # Y , s i n c e / is stable 
and hence ^ ( / ( t , X ) , L ( t ) ) ^ G. flY contains a hilbertian set H2 C j£ r (cf. 
Lang [7, p. 152]). H = HiC\ H2 will satisfy the requirements of the lemma. 

From now on we shall suppose tha t K is a hilbertian valued field and we 
shall keep all the notat ions of § 4. We refer to § 5 of [3] for the introduction of 
the Haar measure to S^ (Ks/K)s. Here e is a fixed positive integer. 

LEMMA 5.2. Let L be a finite separable extension of K and let f G L[Ti,..., Tr, X] 
be a stable polynomial over L with respect to 7 \ , . . . , Tr. Let Ci, . . . , cr, d G Ks be 
such that / ( c , d) = 0 and df/dX(c, d) ^ 0. Let 8 < e be two elements of T such 
that for every œ G Œ and for every c\ , . . . , cr

f G Ks which satisfy \c/ — Ci\a < 8 
fori = 1, . . . , r, there exists ad' £ Ks such thatfio!, d') = 0, df/dX(c', df) 9* 0 
and \df — d\u < e. Suppose also that for every co G Œ Jfeere a w / d " , . . . , c / ' G £ 
swc/̂  / t o | c / ' — Ci|co < <5/2 in Case 7 and \c" — c*|w < 8 in Case LL, for 
i = 1, . . . , r. Then, for almost all (ô)'£ ^ (Ks/L)e and for every co G Œ //^re exw/ 
ai , . . . , ar, b G ^ ( t f ) SWC/Ê /Aa/ 

(1) /(a, 6) = 0, J£(M) = 0, 
|#i — î|co < € /or i = 1, . . . , r and \b — d\u < e. 

Proof. Let n be the order of G = ^ ( / ( t , X ) , L ( t ) ) and let v1,...,vl be all 
the extensions of v to L. We construct by induction a linearly disjoint sequence 
{Lj/L)%i of Galois extensions of degree nl such tha t for every j ^ 1 and for 
every co G Œ there exist #i, . . . , a r, 6 G £ ; which satisfy (1). Suppose tha t 
Li , . . . , L ; _i have already been constructed. Then L' = Li . . . L^i is a 
finite Galois extension of L. For every 1 ^ A ^ / there exist, by assumption 
£xi', • • • , C\r G L such tha t | c \ / — c ^ x < 5/2 in Case I and \c\/ — ct\vx < 8 in 
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Case I I , for i = 1, . . . , r. By Lemma 4.1 of [3] every hilbertian set of Lr is 
^i-dense in Lr, hence, by Lemma 5.1, there exist an, . . . , ci\r G L which satisfy. 
|#ii — C\i\vi < 5/2 in Case I and \au — cu'\vi < ô in Case I I , for i = 1, . . . , r, 
such tha t ^ ( / ( a , X ) , L) ^ ^ ( / ( a , X ) , Z/) ^ G. Let Ln be the splitting field 
of / ( a , X ) over L. Then LjX is a Galois extension of L of degree n which is 
linearly disjoint from IJ over I. 

If co G fi is an absolute value whose restriction to L coincides with Vi, then 
\(in — Ci\u < 8/2 in Case I and | a u — Ci\u < ô in Case II for i = 1, . . . , r ; hence, 
by assumption, there exists abi £ Ks such t h a t / ( a i , &i) = 0, df/dXfai, bi) ^ 0 
and |6i — d\u < e. In part icular &i is a root o f / ( a i , X ) and hence belongs to 

i / . 
In the same way we can construct , step by step, for every 1 ^ X rg /, a 

Galois extension L iX of Lof degree r which is linearly disjoint from L'Lji.. . Z^-.x-i 
and elements CIM, . . . , a\r, b\ G L ; \ such t ha t (1) is satisfied for every co G 12 
whose restriction to L coincides with v\. 

The field Lj = Ln . . . L3i is a Galois extension of L of degree w/ which is 
linearly disjoint from V over L which satisfies the requirements , since the 
restriction of each of the co G fi to L coincides with one of the V\. 

By Lemma 5. l o f [3] the union U?=i & (Ks/Lj)e is almost equal to ^ {KJL)e. 
If (d) G UT=i & (Ks/Lj)e then L,- Ç i£ s (d) for a t least one j . Hence for every 
co G fi there exist <7i, . . . , ar, b G Ks(ô) such tha t (1) is satisfied. 

LEMMA 5.3. If K is a denumerable hilbertian field, then almost all 
(d) G ^ (Ks/K)e have the following property: 

For every d G K and for every e G T there exists a finite subset B of Ks(ô) such 
that for every co G fi //zere exists a b £ B such that \b — d|w < e. 

In particular, Ks(ô) is co-dense in K for every co G fi. 

Protf/. Let ^ 1 , l e t / ( Z ) = X" + dXn~l + + cn be a polynomial with 
coefficients in K such t ha t / ( d ) = 0 and let e > 0. We shall construct by 
induction a linearly disjoint sequence {Ki/K}c°==1, of Galois extensions of 
degree n and in every Kt a subset Bt with n elements such tha t for every co G fi 
there exists a & G Bt such tha t \b — d\u < e. 

Suppose t ha t K\, . . . , Kt_i have already been constructed. Then 
K' = Ki . . . X/_i is a finite separable extension of K. The general polynomial, 
/z(T, X) = Xn + J\Xn~l + • • • + Tn, of degree wis, as we already noted in § 1, 
stable over K with respect to T\, . . . , Tn and it has the Galois group Sn over 
KÇT). Hence, we can find, as in the proof of Lemma 5.2, «i, . . . , an G K which 
are ^-close to c\, . . . , cn such tha t Z^(a, X ) is a separable polynomial with Sn as a 
Galois group both over K and over K'. Let Kt be the spli t t ing field of /&(a, X ) 
over i£. Then i ^ is a Galois extension of K of degree n\ Let &i, . . . , bn be all the 
roots of h(a, X) and write Bt = {&i, . . . , bn\. Then , by Lemma 4.1, for every 
co G fi there exists a b G Bt such t ha t \b — d\u < c. 
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Wri te now S(d, e) for the set of all (d) 6 ^ (Ks/K)e for which there exists a 
finite subset B of Ks(ô) such tha t for every co Ç fi there exists a & Ç 75 for which 
|6 - d|„ < e. Clearly UT=i ^{KJK,)6 C 5(d, e). The right hand side of this 
inclusion has, by Lemma 5.1 of [3], the measure 1, hence n(S(d, e)) = 1. Since 
K is denumerable field, there are only countably many d £ K and e £ T. 
Hence the intersection of all the sets 5(d, e) has the measure 1. This concludes 
the proof of the lemma. 

T H E O R E M 5.4. If K is a denumerable hilbertian field, then Ks(ô) has the density 
property with respect to every co £ fi for almost all (d) G & (Ks/K)e. 

Proof. Let 5 be the set of all (d) Ç ^ ( # * / # ) e such tha t X , (d ) is a PA C field 
and which have the following property: 

For every polynomial f(Ti,... , Tr,X) which is stable over Ks(<$) with respect 
to 7 \ , . . . , Tr and for every co £ fi the set 

W/{KS{6)) = {(a, 6) G X , ( d ) r + 1 | / ( a , i ) = 0 , df/dX(*,b) * 0} 

is co-dense in the set I T / ( ( i Q = {(a, b) £ X r
s

+ 1 | / (a , 6) - 0, df/dX(n, b) ^ 0}. 
By Lemma 2.4 in [3], 17/ ( i£ 5 ) is co-dense in the set 

W/(RU) = {(a, 6) = ^ + 1 | / ( a , 6 ) = 0, df/dX(n,b) * 0}, 

hence W/(2£ s (d ) ) is co-dense in W/(KU). I t follows, by Lemma 4.2, tha t X"5(d) 
has the density property with respect to co. 

I t suffices therefore to prove tha t /z(5) = 1. 
Let L be a finite separable extension of K and l e t / £ L[7"i, . . . , Tr, X] be a 

stable polynomial over L with respect to 7 \ , . . . , 2V Let Ci, . . . , cr, d £ Ks 

such t h a t / ( c , d) = 0 and df/dX(c, d) = 0. Let e £ r . Then by Lemma 4.1 there 
exists a 5 G F which satisfies 

(2) Ô < e 

such tha t for every co £ fi and for every C\ , . . . , cT' Ç J? which satisfy 
| c / — î|co < 5 for i = 1, . . . , f, there exists & df d K such that / (<: ' , d') = 0, 
df/dX(c',d') F^Oand |rf' — ^U < e. In particular, if c i ' , . . . , c / G 2£ s thend' tKs. 
Suppose further tha t for every co Ç fi there exist C\', . . . , cr" G L such t ha t 
k / ; — Ci\w < 5/2 in case I and \ct" — ct\ < ô in Case I I , for i = 1, . . . , r. 

Denote by S(L,f(c, d), e) the set of all (d) £ &(KS/K)e for which there 
exist ai , . . . , ar, b Ç i£ s(d) such tha t 

( 3 ) /(a, 6) = 0, J | (a, b) * 0, 

|a< — Ci\u < € i = 1, . . . , r and |6 — d\u < e. 

By Lemma 5.2: 

(4) v(&(K,/LY - S(L,f,(c, d)} e)) = 0. 
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Denote by T the set of all (d) G ^(KJK)e such t ha t Ks(ô) is a PAC field 
and which satisfy: 

For every c £ K and for every 8 G T there exists a finite extension L of K 
which is contained in Ks(ô) such t ha t for every co G Œ there exists an a G L for 
which \a — c\u < 5. 

By Theorem 2.5 of [4] and by Lemma 5.3 

(5) „(T) = 1. 

W e prove t h a t 

(6) T - 5 ç U [ ^ C K s / £ ) e - 5 ( L , / , (c, d) , «)] 

where the union runs over all possible L, f, (c, d) and e. 
Let (d) G r — 5. Then X s ( d ) is a P^4C field and there exists a polynomial 

/ ( J T I , . . . , Tr, X) which is stable over Ks(ô) with respect to 7 \ , . . . , T r , and 
there exists a co0 G 12 for which the set W/(Ks(ô)) is not w0-dense in W/(Ks), 
i.e. such t ha t there exists c\, . . . , cr, d G i£ s which satisfy / ( c , d) = 0 and 
df/dX(c, d) 9^ 0 and there exists an e G T for which there do not exist 
(h, . . . , ar, b G X s ( d ) which satisfy (3). Let 3 be an element of T which 
satisfies (2). By Lemma 1.1 and since (d) G T there exists a finite extension L 
of i£ which is contained in Ks(à) such t h a t / is stable over L with respect to 
Ti,..., 7 \ and such t ha t for every co G Œ there exist c / ' , . . . , c / ' G ^ which satisfy 
k / ' — Ci\u < 8/2 in Case I and \c/' ~ ct\u < 8 in Case I I , for i = 1, . . . , r. 
I t follows tha t (d) G &(KS/L)e - S(L,f, (c, d ) , e). 

Now, there are only countably many summands on the right hand side of (6), 
since K is denumerable . Each one of them is, by (4), of measure zero. Hence the 
right hand side of (6) has measure zero and hence, by (5), /x(5) = 1. 

Let K now be a global field, i.e. a number field or a function field of one 
variable over a finite field. Then K is denumerable , hilbertian (cf. Lang 
[7, p. 15]) and it has only countably many absolute values (cf. Cassels and 
Frohlich [1, pp. 45, 46]). T h e intersection of countably many subsets of 
& {Ks/K)e of measure 1 is again a set of measure 1. Theorem 5.4 therefore 
implies: 

T H E O R E M 5.5. If K is a global field, then for almost all (d) G & (Ks/K)e, the 
field Ks(ô) has the density property with respect to every absolute value of K. 
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