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COSINE REPRESENTATIONS OF ABELIAN 
^-SEMIGROUPS AND GENERALIZED 

COSINE OPERATOR FUNCTIONS 

G. D. FAULKNER AND R. W. SHONKWILER 

I n t r o d u c t i o n . In the following R will denote the real numbers , for a 
l l i lber t space H, 13(H) and L(H) will denote the collections of bounded linear 
operators on H and linear, bu t not necessarily bounded, operators on H 
respectively. Cosine Operator Funct ions, namely functions C : R — > B ( H ) 
which satisfy D 'Alember t ' s functional equat ion 

(1) 2C(s)C(t) = C(s + t) + C(s - t) 

and 

(2) C(0) = I 

have been extensively studied by several authors , notably Nagy [4], Kurepa 
[1 ; 2; 3] and Sova [6]. In [1] Kurepa considers functions C : X —> 13 satisfying 
(1) and (2) where X is a Banach space, and B is a Banach algebra. In the 
present paper we would like to introduce a generalization of the cosine operator 
function which we propose to call a cosine representation of a ^-semigroup. 
T h a t is, if T is a ^-semigroup, with ident i ty e, then C : T —> L(H) is a cosine 
representat ion if C satisfies 

(3) 2C(s)C(t) = C(st) + C(s*t) 

and 

(4) C(e) = J. 

In Theorem 1 of Section I we prove a result which parallels the celebrated 
"principle theorem" of Professor Sz.-Nagy in [5]. T h a t is, we extend a family 
of operators C to a cosine representat ion. 

In Section II we obtain an integral representat ion of the family C : R —> 
B (H) in terms of a generalized spectral family E whose domain is the Borel sets 
in C [7]. T h a t is to say t ha t the following formulas hold: For each x Ç DC{o 
and y G H, 

(5) (C(t)x, y ) = J cos (Xt)d (Exx, y ) 

and 

(6) | | C ( 0 * | | 2 ^ I cos2 (\t)d(Exx,x). 
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COSINE REPRESENTATIONS 475 

Following this we apply this representation to the Hilbert space of real 
numbers to obtain a solution to the moment problem of representing a real 
function / in the form 

/ ( / ) = J cos (st)da(s) 

where a is a regular probabili ty measure on C. 

1. Definition 1. A semigroup T with identi ty e will be called a ^-semigroup 
provided there is a " s t a r " operation * : V —» Y satisfying 

(i) e* = e 
(ii) 5** = 5 

(hi) {sty = t*s*. 

Definition 2. Let T be an abelian ^-semigroup with identi ty e and L(H) the 
collection of all linear operators on the Hilbert space H. A function C : T —•» 
L(H) will be called a cosine representation of T provided C satisfies 

(i) C(e) = I 
(ii) 2C(s)C(t) = C(st) + C(s*t) for all s, t G r . 

Definition 3. Let i be a linear operator on a Hilbert space H, then an 
operator A on a Hilbert space H containing H as a subspace will be said to be 
a dilation of A provided 

A = PHA\H 

where PH is the orthogonal projection of H onto H. This relationship will be 
denoted A = pr A. 

T h e s tudy of dilations was initiated in order to generalize the conventional 
concept of the extension of an operator. I t may in fact be thought of as an 
extension which goes beyond the space on which the original operator was 
defined. 

Definition 4. Let E be an abst ract set, H a I Iilbert space and K : E X E —• 
B(H). Then the kernel K is said to be of positive type if and only if for finite 
subsets {si, s2, • . . , sn} Ç E and {xi, x2, . . . , xn\ C H we have 

n n 

11 H, (KisuS^XjtXi) è 0. 
1=1 . 7 = 1 

T H E O R E M 1. Let T be an Abelian ^-semigroup with identity e. Suppose C : Y —> 
B (H) is a family of operators satisfying 

(a) C(e) = I, C(s) = C(s*),and 
(b) the kernel K(s, t) = ^{C(5/) + C(^*/)} i,v of positive type. 

Then there exists a dilation space H containing H and a family of operators 
C : r —> L (H) satisfying 

https://doi.org/10.4153/CJM-1978-042-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-042-3


476 G. I). FAULKNER AND R. W. SHONKWILER 

(a') C is a cosine representation of Y. 
(!/) pr C{t) = C(t) for all t 6 Y. 
(c') C(t) is symmetric for all t Ç Y. 

Proof. Let H0 be the linear space formed by the collection of all linear com
binations of functions of the form s »—» <j>(s) = K(s, t)x, where x £ H. We may 
define a bilinear form (• , • ) on Ho as follows: if <t>(s) = XT*=i K(s} t^Xi and 
KO = £7=i ^(5> h')xj a r e functions in i/0 , we define (</>(s), KO) by 

w 

(*,*) = E (K(t/9tt)xifx/) 
i.3=l 

where (• , •) is the inner-product on H. We observe that 

n m m 

( * ( * ) , " ( * ) ) = £ E (K(f/ttt)xi9x/)=Z <*('/).*/> 
i=i 3=1 3=1 

n 

= £ (Xi,v(tt)), 
1=1 

where the last equation follows from the relation (K(s, t)x, y) — (x, K(s} t)y), 
which is a consequence of K being of positive type. In any case, this implies 
that (</>(0> v(s)) is independent of the representation of either <\> or v. It follows 
from this that (• » •) is well-defined. 

We now show that (• , •) satisfies the axions of an inner-product. It is clear 
that (•, •) is both bilinear and symmetric. In addition by the positivity of Kf 

(• , •) is non-negative. Suppose now that (0(5), <t>(s)) — 0. Since the Cauchy-
Schwarz inequality is valid for (•>•)» we have for any x (E H and any t G Y 

0 ^ | ( 0 ( O , *> | 2 = \(<t>(s),K(s,t)x)\> 

g (0(0 , «(*))(#(*, Ox, #(* , 0*) = 0 

from which it follows that (• , •) is positive definite. Thus with ( . ,•) , HQ is a 
pre-IIilbert space. Let H denote the completion of HQ. 

We may embed H into H by identifying x —•> K(s, e)x = C(s)x. Since 
(K(s, e)x, K(s, e)x) = (K(e, e)x, x) = (x, x), the embedding is an isometry. 
Henceforth H will denote the image of this identification. 

Define an operator P : H0 —> H by 

P X ( j , 0* = #(*, e)K(e, t)x = K(s, e)C(t)x. 

We have (Pv — v, <t>) = 0 for <j> £ #0, v (z H so that P is the orthogonal 
projection of H0 onto i7. By the same letter we denote its extension to the 
space H. 

We now define C : Y —•» L(H0) by 

CV)CK(S, 0*) = £(#(*, *'*)* + Xfc, $'*/)*). 

Direct calculation shows that for <£, 1/ £ #0 

(i) (C(0*. »0 = (0, £(*>) 
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so tha t , since Ho is dense in H, if <t> = 0, it follows tha t C{t)<t> = 0. T h a t is to 
say tha t C{t) is well-defined for each / £ I \ 

We note t ha t 

C(e)(K(s, t)x) = %K(s, et)x + %K(s, t*t)x = K(s} t)x 

so tha t C(e) = I. 
Now for a function <j)(s) = K(s, i)x we obtain 

2C(v)C(^)(K(s, t)x) = %(K(s, v»t)x + K(s, v*ixt)x 

+ K(s, vn*t)x + K(s, v*n*t)x) = (CM + C(v*n))(K(s, t)x) 

so tha t C satisfies (i) and (ii) of Definition 2. We observe tha t a t this point 
we make essential use of the commuta t iv i ty of T. 

T o see tha t pr C(i) = C(i) we observe tha t 

pr C(t)(K(s, e)x) = PHQK(s, t)x + \K{s, t*)x) 

= K(s, e)(±K(e, t)x + K ( e , t*)x) = K(s} e)C(t)x. 

The symmetry of C(t) is given in (1), since D(C{i)) = H0. 

Definition 5. Let X be a Banach space and C : R —> L(X). C is said to be a 
cosine operator function provided C satisfies 

(a) 2C(s)C(t) = C(s + t) + C(s - /) 
(b) C(0) = J. 

Cosine operator functions have been extensively studied as was mentioned 
in the introduction. 

Definition (5. Let C(t) be a family of operators in L(H) on a Hilbert space H. 
If there is a Hilbert space 5" containing H and a cosine operator function C{t) 
in L(H) satisfying 

C(/) = pr C(/) 

then C(t) is said to be a generalized cosine operator function. 

As a consequence of Theorem 1 we have the following: 

T H E O R E M 2. Let C : R —» £ ( # ) satisfy 

(a) C(0) = / , CO) = C ( - s ) , "wd 
(b) X(5 , 0 = %(C(s + t) + C(s - /)) is of positive type. 

Then C{t) is a generalized cosine operator function. 

Proof. We need only take r = R and ' V as the additive inverse in Theorem 
1. We note tha t it is possible to have unbounded cosine operator functions so 
tha t wi thout further hypotheses we cannot assume tha t C(t) Ç B(H). As an 
example of an unbounded cosine operator function, let P be an unbounded 
projection on the Hilbert space H and Pc = I — P. Direct calculation shows 
tha t C(t) = Pc + (cos t)P is an unbounded cosine operator function. 
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Suppose that H is a subspace of the Hilbert space H and C(t) £ L{H) is 
a self-adjoint cosine representation of T. Let C(t) Ç L(H) be given by 

C(t) = p r C ( 0 . 

Let K(s, t) be given as before by 

K(s,t) = ±{C(st) + C(s*t)\. 

Then for an element of H of the form g = X^=i C{ti)%u where {/i, . . . , /„} C Y 
and {xi, . . . , xn\ ÇI 77 we obtain 

n n 

X) (KitjttJxuXj) = £ (Cit^CitJxuXj) 

so that condition (b) is necessary in this case. In addition it is trivial to see that 

C(0) = pr C(0) = pr /£ = 7* 

and since 

2<?C0<?(e) = C(^) + C(s*e) 

we have 

C(s) = pr C(s) = pr C(s*) = C(s*) 

so that condition (a) is necessary. It follows that we have 

THEOREM 3. Let C{t) be a self-adjoint cosine representation of the ^-semigroup l\ 
If C(t) is a dilation of C(t) then 

(a) C(e) = I, C(s) = C(s*),and 
(b) the kernel K(sy t) = %{C(st) + C(s*t)} is of positive type. 

We will now show that, without loss of generality, we may take C{t) to be 
self-adjoint. 

% THEOREM 4. Let C(t) be as in Theorem 1. Then C(t) admits a self-adjoint 
extension C(t) for each t and the family so obtained is again a cosine representa
tion. 

Proof. Let {ea} be an orthonormal base for H. We define J : H0 —» H0 by 

J[K(s, t) Yl baea] = K(s, t) J2 baea. 
a a 

J extends to a conjugation of H which commutes with C(t) for each /. Thus 
each of C{i) admits a self-adjoint extension in i?, say C(t). Now C(t) C C*(t) 
which is easily seen to be a cosine representation of T, thus C(t) is a cosine 
representation of r . 
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We will now investigate conditions under which C(t) can be dilated to a 
bounded cosine representation. In the following V will be assumed to be an 
abelian group with ' V being ''inverse". As before let us consider an element of 
H of the form g = Y, C(ti)xi} for {tu . . . , / „ } C r and {xi, . . . , xn\ C H. 
Now, however, we assume that C(t) £ B(H). Let us define the operation A,, 
for s Ç r , by 

AsK(tu h)x = K(tl + s, h + s) + K(h - s,t2 + s) 

+ K(h + s,t2- s) + K(h - s,t2- s). 

We calculate 

Ê (AJC(tj,ti)xi,xj)= £ < ( / + C ( 2 0 ) ( C ( / i + i,) + C ( / j - ^ ) ) x ( , . r , ) 
x, j '= 1 i, j= 1 

= 2 è (c\t)C(t,)C(tt)Xi,xj) = 2 è (CMdtjxuCvcMxj) 
i, .7= 1 Î . ; = 1 

g2|!C0)l l 2 l |g | | . 
In view of this we have the following: 

THEOREM 5. Le/ r be an abelian group. In order that C : T —> £(L0 admit a 
dilation to a bounded self-adjoint cosine representation of T it is necessary and 
sufficient that 

(1) C(0) = J and C(s) = C(-s) 

(2) JK:(S, /) = ^{C(s + t) + CO - /)} « of positive type, and 

(3) £ (AMtjJjxuXj) g il/, Ê (K(tj}tt)xt,xj). 

Proof. In light of previous results we need only show that C(/) of Theorem 1 
is bounded under the assumption (3). But this follows from 

\\C(t) î : K(s,tt)xt\\
2 = \ Ê (A,K(h,tt)xi,Xj) 

i= 1 i, j= 1 

^ T Î (K(tJ,tt)xt,x]) = ^ E K(s, tt)xt 

Thus the theorem is proved. 

2. We now pass to the problem of integral representations of generalized 
cosine operator functions. In all that follows we will assume that Y = R with 
addition. We will need the following. 

LEMMA 1. Let C(t) and C(t) be as in Theorem 1 with t £ R. If C(t) is weakly 
continuous and C(t) is uniformly bounded, then C(t) is weakly continuous. 

Proof. Let us first consider l i m ^ 0 (C(t)K(s, u)x, K(s, v)y). By direct 
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calculation we have 

(C(t)K(s, u)x, K(s, v)y) = %(K(s, u + t)x + %K(s, u - t)x, K(s, v)y) 

= U{K(v,u + t) + K(v,u - t)}x,y) 

= \{C(v + u + t)x + C(v - u - t)x 

+ C(v + u - t)x + C(v - u + t)x, y) 
so 

lim,_>/0 (C(t)K(s, u)x, K(x, v)y) = \{C(v + u + t0)x + C(v - u - t0)x 

+ C(v + u - tQ)x + C(v - u + t0)x, y) = (C(t0)K(s, u)x, K(s, v)y). 

Thus, for (/>, v G H0, (C(t)(j>, v) —> (C(/0)</>, *>) as / —> /0- Since i70 is strongly 
dense and C(/) is uniformly bounded, the above convergence holds if v be 
replaced by any element of H. Now for arbitrary v, </> Ç i? we have, for any 
« G iîo, 

l(C(/)0 - C(h)4>,v)\ Û | | C ( / ) | | . | | 0 - ^ | | . | | H I 

+ \(C(t)u - C(h)u,v)\ + ||C(/o)|| II* - « | | IIHI-

Since C(t) is uniformly bounded and H0 strongly dense it follows that C(t) is 
weakly continuous. 

THEOREM 2. Let C : V —>B(H) be a weakly continuous family of operators 
satisfying 

(i) C(0) = / , C(t) = C{-t) 

(ii) i£(s, t) = ^C(s + /) + %C(s — t) is of positive type, and 
n n 

(iii) J ] AsK(tj, tt)xu xj g il/ X (KitjjJxuXj). 

Then there exists a positive operator valued measure E on H so that for x, y Ç H 

(5) (C(t)x,y)= J cos \td(E(\)x, y) 

and 

(6) ||C(/)x||2 ^ J cos2\td(E(\)x,x). 

Conversely, if (5) emd (6) hold, and supp (£) O iR is compact then the conditions 
(i)-(iii) follow. 

Proof. By Theorems 1 and 5, if (i)-(iii) hold then there exists a Hilbert 
space H and a cosine operator family C(t) on H so that pr C{i) = C(/). In 
addition C(t) is uniformly bounded, since M is independent of s, and self-
adjoint for each / d R. Since C(t) is weakly continuous (Lemma 1) it follows 
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from [2] that 

€(t) = J cos \tdE{\) 

where E(\) is the spectral family of a normal operator (that is integration is 
over C). Thus E = pr Ë is a positive operator valued measure with 

(C(/)x,:v>= (C(/)x, 3/) = J cosA/d<£(\)x,;y} 

for each x, y (z H. Also 

||C(/)x||2 g ||C(/)x||2 = J cosX/d<E(X)*f*>. 

Thus the representations (5) and (6) hold. 
Suppose now that (5) and (6) hold and supp (E) C\ iK is compact. From 

a theorem by Naimark [7] there exists a I Iilbert space H 2 H and an orthog
onal spectral family Ë on H for which pr Ë = E. In addition E can be chosen 
so that E(A) = 0 <-> £(A) = 0. Since (C(t)x, x) is real, this implies that the 
operator family 

- / C(t) = J cos \tdE(\) 

is a bounded self-adjoint cosine operator family satisfying pr C(t) = C(t). 
From Theorem 5 we conclude that (i)-(iii) follow. 

Application. Let f : R —» R be continuous and satisfy 

( l ) / ( 0 ) 5 * 0 , /(/) = / ( - / ) 

(2) K(s, t) = ±{f(s + t) + f(s - /)} is of positive type, and 
n n 

(3) L &Mh,h)afi,^ M X) KQ^tJatfj. 
i,j=l i, i= 1 

(7) / ( 0 = I cos \td a (t) J c 

where a is a bounded Borel measure in C whose support is in R U iR. In addition, 
if (7) holds for supp (a) Pi iR compact, so do ( l )-(3) . 

Proof. Let H = C with (a, b) = ah. Define C(/)a = /(/) -a; then the 
theorem follows by setting a (if) = (E(M)l, 1). 
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