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A QUADRATIC ARCH(∞) MODEL
WITH LONG MEMORY AND LÉVY
STABLE BEHAVIOR OF SQUARES
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Abstract

We introduce a modification of the linear ARCH (LARCH) model (Giraitis, Robinson,
and Surgailis (2000))—a special case of Sentana’s (1995) quadratic ARCH (QARCH)
model—for which the conditional variance is a sum of a positive constant and the square
of an inhomogeneous linear combination of past observations. Necessary and sufficient
conditions for the existence of a stationary solution with finite variance are obtained.
We give conditions under which the stationary solution with infinite fourth moment can
exhibit long memory, the leverage effect, and a Lévy-stable limit behavior of partial sums
of squares.
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1. Introduction

Sentana (1995) introduced a wide class of quadratic ARCH (QARCH) models (Xt ) =
(Xt , t ∈ Z) with conditional variance σ 2

t = var[Xt | Xs, s < t] given by a general quadratic
form in the past p values of Xt :

σ 2
t = θ +

p∑
i=1

ψiXt−i +
p∑

i,j=1

aijXt−iXt−j . (1.1)

Sentana (1995) obtained conditions on the coefficients θ , ψi , and aij of (1.1) which ensure
nonnegativity of the conditional variance and the existence of a covariance stationary solution
to generalized QARCH(p, q) (GQARCH(p, q)) equations.

Although limited to short memory processes, Sentana’s model nests many important ARCH
models (see the discussion in Sentana (1995)), in particular, the ARCH(p) process correspond-
ing to ψi = 0 and aij = 0 (i �= j ). It also encompasses short memory linear ARCH (LARCH)
models introduced in Robinson (1991) and studied in Giraitis et al. (2000), (2004), Giraitis and
Surgailis (2002), Berkes and Horváth (2003), Doukhan et al. (2006), Beran (2006), and other
papers.

The (general) LARCH(∞) model corresponds to

mt = 0, σ 2
t =

(
a +

∞∑
j=1

ajXt−j
)2

, (1.2)
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A quadratic ARCH(∞) model 1199

where mt = E[Xt | Xs, s < t] is the conditional mean, and a and aj (j ≥ 1) are real
coefficients with

∑∞
j=1 a

2
j < 1. The last condition allows for nonsummable (hyperbolically

decaying) coefficients (aj ) and covariance long memory of squares (X2
t ), and other functionals

of the LARCH model (see Giraitis et al. (2000), Berkes and Horváth (2003)). The LARCH
model in (1.2) was further generalized in Giraitis and Surgailis (2002) to include a linear drift
mt = b + ∑∞

j=1 bjXt−j and the conditional variance σ 2
t as in (1.2). It is defined as a stationary

solution to the bilinear equation

Xt = ζt

(
a +

∞∑
j=1

ajXt−j
)

+ b +
∞∑
j=1

bjXt−j , (1.3)

where (ζt ) is a standard independent and identically distributed (i.i.d.) sequence.
The present paper generalizes the LARCH and the bilinear models to the case of strictly

positive conditional variance (volatility):

mt = b +
∞∑
j=1

bjXt−j , σ 2
t = ν2 +

(
a +

∞∑
j=1

ajXt−j
)2

, (1.4)

where ν > 0 and b, bj , a, aj ∈ R are real parameters. Following the idea in Sentana (1995,
p. 658), we define the corresponding process (Xt ) as a stationary causal solution to the bilinear
equation

Xt = κηt + ζt

∞∑
j=1

ajXt−j + b +
∞∑
j=1

bjXt−j , (1.5)

where (ηs, ζs) are i.i.d. random vectors, with values in R
2, with

E[ηs] = E[ζs] = 0, E[η2
s ] = E[ζ 2

s ] = 1, ρ = E[ηsζs], (1.6)

and the parameters ρ ∈ [−1, 1] and κ > 0 are related to the parameters a ∈ R and ν ≥ 0 in
(1.4) by

κρ = a, κ2 = a2 + ν2. (1.7)

Note that ν = √
κ2(1 − ρ2) > 0 is equivalent to |ρ| < 1 and κ �= 0, while the bilinear model

in (1.3) corresponds to |ρ| = 1, or to completely correlated components (ηs, ζs). For obvious
reasons, we refer to (ηt ) as the ‘homoscedastic noise’ and to (ζt ) as the ‘heteroscedastic noise’
of the bilinear equation, (1.5).

The bilinear model in (1.5) shares many properties of (1.3) and the LARCH model; however,
it may exhibit some new important features (see below). In the present paper we focus on the
zero-drift case, mt = 0:

Xt = κηt + ζt

∞∑
j=1

ajXt−j , (1.8)

to which the general case of (1.5) with b = 0 can be reduced (see Section 2). Assuming that
conditions (1.6) are satisfied and that ‖a‖2 = ∑∞

j=1 a
2
j < 1, we show that there exists a unique

stationary causal solution (Xt ) of (1.8) given by convergent Volterra series which admits a
stochastic volatility type representation Xt = σtεt with martingale difference innovations
εt = Xt/σt (see Section 3). An important distinction of (1.4) from the LARCH model in (1.2)
is the fact that σ 2

t in (1.4) is almost surely separated from 0: σ 2
t ≥ ν2 > 0, similarly as in
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the classical GARCH and ARCH(∞) models. To stress the importance of the last fact, we
term (1.8) the LARCH+(∞) model. The fact that in the original LARCH model the (squared)
volatility process may vanish is a drawback of this model (see Giraitis et al. (2000), (2004) for
a discussion) and also seems to contradict empirical data. Strict positivity of volatility clearly
is very important for (quasi-)maximum likelihood estimation of parameters of the model (see
the likelihood in (2.12), below).

Since the stationary solution (Xt ) of (1.8) is uncorrelated, (covariance) long memory can
be observed for the squared process (X2

t ), under some additional assumptions which include a
regular decay of coefficients

at ∼ c0t
d−1 (

t → ∞, there exist c0 > 0 and 0 < d < 1
2

)
(1.9)

and the existence of the finite fourth moment of noise variables, similarly as in the LARCH
model. The present paper focuses on the case when E[X4

t ] = ∞ and E[|Xt |3] < ∞. In the latter
case, long memory of the LARCH+(∞)model with hyperbolically decaying coefficients as in
(1.9) is demonstrated as the corresponding decay of the ‘leverage function’Ht := E[σ 2

t X0] =
E[X2

t X0] as t → ∞ (see Corollary 3.1(i)). The leverage effect (i.e. the fact that past returns and
future volatilities are negatively correlated) is established for the LARCH+(∞) model under
similar assumptions on the sign of the coefficients as for the LARCH model (see Corollary 3.1(ii)
and Giraitis et al. (2004, Theorem 4)).

The main results of the present paper refer to the limit behavior of partial sums of the squared
process (X2

t ) in (1.8). Assume, in addition to (1.6) and (1.9), that

E[ζ 4 + ζ 2η2] < ∞, P[η2 > x] ∼ cηx
−α (x → ∞, there exist 1 < α < 2 and cη > 0).

(1.10)
The second condition in (1.10) implies that the i.i.d. random variables (η2

t ) belong to the domain
of attraction of an α-stable law. It turns out that, under assumptions (1.6), (1.9), and (1.10), and
some additional assumption on ‖a‖2, there exists a dichotomy in the limit distribution of partial
sums: depending on whether 1/α > d + 1

2 or 1/α < d + 1
2 holds, partial sums of squares (X2

t )

of the conditionally heteroscedastic process in (1.8) converge to an α-stable Lévy motion, or to
a fractional Brownian motion with H = d + 1

2 (Corollary 4.1). For linear processes with long
memory, a similar dichotomy was proved in Vaičiulis (2003).

Modeling financial data with the help of ARCH models is now well accepted in practice, and
the literature on such models is vast. Probably the two most widely discussed empirical facts
about financial data is the long memory of absolute returns and their squares, and the heavy
tailedness of their marginal distribution. See Mikosch (2003) and the review paper Giraitis
et al. (2008). The LARCH+(∞) model can exhibit these two empirical facts and, therefore,
might present an interest to financial modeling.

One of the motivations for our study was the problem of the limit distribution of the empirical
covariances of long-memory and heavy-tailed ARCH processes and the squared processes in
particular. The question of the limiting distribution of empirical covariances and correlations
of heavy-tailed moving averages, ARCH, and other processes with short memory was studied
in Davis and Resnick (1985a), (1985b), (1986), (1996), and Davis and Mikosch (1998), (2001).
The results of the present paper can be easily extended to sample autocorrelations of the
LARCH+(∞)model (Xt ) in Corollary 4.1. However, the more interesting (and more difficult)
part of the above problem concerns the limit behavior of sample autocorrelations of the squared
process (X2

t ). We plan to study this problem in a subsequent paper.
Several interesting questions pertaining to the model in (1.8) and the results of this paper

remain open (some of them were raised by the referees). They concern the functional conver-
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gence for partial sums (see also Remark 4.1), the tail behavior of Xt under condition (1.10),
the possibility of extending (1.8) to infinite variance innovations, and other issues.

2. Stationary solution

In this section we obtain a (covariance) stationary solution of (1.5). The discussion follows
Giraitis and Surgailis (2002), where the case |ρ| = 1, or (1.3) was considered. We also restrict
ourselves to the zero-mean situation, b = 0, in (1.5) since the case in which b �= 0 is different
and most likely cannot lead to long memory. See Giraitis and Surgailis (2002).

We first formally derive a stationary solution by reducing (1.5) to (1.8), which in turn can
be solved by iteration. A rigorous statement will follow immediately after this derivation. To
this end, define

Yt := κηt + ζtAt , At :=
∞∑
j=1

ajXt−j , mt :=
∞∑
j=1

bjXt−j . (2.1)

Then (1.5) reduces to the linear equation

Xt −
∞∑
j=1

bjXt−j = Yt ,

which can be formally solved by inverting it, i.e.

Xt =
∞∑
j=0

gjYt−j , (2.2)

where we use the notation

A(z) :=
∞∑
j=1

aj z
j , B(z) :=

∞∑
j=1

bj z
j , G(z) := (1 − B(z))−1 =

∞∑
j=0

gj z
j ,

F (z) := A(z)

1 − B(z)
=

∞∑
j=1

(a � g)j z
j =

∞∑
j=1

fj z
j , (2.3)

for the generating series, where (a � g)j := ∑j
k=0 gkaj−k is the convolution. From (2.1) and

(2.2), we obtain

At =
∞∑
j=1

ajXt−j =
∞∑
j=1

(a � g)jYt−j ,

Yt = κηt + ζt

∞∑
j=1

(a � g)jYt−j , (2.4)

= κ

(
ηt + ζt

∑
u<t

∞∑
k=0

∑
u<sk<···<s1<t

(a � g)t−s1 · · · (a � g)sk−1−sk ζs1 · · · ζskηu
)
, (2.5)
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where we set aj := 0, bj := 0 (j ≤ 0), and gj := 0 (j < 0). Note that (2.5) follows from (2.4)
by iteration. From (2.5) and (2.2), we finally obtain a (formal) solution of the bilinear equation
(1.8) in terms of multiple series of noise variables:

Xt = κ

( ∞∑
j=0

gjηt−j +
∑
j≥1

∑
u<t−j

∞∑
k=0

∑
u<sk<···<s1<t−j

gj (a � g)t−j−s1 · · ·

× (a � g)sk−1−sk (a � g)sk−uζt−j ζs1 · · · ζskηu
)
. (2.6)

Next, we introduce some rigorous notions and definitions. Let (�,F ,P) be a probability
space, and let (ηs, ζs) = (ηs, ζs)s∈Z be a sequence of i.i.d. vectors defined on this space.
Let Ft = σ {ηs, ζs, s ≤ t}, t ∈ Z, be the increasing family of sub-σ -fields of F . A random
sequence (yt ) is called adapted if, for each t ∈ Z, yt is Ft -measurable. LetLp(�) (1 ≤ p < ∞)
denote the class of all complex-valued random variables ξ defined on (�,F ,P) such that
E[|ξ |p] < ∞. Write l.i.m. for the limit in mean square. Set �p = {φ = (φ0, φ1, . . .) : ‖φ‖p <
∞}, ‖φ‖p = {∑∞

j=0 |φj |p}1/p, and ‖φ‖ := ‖φ‖2. We use C to designate generic quantities
whose precise values are not important.

Assumption 2.1. The generating functions A(z) and B(z) in (2.3) are analytic on {|z| < 1}
and B(z) �= 1 (|z| < 1), (gj ) ∈ �2, (fj ) ∈ �2, and

‖f ‖ =
{ ∞∑
j=1

f 2
j

}1/2

< 1.

Assumption 2.2. We have

‖(a(n) − a) � g‖ → 0, ‖(b(n) − b) � g‖ → 0,

where a(n)j := aj1(1 ≤ j ≤ n) and b(n)j := bj1(1 ≤ j ≤ n).

Definition 2.1. By a solution of (1.5) we mean an adapted sequence (Xt ) with finite second
moment, E[X2

t ] < ∞, such that, for every t ∈ Z, the series At and Bt in (2.1) converge in
mean square and (1.5) holds.

Note that the above definition implies the convergenceXt = l.i.m.[κηt+ζt ∑n
j=1 ajXt−j +

b + ∑n
j=1 bjXt−j ] in L2(�).

Theorem 2.1. Let Assumptions 2.1 and 2.2 be satisfied, and let b = 0 and κ �= 0. Then there
exists a solution (Xt ) of (1.5) which is unique, strictly stationary, ergodic, and is given by the
convergent orthogonal Volterra series in (2.6). Moreover, E[Xt ] = 0 and

E[X0Xt ] = κ2

1 − ‖f ‖2

∞∑
j=0

gjgj+t . (2.7)

Proof. Let us check that the series in (2.6) converges and satisfies (2.7). Let t ∈ N. Using
the above notation, (2.6) can be rewritten as

Xt = κ

(∑
v≤t

gt−vηv +
∑
u<v<0

∞∑
k=0

∑
u<sk<···<s1<v<t

gt−vfv−s1 · · ·

× fsk−1−sk fsk−uζvζs1 · · · ζskηu
)
. (2.8)
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By orthogonality of the last expansion,

E[X0Xt ] = κ2
(∑
v≤0

gt−vg−v E[ζ 2
v ] +

∑
u<v<0

gt−vg−v
∞∑
k=0

∞∑
u<sk<···<s1<v

f 2
v−s1 · · ·

× f 2
sk−1−sk f

2
sk−u E[ζ 2

v ] E[ζ 2
s1

] · · · E[ζ 2
sk

] E[η2
u]

)

= κ2

1 − ‖f ‖2

∞∑
j=0

gjgj+t ,

proving (2.7). It is clear that the process (Xt ) in (2.8) is strictly stationary and adapted.
The rest of the proof of the theorem is completely analogous to Giraitis and Surgailis (2002,
Theorem 2.2).

Remark 2.1. In the case in which b = 0 and κ �= 0, Assumptions 2.1 and 2.2 are also
necessary for the existence of a solution in the sense of Definition 2.1. The necessity of
Assumption 2.1 follows similarly as in Giraitis et al. (2004, proof of Theorem 1) and the
necessity of Assumption 2.2 follows similarly as in Giraitis and Surgailis (2002, proof of
Theorem 2.2).

Corollary 2.1. Assume that the conditions of Theorem 2.1 are satisfied and that ν > 0, and let
(Xt ) be the stationary solution of (2.6). Then, for any t ∈ Z,

Xt = mt + εtσt , (2.9)

where

σt :=
√
ν2 + (a + At)2, εt := κηt + ζtAt

σt
, (2.10)

and At and mt are defined by the series in (2.1) convergent in L2(�). Then (εt ,Ft ) forms a
strictly stationary martingale difference sequence with

E[εt | Xs, s < t] = 0, E[ε2
t | Xs, s < t] = 1. (2.11)

In particular, if (η, ζ ) has a jointly Gaussian distribution with zero mean and covariance matrix(
1 ρ

ρ 1

)
,

then (εt ) forms a standard normal i.i.d. sequence and the conditional likelihood of X1 =
x1, . . . , Xn = xn given Xs , s ≤ 0, equals

n∏
t=1

(2πσ 2
t )

−1/2 exp

{
− (xt −mt)

2

2σ 2
t

}
. (2.12)

Proof. The convergence in L2(�) of the series defining At and Bt can be shown using
Assumption 2.2, as in Giraitis and Surgailis (2002, proof of Theorem 2.2). Representation (2.9)
is then immediate from the definitions in (2.10) and representation (1.5). The statements of
the corollary about (εt ) are easy consequences of the properties of (Xt ) in Theorem 2.1 and
assumptions (1.6) on the noise.
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In the rest of the paper we will restrict ourselves to the zero-drift case, b = bj = 0 (j ≥ 1),
or the bilinear equation, (1.8). Note that in this case gt = 1(t = 0) is the δ-function and
fj = aj (j ≥ 1). The somewhat cumbersome formulae (2.6) and (2.8) can be rewritten in a
more compact way using the notation

aSu,t := at−s1as1−s2 · · · ask−u and ζ S := ζs1 · · · ζsk
for

S = {s1, . . . , sk}, u < sk < · · · < s1 < t, k = 1, . . . , (2.13)

with a∅

u,t := at−u and ζ∅ := 1. Then

Xt = κ

(
ηt +

∑
u<t

∑
S⊂(u,t)

aSu,t ζt ζ
Sηu

)
, At = κ

∑
u<t

∑
S⊂(u,t)

aSu,t ζ
Sηu, (2.14)

where the sums over S are taken over all subsets, as in (2.13), including k = 0, or S = ∅.
Following the terminology in Giraitis et al. (2000), (2004) we consider two concrete exam-

ples of the LARCH+(∞) models.

Example 2.1. (GLARCH+(1, 1)model.) Here σ 2
t = ν2+(a+At)2 andAt = αAt−1+βXt−1,

where ν, α, β, and a are real parameters. In the LARCH+(∞) representation, (1.8), this
model corresponds to aj = βαj−1 (j ≥ 1), while Assumptions 2.1 and 2.2 are equivalent to
α2+β2 < 1. It can be shown that the last condition is also necessary for the existence of a covari-
ance stationary solution of the GLARCH+(1, 1) equations. Note that the GLARCH+(1, 1)
model is different from Sentana’s GQARCH(1, 1)model given by σ 2

t = ν2 + (a+βXt−1)
2 +

bσ 2
t−1 (see Sentana (1995)). Contrary to the GLARCH+(1, 1) model, the GQARCH(1, 1)

model does not admit an explicit solution in Volterra series.

Example 2.2. (GLARCH+(0, d, 0)model.) Here σ 2
t = ν2 +(a+At)2,At = c(1−L)−dXt−1,

or A(z) = cz(1 − z)−d , where c ∈ R and d ∈ (0, 1
2 ) are parameters. In this case, Assump-

tions 2.1 and 2.2 can be shown to be equivalent to c2 < �(1 − 2d)/�(1 − d).

3. Long memory and the leverage effect

Recall from the introduction the definition of the leverage function

Ht := cov(σ 2
t , X0), t = 1, 2, . . . , (3.1)

which requires finiteness of the third moment, E[|Xt |3] < ∞, alone. Indeed, by (2.9) (with
Bt ≡ 0) and (2.11),

Ht = E[ε2
t σ

2
t X0] = E[X2

t X0],
implying that

|Ht | ≤ E2/3[|Xt |3] E1/3[|X0|3] = E[|X0|3],
by stationarity and Hölder’s inequality. The term ‘leverage function’ was introduced in Giraitis
et al. (2004) to measure the so-called leverage effect (see Black (1976)), a tendency for volatility
to move in the opposite direction to returns, after a delay, as happens when the conditional
variance is negatively correlated with past returns. In the simplest case, the leverage effect can
be measured by the absolute value of min(H1, 0), although leverage of order 1 ≤ k < ∞ or
Hj < 0 (for all 0 < j ≤ k) can be of interest also. See Giraitis et al. (2004, p. 178).
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The subsequent discussion in this section resembles that in Giraitis et al. (2004, Section 1),
and we refer to the above-mentioned paper for details. The discussion is technically simpler
under the assumption that all mixed ‘noise’ moments of order three vanish:

E[η3] = E[η2ζ ] = E[ηζ 2] = E[ζ 3] = 0. (3.2)

Conditions (3.2) together with E[|At |3] < ∞ imply that E[X3
0] = 0. In the last case, the

leverage function in (3.1) satisfies a linear (Hilbert–Schmidt) equation, (3.3), below, whose
derivation is completely similar to that in Giraitis et al. (2004, Equation (A.7)):

Ht = E

[
X0

(
ν2 +

(
a +

∞∑
j=1

ajXt−j
)2)]

= E

[
X0

(
a +

∑
s<t

at−sXs
)2]

= 2aσ 2at +
∑

0<s<t

a2
t−sHs + 2at

∑
s>0

at+sHs. (3.3)

The (nontrivial) condition about finiteness of E[|At |3] and E[|Xt |3], which does not require
finite fourth moment of the noise, is satisfied provided that (3.2) and

|µ|1/33 ‖a‖3 + 3θ‖a‖ < 1 (3.4)

hold, where |µ|3 := max(E[|η|3],E[|ζ |3]), ‖a‖3 := {∑∞
j=1 |aj |3}1/3, and θ ≈ 1.27 is the

solution of 3θ2 −3θ−1 = 0; see Giraitis et al. (2004, Proposition 1). Equation (3.3) coincides
with Giraitis et al. (2004, Equation (A.7)), and the conclusions of the last paper about the sign
of Ht (the ‘leverage effect’) and the asymptotics of Ht as t → ∞ (the ‘long memory’) apply.
These conclusions are formulated in Corollary 3.1, below, whose proof is omitted.

Corollary 3.1. Assume that the conditions of Theorem 2.1 are satisfied, including (1.6), (1.7),
and ‖a‖ < 1. Moreover, assume that conditions (3.2) and (3.4) are satisfied.

(i) Let (aj ) satisfy the regular decay condition in (1.9) with exponent d ∈ (0, 1
2 ). Then (Ht )

satisfies a similar condition, i.e.

Ht ∼ cH t
d−1, cH := 2σ 4c0

a
.

(ii) Let aa1 < 0 and aaj ≤ 0, j = 2, . . . , k for some 1 ≤ k < ∞. Then Hj < 0,
j = 1, . . . , k.

4. Partial sums of the squared process

Now we come to our main problem—the limit distribution of the partial sums process∑[nτ ]
t=1 (X

2
t − E[X2

t ]) (τ ∈ [0, 1]), where (Xt ) is a LARCH+(∞) process in (1.8) with infinite
fourth moment, E[X4

t ] = ∞. The last fact is an easy consequence of assumptions (1.10) on the
noise. Moreover, we also assume that conditions (1.6) are satisfied as in the previous sections,
and set κ = 1 without loss of generality. Recall the Volterra representation of Xt in (2.14):

Xt = ηt +
∑
u<t

ηuAu,t ζt , Au,t :=
∑

S⊂(u,t)
aSu,t ζ

S, u < t.
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Then

X2
t =

(
(η2
t − E[η2

t ])+
∑
u<t

(η2
u − E[η2

u])A2
u,t ζ

2
t

)
︸ ︷︷ ︸

(‘η-diagonal term’)

+ 2

(
ηtζt

∑
u<t

ηuAu,t +
∑

u2<u1<t

ηu2ηu1Au1,tAu2,t ζ
2
t

)
+ 1 +

∑
u<t

A2
u,t ζ

2
t︸ ︷︷ ︸

(‘η-off-diagonal term’)

=: YD
t + YO

t . (4.1)

The above decomposition separates the (centered) ‘η-diagonal term’, YD
t , with infinite variance

and the remaining ‘η-off-diagonal term’, YO
t , with finite variance. We may expect that partial

sums of these two terms have different limit distributions. The expectations are confirmed in
the following theorems. Note that the second condition in (1.10) implies that

n−1/α
[nτ ]∑
t=1

(η2
t − E[η2

t ]) fdd−−→ Lα(τ), (4.2)

where ‘
fdd−−→’ denotes weak convergence of finite-dimensional distributions, and (Lα(τ))τ≥0

is a homogeneous α-stable Lévy process with skewness parameter β = 1 and characteristic
function

E[exp{iθLα(1)}] = exp

{
−c|θ |α

(
1 − i sgn(θ) tan

(
απ

2

))}
, θ ∈ R,

where the constant c > 0 depends on α and the asymptotic constant cη in (1.10) (see, e.g.
Ibragimov and Linnik (1971, Theorem 2.6.5)).

Theorem 4.1. (‘Lévy α-stable limit’.) Assume that conditions (1.10) are satisfied, that

|aj | ≤ Cjd−1 (
there exist C > 0 and 0 < d < 1

2

)
, (4.3)

and that
(11)1/2µ1/4

4 ‖a‖ < 1. (4.4)

Then

n−1/α
[nτ ]∑
t=1

YD
t

fdd−−→ CDLα(τ), (4.5)

where (Lα(τ)) is the α-stable Lévy process in (4.2),

CD := E1/α[Zα0 ],
and

Zt := 1 +
∑
v>t

( ∑
S⊂(t,v)

aSt,vζ
Sζv

)2

(4.6)

is a strictly stationary process with finite variance.
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Theorem 4.2. (‘Fractional Brownian motion limit’.) Assume that

E[ζ 4 + ζ 2η2] < ∞, ρ = E[ζη] �= 0,

aj ∼ c0j
d−1 (

j → ∞, there exist c0 �= 0 and 0 < d < 1
2

)
,

and (4.4) are satisfied. Then

n−d−1/2
[nτ ]∑
t=1

(YO
t − E[YO

t ]) fdd−−→ COBd+1/2(τ ), (4.7)

where (Bd+1/2(τ ), τ ≥ 0) is a standard fractional Brownian motion (FBM) with Hurst
parameter d + 1

2 and variance E[B2
d+1/2(τ )] = τ 2d+1, the asymptotic constant

CO := 2c0c(d)ρ(E[X2
0])3/2 = 2c0c(d)ρ

(1 − ‖a‖2)3/2
,

and c(d) := (
∫ 1
−∞(

∫ 1
0 (t − s)d−1+ dt)2 ds)1/2 depends only on d.

Corollary 4.1. Assume that the conditions of Theorems 4.1 and 4.2 are satisfied. Then

n−1/α
[nτ ]∑
t=1

(X2
t − E[X2

t ]) fdd−−→ CDLα(τ) if
1

α
> d + 1

2
,

n−d−1/2
[nτ ]∑
t=1

(X2
t − E[X2

t ]) fdd−−→ COBd+1/2(τ ) if
1

α
< d + 1

2
,

where the limiting quantities are the same as in Theorems 4.1 and 4.2.

Remark 4.1. The convergence (4.7) in Theorem 4.2 can be extended to functional convergence
in the Skorokhod space D[0, 1] by verifying the (Kolmogorov) tightness criterion for the
variance of partial sums. However, the question of functional convergence in Theorem 4.1
and Corollary 4.1 remains open.

Let us present an example of a generic noise distribution satisfying conditions (1.10).

Example 4.1. Let ζ ∼ N(0, 1) and η = ζ
√
ξ , where ξ > 0 is a random variable, independent

of ζ and such that E[√ξ ] = ρ < 1, E[ξ ] = 1, and P[ξ > x] ∼ cξ x
−α (x → ∞, cξ > 0,

1 < α < 2). Then the pair (η, ζ ) satisfies the conditions in (1.6) and (1.10).

5. Convergence to a Lévy stable process (proof of Theorem 4.1)

The proof of Theorem 4.1 is split into two steps.

Step 1. Reduction of the sum of the YD
t s to a corresponding sum of the stationary martingale

transforms, (η2
t − E[η2

t ])Zt s, where the process (Zt ) is defined in Theorem 4.1.

Step 2. Proof of the central limit theorem (convergence to a stable law) for partial sums of the
above martingale transform.
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Step 2 is a particular case of a general central limit theorem (CLT) for stationary martingale
transforms given in Appendix B, whose proof is based on the so-called ‘principle of condition-
ing’ due to Jakubowski (1986) (see also Kwapień and Woyczyński (1992, Chapter 5.8)). Step 1
means proving the relation

n∑
t=1

YD
t =

n∑
t=1

(η2
t − E[η2

t ])Zt + op(n
1/α), (5.1)

and uses the diagram technique developed in Giraitis et al. (2000) for moments of multiple
Volterra series, and some graph-theoretical argument. Technically, step 1 is the most involved
part of the paper.

The proof of (5.1) (step 1) is as follows. Define η̃t := η2
t − E[η2

t ]. Then

YD
t = η̃t +

∑
u<t

η̃uA
2
u,t ζ

2
t , η̃uZu = η̃u + η̃u

∑
t>u

A2
u,t ζ

2
t ,

whence the differenceWn := ∑n
t=1 Y

D
t − ∑n

u=1 η̃uZu of the sums in (5.1) can be rewritten as

Wn =
∑
u≤0

η̃u

n∑
t=1

A2
u,t ζ

2
t −

n∑
u=1

η̃u
∑
t>n

A2
u,t ζ

2
t

=: Wn1 −Wn2.

Then (5.1) follows from

E[|Wni |r ] = o(nri/α), i = 1, 2, (5.2)

for some r > 0. According to a well-known martingale inequality (due to von Bahr and Esséen
(1965)), for any 1 ≤ r < α,

E |Wn1|r ≤ C
∑
u≤0

E

[∣∣∣∣ n∑
t=1

A2
u,t ζ

2
t

∣∣∣∣r
]

≤ C
∑
u≤0

Er/2
[( n∑

t=1

A2
u,t ζ

2
t

)2]

≤ Cµ
r/2
4

∑
u≤0

Er/2
[( n∑

t=1

A2
u,t

)2]
, (5.3)

E[|Wn2|r ] ≤ C

n∑
u=1

E

[∣∣∣∣∑
t>n

A2
u,t ζ

2
t

∣∣∣∣r
]

≤ Cµ
r/2
4

n∑
u=1

Er/2
[(∑

t>n

A2
u,t

)2]
, (5.4)

where µ4 := E[ζ 4].
We need to evaluate the right-hand sides of (5.3) and (5.4), which involve fourth mixed

moments of Volterra series. To this end, we use the diagram approach developed in Giraitis et
al. (2000), (2004), which is briefly described below.

Let a collection (k)4 = (k1, . . . , k4) ∈ Z
4+ of integers be given; Z+ := {s ∈ Z : s ≥

1}, |k| := k1 + · · · + k4. Let I = I (k)4 be a table having four rows of length kj , Ij =
{(kj , j), . . . , (1, j)}, j = 1, . . . , 4. A diagram is an ordered partition γ = (G1, . . . ,Gr) of
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the table I by subsets (edges) Gq , q = 1, . . . , r , r ≥ 1, having at least two elements and
containing at most one element of any row (i.e. such that 2 ≤ |Gq | ≤ 4 and |Gq ∩ Ij | ≤ 1,
q = 1, . . . , r , j = 1, . . . , 4). The class of all such diagrams γ = (G1, . . . ,Gr) over I = I (k)4
will be denoted �(k)4.

Let Sj ⊂ Z, |Sj | = kj , be a collection of ordered integers:

Sj = {skj ,j , . . . , s1,j }, skj ,j < · · · < s1,j , j = 1, . . . , 4. (5.5)

Set (S)4 := (S1, . . . , S4). Let

f = f ((S)4) = f (si,j : (i, j) ∈ I )
be a function defined on the set of all such collections (S)4. With any such f and any diagram
γ = (G1, . . . ,Gr) ∈ �(k)4, we associate the sum∑

(S)4∼γ
f ((S)4) :=

∑
si,j=ŝq , (i,j)∈Gq, q=1,...,r

f (si,j : (i, j) ∈ I )

over integers si,j , i = 1, . . . , kj , j = 1, . . . , 4, satisfying the inequalities in (5.5) and such that

ŝ1 < · · · < ŝr .

Consider

J1(u) := E

[( n∑
t=1

A2
u,t

)2]

=
n∑

t ′,t ′′=1

∑
(S)4

a
S1
u,t ′a

S2
u,t ′a

S3
u,t ′′a

S4
u,t ′′ E[ζ S1ζ S2ζ S3ζ S4 ]

=
n∑

t ′,t ′′=1

∑
(k)4

∑
γ∈�I(k)4

µ(γ )
∑
(S)4∼γ

a
(S)4
u,(t)4

, (5.6)

where we use the notation (t)4 := (t ′, t ′, t ′′, t ′′) ∈ Z
4 and

a
(S)4
u,(t)4

:=
{
a
S1
u,t ′a

S2
u,t ′a

S3
u,t ′′a

S4
u,t ′′ if Si ∈ (u, t ′) (i = 1, 2), Si ∈ (u, t ′′) (i = 3, 4),

0 otherwise,

and where
µ(γ ) := E[ζ S1ζ S2ζ S3ζ S4 ]

in (5.6) depends only on γ ∈ �(k)4 and vanishes unless the sets S1, . . . , S4 are ‘coupled’, i.e.
�(S)4 := ⋃4

i=1(Si \ ⋃
j �=i Sj ) �= ∅; moreover, by Hölder’s inequality,

|µ(γ )| ≤ µ
|k|/4
4 (µ4 := E[ζ 4]) (5.7)

(see Giraitis et al. (2000, Equations (3.5), (3.6), and (3.15))). Following Giraitis et al. (2000,
p. 1013), we call γ = (G1, . . . ,Gr) ∈ �(k)4 block connected if it contains an edge Gq
(1 ≤ q ≤ r) which has a nonempty intersection with blocks I ′ := I1 ∪ I2 and I ′′ := I3 ∪ I4.
We also note the following simple bound on the number |�(k)4| of all diagrams:

|�(k)4| ≤ (11)|k|/2; (5.8)

see Giraitis et al. (2000, Lemma 3.2). To proceed, we will need an auxiliary lemma.
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Lemma 5.1. There exists a constant C < ∞ such that, for any integers u, t ′, t ′′, u < t ′ ∧ t ′′,
any (k)4 ∈ Z

4+, and any diagram γ ∈ �((k)4), the following inequality is true:

∑
(S)4∼γ

|a(S)4u,(t)4
| ≤ C|k|6‖a‖|k||t ′ − u|2d−2|t ′′ − u|2d−2. (5.9)

Proof. The proof of (5.9) is easy if γ is not block connected. Assuming that γ is not block
connected, we necessarily have S1 = S2 =: S′ and S3 = S4 =: S′′, and the left-hand side of
(5.9) can be estimated by a product of two sums over rows 1 and 2 and over rows 3 and 4:

∑
(S)4∼γ

|a(S)4u,(t)4
| ≤ �k′+1(t

′ − u)�k′′+1(t
′′ − u), (5.10)

where

�k(t) :=
∑

0<sk−1<···<s1<t
a2
t−s1 · · · a2

sk−1
, t, k = 1, 2, . . . , (5.11)

�k(t) := 0 (t ≤ 0), is the kth convolution of the sequence (a2
t )t≥1. Condition (4.3) of

Theorem 4.1 implies the following inequality: for any t, k = 1, 2, . . . (see Giraitis et al. (2000,
Lemma 4.2)),

�k(t) ≤ Ck3‖a‖kt2d−2, (5.12)

where the constant C is the same as in (4.3). From (5.10) and (5.12), we obtain

∑
(S)4∼γ

|a(S)4u,(t)4
| ≤ C(k′)3(k′′)3‖a‖2(k′+k′′)|t ′ − u|2d−2|t ′′ − u|2d−2

≤ C|k|6‖a‖|k||t ′ − u|2d−2|t ′′ − u|2d−2, (5.13)

or the statement of Lemma 5.1, provided that γ is not block connected.

The proof of Lemma 5.1 for the case of a general (i.e. block-connected) diagram γ ∈ �(k)4
can be reduced to the ‘block-unconnected’case above by an argument which is explained below.

Let us first consider the situation when γ = (G1, . . . ,Gr) connects only pairs: |G1| =
· · · = |Gr | = 2. The subclass of all such diagrams will be denoted �2(k)4. Later we will
extend the proof to an arbitrary diagram γ ∈ �(k)4 \ �2(k)4.

The idea of the proof is to split the product |a(S)4u,(t)4
| = |A′ · A′′| ≤ 1

2 ((A
′)2 + (A′′)2), where

(A′)2 = a
(S′)4
u,(t)4

and (A′′)2 = a
(S′′)4
u,(t)4

correspond to some new diagrams γ ′ and γ ′′ which are not
block connected and for which the bound (5.9) follows similarly as in (5.13).

To obtain such a decomposition, we use a graph-theoretical fact in Lemma 5.2, below. The
proof of Lemma 5.2 is carried over to Appendix A. Consider a (multi)graph G = (V ,E) with a
set V = {0, 1, . . . , r, r+1, r+2} ⊂ Z of vertices and a setE of edges (a multiset of unordered
pairs of distinct vertices). For a vertex i ∈ V , we define deg(i) = |{(i, j) ∈ E}|, deg+(i) =
|{(i, j) ∈ E, j > i}|, and deg−(i) = |{(i, j) ∈ E, j < i}|, so that deg(i) = deg+(i)+deg−(i)
(i ∈ V ). An Eulerian cycle in G is a cycle which uses each edge (i, j) ∈ E exactly once. A
Hamiltonian path in G is a path which uses each vertex i ∈ V exactly once.
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Lemma 5.2. Assume that a multigraph G = (V ,E) with V = {0, 1, . . . , r + 2} satisfies the
following conditions:

deg+(i) = 4, deg−(i) = 0, i = 0, (5.14)

deg+(i) = deg−(i) ∈ {2, 3, 4}, i = 1, . . . , r, (5.15)

deg−(i) = 2, deg+(i) = 0, i = r + 1, r + 2, (5.16)

deg(i) = 6 �⇒ (i, i ± 1) ∈ E, i = 1, . . . , r, (5.17)

deg(i) = 8 �⇒ (i′, i′′) /∈ E, i′ < i < i′′, i = 1, . . . , r. (5.18)

Then G contains two distinct paths, Ȟ and Ĥ , which start at r + 2, go to 0, and return to r + 1,
and whose union Ȟ ∪ Ĥ forms an Eulerian cycle. More precisely,

Ȟ : r + 2 → ǐ1 → · · · → ǐ
ǩ−1 → ǐ

ǩ
= 0 → ǐ

ǩ+1 → · · · → ǐp̌ → r + 1, (5.19)

Ĥ : r + 2 → î1 → · · · → î
k̂−1 → î

k̂
= 0 → î

k̂+1 → · · · → îp̂ → r + 1, (5.20)

with the following properties:

r ≥ ǐ1 > · · · > ǐ
ǩ−1 > ǐ

ǩ
= 0 < ǐ

ǩ+1 < · · · < ǐp̌ ≤ r, (5.21)

r ≥ î1 > · · · > î
k̂−1 > î

k̂
= 0 < î

k̂+1 < · · · < îp̂ ≤ r, (5.22)

{ǐ1, . . . , ǐǩ−1} ∪ {ǐ
ǩ+1, . . . , ǐp̌} = {1, 2, . . . , r}, (5.23)

{î1, . . . , îk̂−1} ∪ {î
k̂+1, . . . , îp̂} = {1, 2, . . . , r}. (5.24)

Moreover, the respective lengths p̌ + 1 and p̂ + 1 of Ȟ and Ĥ satisfy

p̌ + 1 = p̂ + 1 = |E|
2

if |E| is even, (5.25)

p̌ + 1 + p̂ + 1 = |E| and |p̌ − p̂| = 1 if |E| is odd. (5.26)

Remark 5.1. Conditions (5.14)–(5.18) arise from the relationship between diagrams and multi-
graphs, as defined in the proof of Lemma 5.1 for arbitrary diagrams, below. Figures 1 and 2
help us to understand this relationship and the meaning of Lemma 5.2.

Proof of Lemma 5.1 for arbitrary diagrams. With any diagram γ = (G1, . . . ,Gr) ∈ �(k)4
we can associate a graph G = (V ,E) with r + 3 vertices as follows. The set V of vertices of
this graph,

V := {G0,G1, . . . ,Gr,G
′,G′′},

can obviously be identified with the set Ṽ := {0, 1, 2, . . . , r, r + 1, r + 2} ⊂ N+. The first
r + 1 elements of Ṽ correspond to the ordered indices u := s̃0 < s̃1 < · · · < s̃r and the last
two elements correspond to s̃r+1 := t ′ < s̃r+2 := t ′′ in (5.9). An edge e ∈ E in G between
vertices i, j ∈ Ṽ (i < j ) is equivalent to the existence of a corresponding factor as̃i−s̃j =: ae
in the product on the left-hand side of (5.9), which can be rewritten as a(S)4u,(t)4

= ∏
e∈E ae. It

is easy to see that the constructed graph G = (V ,E) satisfies the conditions of Lemma 5.2.
Let E = Ě ∪ Ê be the decomposition of E into disjoint subsets corresponding to the paths
Ȟ and Ĥ in Lemma 5.2. Clearly, | ∏e∈E ae| ≤ 1

2 (
∏
e∈Ě a

2
e + ∏

e∈Ê a
2
e ). We thus obtain∑

(S)4∼γ
|a(S)4u,(t)4

| ≤ 1

2

( ∑
(S)4∼γ

∏
e∈Ě

a2
e +

∑
(S)4∼γ

∏
e∈Ê

a2
e

)

≤ 1
2 {�

ǩ
(t ′′ − u)�

ǩ+1(t
′ − u)+�

k̂
(t ′′ − u)�

k̂+1(t
′ − u)}, (5.27)
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u ˜1s 2s̃ 3s̃ −1rs̃ rs̃ 0 t. . .

Figure 1: A diagram γ = (G1, . . . ,Gr) with r = 7 edges.

0G 1G 2G 3G 1−rG rG G′ G′′. . .

Figure 2: The graph G with r+3 = 10 vertices corresponding to the diagram γ in Figure 1. The Eulerian
cycle Ȟ ∪Ĥ of Lemma 5.2 is shown (path Ȟ is indicated by closed-headed arrows and path Ĥ is indicated

by open-headed arrows).

where the function �k is defined in (5.11). From (5.25), (5.26), and (5.27), the statement of
the lemma follows exactly as in (5.13). Lemma 5.1 is proved.

Let us return to the proof of (5.2) and the estimates in (5.3) and (5.4). According to
Lemma 5.1, (5.6), (5.7), and (5.8),

J1(u) ≤ C
∑
(k)4

µ
|k|/4
4 (11)|k|/2|k|6‖a‖|k|

n∑
t ′,t ′′=1

|t ′ − u|2d−2|t ′′ − u|2d−2 (5.28)

and, therefore, E[|Wn1|r ](≤ C
∑
u≤0 J

r/2
1 (u)), see (5.3), does not exceed

E[|Wn1|r ] ≤ C

( ∞∑
k=1

µ
k/4
4 (11)k/2k6‖a‖k

)2r ∞∑
u=0

( n∑
t=1

|t + u|2d−2
)r

≤ C + C

∫ ∞

1

(∫ n

0
(t + u)2d−2 dt

)r
du

≤ C(1 + n1+(2d−1)r ), (5.29)

since the last integral does not exceed∫ n

1

(∫ u

0
u2d−2 dt +

∫ ∞

u

t2d−2 dt

)r
du+

∫ ∞

n

(
u2d−2

∫ n

0
dt

)2

du ≤ Cn1+(2d−1)r

for any d < 1
2 , (2d − 2)r > 1.

Let 1 < α ≤ 1/(1 − 2d). Then 1 + (2d − 1)r > 0 for r < α and (5.29) implies that

E[|Wn1|r ] = O(n1+(2d−1)r ) = o(nr/α)

provided that 1 + (2d − 1)r < r/α holds. The last inequality is clearly satisfied for r = α

since 1 + (2d − 1)α < 1 and, therefore, also for all r < α sufficiently close to α. Next, let
α > 1/(1 − 2d). Then 1 + (2d − 1)r < 0 for all r < α sufficiently close to α and, hence,
(5.29) implies the relation

E[|Wn1|r ] = O(1) = o(nr/α)
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trivially. This proves the bound in (5.2) for i = 1 and a suitably chosen r . In a similar way,

J2(u) ≤ C
∑
(k)4

µ
|k|/4
4 (11)|k|/2|k|6‖a‖|k| ∑

t ′,t ′′>n
|t ′ − u|2d−2|t ′′ − u|2d−2,

similarly as in (5.6) and (5.28). Hence, E[|Wn2|r ] ≤ C
∑n
u=1 J2(u)

r/2 (see (5.4)) can be
estimated as

E[|Wn2|r ] ≤ C

( ∞∑
k=1

µ
k/4
4 (11)k/2k6‖a‖k

)2r n∑
u=1

(∑
t>n

|t − u|2d−2
)r

≤ C

∫ n

1

(∫ ∞

n

(t − u)2d−2 dt

)r
du

≤ C(1 + n1+(2d−1)r ),

as in (5.29). This proves (5.2) for i = 2 and a suitably chosen r . It also completes the proof of
(5.1) (step 1).

Proof of Theorem 4.1. With (5.1) and stationarity of all processes involved in mind, relation
(4.5) follows from

n−1/α
[−nτ ]∑
t=−1

(η2
t − E[η2

t ])Zt fdd−−→ CDLα(τ). (5.30)

To show (5.30), apply Theorem B.1, with ξt := η2−t − E[η2−t ], Vt := Z−t , and Ht :=
σ {ηs, ζs, s > −t}. Then the left-hand side of (5.30) can be rewritten as in (B.5), with Ui
defined as in (B.1). Assumptions (U1) and (U2) in Appendix B clearly apply in our case:
representation (B.2) is a consequence of the tail condition in (1.10) and the representation of
the characteristic function in the domain of attraction of a stable law (see, e.g. Ibragimov and
Linnik (1971, Theorem 2.6.5)). The ergodicity of the time-reversed process (Z−t ) follows from
Stout (1974, Theorem 3.5.8). The moment condition (B.4) holds with r = 2 > α, since the
series in (4.6) converges in mean square. This concludes the proof of Theorem 4.1.

6. Convergence to FBM (proof of Theorem 4.2)

The proof of Theorem 4.2 resembles that in Giraitis et al. (2000, Theorem 2.3), but is simpler
since in the present work we deal with squares only. Hence, we present a sketch of the proof,
the details being similar as in the above-mentioned paper.

Introduce an ‘intermediate’ stationary process (�t ) (the analog of Giraitis et al. (2000,
Equation (2.19))), defined by

�t := 2ρ
∞∑
k=0

∑
u<sk<···<s1<v≤t

Gt−vav−s1 · · · ask−1−sk ask−uζs1 · · · ζskηu

= 2ρ
∑
v≤t

ãt−sXs, (6.1)
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where

ãt :=
∑

0≤v<t
Gvat−v,

Gt−v :=
t−v−1∑
k=1

∑
v<sk<···<s1<t

a2
t−s1 · · · a2

sk−v, v < t ′

G0 := 1.

Then (see Giraitis et al. (2000, Lemma 4.1, Equation (4.3)))

∑
v≤t

Gt−v = 1 +
∞∑
k=0

∑
t>v

∑
v<sk<···<s1<t

a2
t−s1 · · · a2

sk−sv = 1

1 − ‖a‖2 = σ 2,

ãt ∼
( ∞∑
i=0

Gi

)
at (1 + o(1)) = σ 2at (1 + o(1)) as t → ∞. (6.2)

By definition (6.1), (�t ) is a moving average in a stationary martingale difference process (Xt )
with variance σ 2 = E[X2

0] = 1/(1 − ‖a‖2). Then, using asymptotics (6.2), we can show the
convergence

n−d−1/2
[nτ ]∑
t=1

�t
fdd−−→ 2c0c(d)ρσ

3Bd+1/2(τ ). (6.3)

See also the proof of Equation (2.27) in Giraitis et al. (2000). With (6.3) in mind, the statement
of the theorem follows from the approximation

var

( n∑
t=1

(YO
t −�t)

)
= o(n2d+1). (6.4)

Relation (6.4) follows from

cov(�t ,�0) ∼ C̃t2d−1
(
t → ∞, C̃ := 4ρ2c2

0σ
6c̃(d), c̃(d) :=

∫ ∞

0
(u(1 + u))d−1 du

)
(which is an easy consequence of (4.1), (6.1), and (6.2)) and the following relations:

cov

(∑
u<t

A2
u,t ζ

2
t ,

∑
u<0

A2
u,0ζ

2
0

)
= o(t2d−1), (6.5)

cov(ỸO
t , Ỹ

O
0 ) ∼ cov(ỸO

t , �0) ∼ cov(�t , Ỹ
O
0 ) ∼ cov(�t ,�0) as t → ∞, (6.6)

where

ỸO
t := YO

t −
∑
u<t

A2
u,t ζ

2
t = 2

(
ηtζt

∑
u<t

ηuAu,t +
∑

u2<u1<t

ηu2ηu1Au1,tAu2,t ζ
2
t

)
.

The proofs of (6.5) and (6.6) use the diagram approach and the argument in Giraitis et al.
(2000). In particular, (6.5) reduces to (a special case of) irregular diagrams in Giraitis et al.
(2000, Lemma 5.2). The proof of (6.6) is very similar to Giraitis et al. (2000, Lemma 5.1).
This completes the proof of Theorem 4.2.
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Appendix A. Proof of Lemma 5.2

The statement and the proof of the lemma simplifies in the case when all ‘inner’ vertices
i = 1, 2, . . . , r have degree 4, i.e.

deg+(i) = deg−(i) = 2, 1 ≤ i ≤ r. (A.1)

In such a case, Ȟ and Ĥ are (distinct) Hamiltonian paths. Indeed, assume that Ȟ visits a vertex
i ∈ {1, 2, . . . , r} twice. Therefore, Ȟ traverses all four edges incident to i. Since Ȟ and Ĥ
have no edges in common, this means that Ĥ does not visit i and, therefore, violates condition
(5.24). Note that in our case, it suffices to show the existence of a (Hamiltonian) path Ȟ only,
since the construction of Ĥ uses the edges of G which were not traversed by Ȟ and, hence, it
is trivial.

Assuming that (A.1) holds, the subsequent proof uses induction on r . For r = 0, 1, 2, the
statement of the lemma is obvious by visual inspection.

Let us prove the induction step r − 1 → r . To this end, we assume that the statement of the
lemma holds for any multigraph G′ = (V ′, E′) having r + 2 vertices.

Define G′ = (V ′, E′) by V ′ := {1, 2, . . . , r + 2} = V \ {0} and

E′ := {(i, j) ∈ E : i, j ∈ V ′} ∪ {(1, j) : j = 2, . . . , r + 2, (0, j) ∈ E}.

Note that G′ satisfies the conditions of the lemma, in particular, deg+(1) = 4 and deg+(2) =
deg−(2) = 2. Let

Ȟ ′ : r + 2 → i′1 → · · · → i′k′−1 → i′k′ = 1 → ik′+1 → · · · → i′p′ → r + 1

be a corresponding path in G′ satisfying property (5.19) for this graph. Without loss of
generality, we can assume that i′

k′−1 = 2, which implies that i′
k′+1 > 2 and (1, i′

k′+1) ∈ E′,
and then (0, i′

k′+1) ∈ E by the construction of G′. Define Ȟ as follows: ǩ := k′ + 1,

Ȟ : r + 2 → ǐ1 := i′1 → · · · → ǐ
ǩ−1 := i′k′ = 1 → ǐ

ǩ
:= 0

→ ǐ
ǩ+1 := i′k′+1 → · · · → ǐp̌ := i′p′ → r + 1.

Clearly, the constructed path Ȟ visits each point of G exactly once. Because of the last fact,
property (5.25) is obvious since |E| = 2(r + 2) is even and p̂ = p̌ = r + 2. This proves the
lemma for the case in (A.1).

In the general case, the proof of the lemma can be obtained by induction on the number of
vertices which do not satisfy condition (A.1). Let

q3(G) := |{i = 1, . . . , n : deg+(i) = deg−(i) = 3}|,
q4(G) := |{i = 1, . . . , n : deg+(i) = deg−(i) = 4}|.

Assume that the statement of the lemma holds for any multigraph with q3(G) ≤ q − 1 (q =
1, 2, . . .) and q4(G) = 0. Let us show that it also holds for q3(G) = q and q4(G) = 0.
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Assume first that |E| is odd. Note that the last assumption is equivalent to q3(G) = q being
odd. Indeed, since

|E| = 1

2

∑
i∈V

deg(i)

= 1

2

(
deg(0)+ 4

r∑
i=1 : deg(i)=4

1 + 6q +
r+2∑
i=r+1

deg(i)

)

= 2

(
1 +

r∑
i=1 : deg(i)=4

1 + 2

)
+ 3q,

so |E| − 3q is an even number and parities of |E| and q must coincide.
Consider any vertex i∗ = 2, . . . , r with deg+(i∗) = deg−(i∗) = 3. Let (i∗, j∗±) ∈ E,

j∗− < i∗ < j∗+. Define a new graph G∗ = (V ∗, E∗) by V ∗ := V and

E∗ := {(i, j) ∈ E, (i, j) �= (i∗, j∗±)} ∪ {(j∗−, j∗+)}.
Then G∗ satisfies the assumptions of the lemma and q3(G

∗) = q−1, implying that |E∗| is even.
Therefore, by the inductive assumption, it satisfies the statement of the lemma, i.e. it contains
paths Ȟ ∗ and Ĥ ∗ with properties as in (5.19)–(5.20) and (5.21)–(5.24), such that p̌∗ = p̂∗.
Since Ȟ ∗ ∪ Ĥ ∗ is an Eulerean cycle in G∗, either Ȟ ∗ or Ĥ ∗ contains the edge (j∗−, j∗+) ∈ E∗.
Assume that (j∗−, j∗+) ∈ Ȟ ∗ and that Ȟ ∗ traverses this edge when going from r+2 to 0, so that
j∗+ = ǐ∗v and j∗− = ǐ∗v+1 for some 1 ≤ v < ǩ∗ in the corresponding path

Ȟ ∗ : r + 2 → · · · → ǐ∗v = j∗+ → ǐ∗v+1 = j∗− → · · · → ǐ∗
ǩ∗ = 0 → ǐ∗

ǩ∗+1
→ · · ·

→ ǐ∗
p̌∗ → r + 1.

Define Ȟ by ǐu := ǐ∗u (1 ≤ u ≤ v), ǐv+1 := i∗, and ǐu := ǐ∗u−1 (v+ 2 ≤ u ≤ p̌ := p̌∗ + 1), i.e.

Ȟ : r + 2 → · · · → ǐv = j∗+ → ǐv+1 = i∗ → ǐv+2 = j∗− → · · · → ǐ
ǩ∗+1 = ǐ∗

ǩ∗ = 0

→ ǐ
ǩ∗+2 = ǐ∗

ǩ∗+1
→ · · · → ǐp̌∗+1 = ǐ∗

p̌∗ → r + 1,

and Ĥ := Ĥ ∗. Then the constructed paths Ȟ and Ĥ can easily be shown to satisfy the statement
of the lemma, including (5.26). This proves the induction step q3(G) = q − 1 → q in the case
when |E| is odd.

Next, assume that |E| is even (and q3(G) ≥ 2). Consider two vertices i∗, i∗∗ ∈ {1, . . . , r},
i∗ < i∗∗, with

deg+(i∗) = deg−(i∗) = deg+(i∗∗) = deg−(i∗∗) = 3.

Let (i∗, j∗±), (i∗∗, j∗∗± ) ∈ E, j∗− < i∗ < j∗+, j∗∗− < i∗∗ < j∗∗+ . Define a new graph G∗ =
(V ∗, E∗) by V ∗ := V and

E∗ := {(i, j) ∈ E, (i, j) �= (i∗, j∗±), (i, j) �= (i∗∗, j∗∗± )} ∪ {(j∗−, j∗+), (j∗∗− , j∗∗+ )}.
Then G∗ satisfies the assumptions of the lemma and q3(G

∗) = q − 2 is even. Therefore, by
the inductive assumption, it satisfies the statement of the lemma, i.e. it contains paths Ȟ ∗ and
Ĥ ∗ with properties as in (5.19)–(5.20) and (5.21)–(5.24), such that p̌∗ = p̂∗. Proceeding
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with the construction as in the case when |E| is odd results in disjoint paths Ȟ and Ĥ which
satisfy (5.19)–(5.20) and (5.21)–(5.24) of the lemma with the (possible) exception of (5.25):
the construction implies a weaker fact, namely, that p̌ − p̂ ∈ {−2, 0, 2}.

Let us show that Ȟ and Ĥ can be further modified to the paths Ȟ † and Ĥ † satisfying all the
statements of the lemma, including (5.25), or p̌† = p̂†.

Assume without loss of generality that (0 <)i∗∗ < i∗(≤ r) and that p̌ = p̂ + 2. The
assumption implies that the path Ȟ visits each point i∗ and i∗∗ twice (the first time going from
r + 2 to 0 and the second time going backwards from 0 to r + 1), while Ĥ visits these points
exactly once. (The fact is a consequence of the observation that conditions (5.21) and (5.23)
imply that p̂ = r + q̂+ 1 and p̌ = r + q̌+ 1, where q̂ and q̌ are respective numbers of vertices
of E visited twice by Ĥ and Ȟ .)

The paths Ȟ † and Ĥ † will be defined by ‘switching’ from Ȟ to Ĥ and back to Ȟ , and vice
versa, and ‘pasting together’ the corresponding parts of Ȟ and Ĥ .

Observe first that the edge (i∗ − 1, i∗) ∈ E (which exists because of (5.17)) must be
traversed by the (longer) path Ȟ . Indeed, Ȟ visits i∗ − 1 at least once and i∗ twice; there are
two possibilities: either

(C1) (i∗ − 1, i∗) is traversed by Ȟ on the way from r + 2 to 0, or

(C2) (i∗ − 1, i∗) is traversed by Ȟ on the way back from 0 to r + 1.

In case (C2), define
Ȟ † := Ȟ1 ∪ Ĥ2 ∪ Ȟ3,

where Ȟ1 is the part of Ȟ from r + 2 to i∗, Ĥ2 is the (reversed) part of Ĥ from i∗ to 0 and back
to i∗ − 1, and Ȟ3 is the part of Ȟ from i∗ − 1 to r + 1. It is clear that the constructed path Ȟ †

visits point i∗ twice and point i∗∗ once. Case (C1) reduces to (C2) by exchanging vertices r+1
and r + 2 and the directions of the paths Ĥ and Ȟ . Having constructed Ȟ † with p̌† = p̌ − 1,
the construction of Ĥ † with p̂† = p̂ + 1 (implying that p̌† = p̂†) is obvious, as in the case
q3(G) = 0. This proves the induction step q3(G) = q− 1 → q and the statement of the lemma
in the case q4(G) = 0.

Finally, consider the case q4(G) = 1 (the argument below easily extends to the general case,
q4(G) ≥ 1). Let 1 ≤ i′ ≤ r be a corresponding vertex with deg+(i′) = deg−(i′) = 4. In such
a case, because of condition (5.18), the graph G is a union G = G′ ∪ G′′ of two components,
G′ = (V ′, E′) and G′′ = (V ′′, E′′), where

V ′ := {0, 1, . . . , i′}, V ′′ := {i′′, i′′ + 1, . . . , r + 2},
E′ := {(i, j) ∈ E : i, j ∈ V ′}, and E′′ := {(i, j) ∈ E : i, j ∈ V ′′}.

Since q4(G
′′) = 0, the corresponding paths Ĥ ′′ and Ȟ ′′ for the graph G′′ exist by the argument

above. In a similar way, there exist paths Ĥ ′ and Ȟ ′, both of which go from i′ to 0 and back to
i′, satisfying all properties of the lemma except that r in (5.21)–(5.24) must be replaced by i′−1
and the two ‘outer’ vertices r+1 and r+2 must be replaced by a single vertex i′. Constructing
the paths Ĥ and Ȟ from the ‘components’ Ĥ ′, Ȟ ′, Ĥ ′′, and Ȟ ′′ is obvious. Lemma 5.2 is
proved.

Appendix B. A CLT for martingale transforms

Let (Hi )i∈Z be a filtration, and let (Ui)i∈Z be a stationary sequence of the form

Ui = Viξi, (B.1)
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where the following conditions hold.

(U1) (ξi) is an i.i.d. sequence, adapted to (Hi ) and such that ξs , s > t are independent of
Ht for any t . Moreover, E[ξ0] = 0 and the distribution of ξ0 belongs to the domain of
attraction of an α-stable law with index 1 < α < 2, in the sense that the characteristic
function of ξ0 in a neighborhood |θ | < θ0 of θ = 0 can be represented as (see also
Ibragimov and Linnik (1971, Theorem 2.6.5))

E[exp(iθξ0)] = exp

{
−c|θ |αq(θ)

(
1 − iβ sgn(θ) tan

(
πα

2

))}
(B.2)

for all θ ∈ R, |θ | < θ0, where α ∈ (1, 2), c > 0, β ∈ [−1, 1], θ0 > 0, and q(·) is
continuous at 0:

lim
θ→0

q(θ) = q(0) = 1. (B.3)

(U2) (Vi) is stationary, ergodic, and predictable (i.e. Vi is Hi−1-measurable for any i), and

E[|V0|r ] < ∞ (there exists r > α). (B.4)

Theorem B.1. Assume that conditions (U1) and (U2) are satisfied. Then

n−1/α
[nτ ]∑
i=1

Ui
fdd−−→ �(τ), (B.5)

where (�(τ))τ∈[0,1] is a homogeneous α-stable Lévy process with the characteristic function

E[eiθ�(1)] = exp

{
−c′|θ |α

(
1 − iβ ′ sgn(θ) tan

(
πα

2

))}
, (B.6)

c′ := c E[|V0|α], β ′ := β E[|V0|α sgn(V0)]
E[|V0|α] .

The proof of Theorem B.1, below, will be restricted to the ‘one-dimensional’ convergence
at τ = 1 in (B.5), since the convergence of general finite-dimensional distributions can be
proved by a standard argument. As noted in Section 5, the proof uses the so-called ‘principle of
conditioning’ due to Jakubowski (1986). The terminology and the formulation of this principle
are taken from Kwapień and Woyczyński (1992). We will need the following definitions.

Definition B.1. (Kwapień and Woyczyński (1992, Definition 4.3.1, p. 103).) We say that two
(Hi )-adapted sequences (Ui) and (Wi) are tangent if, for each i, almost surely,

P[Ui < c | Hi−1] = P[Wi < c | Hi−1] for all c ∈ R.

Definition B.2. (Kwapień and Woyczyński (1992, Definition 4.3.2, p. 104).) An (Hi )-adapted
sequence (Wi) is said to satisfy the conditional independence (CI) condition if there exists a
σ -field G such that, for each i, almost surely,

P[Wi < c | Hi−1] = P[Wi < c | G] for all c ∈ R,

and such that (Wi) is a sequence of G-conditionally independent random variables.
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Theorem B.2. (The ‘principle of conditioning’ (Kwapień and Woyczyński (1992, Theorem
5.8.3, p. 144.)).) Let {Unk : n, k ∈ N} be an array of real random variables adapted to {Hnk},
and, for each n ∈ N, let Wn1,Wn2, . . . be an (Hni)-tangent sequence to Un1, Un2, . . . , which
satisfies the CI condition with respect to a σ -field Gn. Furthermore, define

Sn =
∞∑
k=1

Unk, Tn =
∞∑
k=1

Wnk.

Then

(i) if the sequence (law(Tn)) is compact then the sequence (law(Sn)) is compact,

(ii) if law(Tn | Gn) converges in probability to a nonrandom probability distribution µ on R

with a nonvanishing characteristic function, then law(Sn) also converges to µ.

Proof of Theorem B.1. Let (ξ∗
i ) be an independent copy of (ξi), independent also of the

sequence (Vi). This implies in particular that the ξ∗
i s are i.i.d. random variables in the domain

of attraction of an α-stable law and having the same characteristic function in (B.2). Without
loss of generality, we may assume that the sequence (ξ∗

i ) is adapted to (Hi ). Next, define, for
i, n ∈ N,

Wi := Viξ
∗
i ,

Uni := n−1/αUi = n−1/αViξi,

Wni := n−1/αWi = n−1/αViξ
∗
i ,

Sn :=
n∑
i=1

Uni = n−1/α
n∑
i=1

Ui,

Tn :=
n∑
i=1

Wni = n−1/α
n∑
i=1

Wi,

Gn := σ {Vi, i ∈ Z},
Hni := Fi .

Let us check that (Uni), (Wni), Gn, and (Hni), introduced above, satisfy the conditions of
Theorem B.2. Definition B.1 (tangency of (Uni) and (Wni)) is obvious by

P[Uni < c | Hn,i−1] = P[Wni < c | Hn,i−1] = F(cVin
1/α),

where F(c) is the (common) distribution function of the ξis and the ξ∗
i s. Definition B.2 (the

CI condition) follows similarly since

P[Wni < c | Hn,i−1] = F(cVin
1/α) = P[ξ∗

i < cVin
1/α | Gn],

by the independence of (ξ∗
i ) and Gn defined above.

Let µ be the (stable) law of �(1) in Theorem B.1. Note that the characteristic function
µ̂(θ) = E[eiθ�(1)] in (B.6) does not vanish: |µ̂(θ)| = exp{−c′|θ |α} �= 0 (for all θ ∈ R).
Therefore, Theorem B.1 follows from Theorem B.2(ii) provided that we can verify the following
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convergence: for any θ ∈ R,
�n := E[exp{iθTn} | Gn]

=
n∏
i=1

E

[
exp

{
iθξ∗

i Vi

n1/α

} ∣∣∣∣ Gn

]
→ µ̂(θ) in probability. (B.7)

In order to use the representation in (B.2) of the characteristic function of the ξ∗
i s (which is

valid in a small neighborhood θ = 0 only), we need to correspondingly restrict the magnitude
of |Vi |, i = 1, . . . , n. Given θ0 > 0 in (B.2) and a θ ∈ R in (B.7), let K > 0 be a (small)
number such that

|θ |K < θ0 (B.8)

holds. To this end, consider two complementary events:

C′
n,K := {ω ∈ � : |Vi | > Kn1/α(there exists i = 1, . . . , n)},
Cn,K := {ω ∈ � : |Vi | ≤ Kn1/α(for all i = 1, . . . , n)}.

The probability of the first event tends to 0 for any fixed K > 0 according to condition (B.4)
of the theorem. Indeed, since r > α,

P[C′
n,K ] ≤

n∑
i=1

P[|Vi | > Kn1/α]

≤
n∑
i=1

E[|Vi |r ]
Krnr/α

= E[|V0|r ]
n(r−α)/αKα

→ 0 as n → ∞. (B.9)

Therefore, it suffices to verify (B.7) for�n replaced by�n1(Cn,K). Due to our choice ofK in
(B.8), we can use representation (B.2) in the product in (B.7) and rewrite �n1(Cn,K) as

�n1(Cn,K) = exp

{
−c|θ |

α

n

n∑
i=1

|Vi |αq
(
θVi

n1/α

)(
1 − iβ sgn(θVi) tan

(
πα

2

))}
1(Cn,K)

= exp{−c|θ |α�1n} exp{−c|θ |α�2n}1(Cn,K), (B.10)

where

�1n := 1

n

n∑
i=1

|Vi |α − iβ tan

(
πα

2

)
sgn(θ)

1

n

n∑
i=1

|Vi |α sgn(Vi),

�2n := 1

n

n∑
i=1

|Vi |α
(
q

(
θVi

n1/α

)
− q(0)

)(
1 − iβ sgn(θVi) tan

(
πα

2

))
.

By the law of large numbers (ergodicity of the sequences (|Vi |α) and (|Vi |α sgn(Vi)), we have

1

n

n∑
i=1

|Vi |α → E[|V0|α] and
1

n

n∑
i=1

|Vi |α sgn(Vi) → E[|V0|α sgn(V0)] in probability.

https://doi.org/10.1239/aap/1231340170 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1231340170


A quadratic ARCH(∞) model 1221

Therefore, for any θ ∈ R,

exp{−c|θ |α�1n} → µ̂(θ) in probability. (B.11)

Also, note that

|�2n|1(Cn,K) ≤
√

1 + tan2

(
πα

2

)(
sup

|z|<K
|q(z)− q(0)|

)1

n

n∑
i=1

|Vi |α

can be made arbitrarily small in probability uniformly in n > n0, by using condition (B.3)
and choosing K small enough. The last conclusion obviously applies also to the difference
exp{−c|θ |α�2n}1(Cn,K)− 1. With (B.9), (B.10), and (B.11) in mind, this completes the proof
of (B.7) and the proof of Theorem B.1 too.
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