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Abstract

Max-stable random fields play a central role in modeling extreme value phenomena. We
obtain an explicit formula for the conditional probability in general max-linear models,
which include a large class of max-stable random fields. As a consequence, we develop an
algorithm for efficient and exact sampling from the conditional distributions. Our method
provides a computational solution to the prediction problem for spectrally discrete max-
stable random fields. This work offers new tools and a new perspective to many statistical
inference problems for spatial extremes, arising, for example, in meteorology, geology,
and environmental applications.
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1. Introduction

1.1. Motivation

Max-stable stochastic processes and random fields are fundamental statistical models for the
dependence of extremes. This is because they arise in the limit of rescaled maxima. Indeed,
consider the componentwise maxima

M
(n)
t = max

j=1,...,n
ξ
(j)
t , t ∈ T ,

of independent realizations {ξ (j)t }t∈T , j = 1, . . . , n, of a random field ξ = {ξt }t∈T . If the
random field {M(n)

t }t∈T converges in law, as n → ∞, under judicious normalization, then its
limit X = {Xt }t∈T is necessarily max-stable (see, e.g. [11] and [19]).

Max-stable processes (including random fields) are therefore as important to extreme value
theory as Gaussian processes are to the classical statistical theory based on the central limit
theorem. The multivariate max-stable laws and processes have been studied extensively in the
past 30 years. See, e.g. [1], [6], [7], [9], [10], [13], [15], [16], [21], [24], [26], and [28], among
many others.

The modeling and parameter estimation of the univariate marginal distributions of the
extremes have been studied extensively (see, e.g. [8], [11], [20], and the references therein).
Many of the recent developments in this domain focus on the characterization, modeling, and
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estimation of the dependence for multivariate extremes. In this context, building adequate
max-stable processes and random fields plays a key role. See, e.g. [2], [4], [12], [17], [22],
and [23].

Our present work is motivated by an important and long-standing challenge, namely, the
prediction for max-stable random processes and fields. Suppose that we already have a
suitable max-stable model for the dependence structure of a random field {Xt }t∈T . The
field is observed at several locations t1, . . . , tn ∈ T and we want to predict the values of
the field Xs1 , . . . , Xsm at some other locations. The optimal predictors involve the conditional
distribution of {Xt }t∈T , given the data. Even if the finite-dimensional distributions of the
field {Xt }t∈T are available in analytic form, it is typically impossible to obtain a closed-form
solution for the conditional distribution. Naïve Monte Carlo approximations are not practical
either, since they involve conditioning on events of infinitesimal probability, which leads to
mounting errors and computational costs.

Prior studies by Davis and Resnick [6], [7] and Cooley et al. [4], among others, have shown
that the prediction problem in the max-stable context is challenging, and it does not have an
elegant analytical solution. On the other hand, the growing popularity and the use of max-stable
processes in various applications, make this an important problem. This motivated us to seek
a computational solution.

In this work we develop theory and methodology for sampling from the conditional distri-
butions of spectrally discrete max-stable models. More precisely, we provide an algorithm that
can generate efficiently exact independent samples from the regular conditional probability
of (Xs1 , . . . , Xsm), given the values (Xt1 , . . . , Xtn). For the sake of simplicity, we write
X = (X1, . . . , Xn) ≡ (Xt1 , . . . , Xtn). The algorithm applies to the general max-linear model:

Xi = max
j=1,...,p

ai,jZj ≡
p∨
j=1

ai,jZj , i = 1, . . . , n. (1)

Here the ai,j s are known nonnegative constants and the Zj s are independent continuous
nonnegative random variables. Any multivariate max-stable distribution can be approximated
arbitrarily well via a max-linear model with sufficiently large p.

The main idea is to first generate samples from the regular conditional probability distribution
of Z | X = x, where Z = (Zj )j=1,...,p. Then, the conditional distributions of

Xsk =
p∨
j=1

bk,jZj , 1 ≤ k ≤ m,

given X = x, can be readily obtained, for any given bk,j s. In this paper we assume that the
model is completely known, i.e. the parameters {ai,j } and {bk,j } are given. The statistical
inference for these parameters is beyond the scope of this paper.

Observe that if X = x then (1) implies natural equality and inequality constraints on theZj s.
More precisely, (1) gives rise to a set of so-called hitting scenarios. In each hitting scenario, a
subset of the Zj s equal, in other words hit, their upper bounds and the rest of the Zj s can take
arbitrary values in certain open intervals. We will show that the regular conditional probability
of Z | X = x is a weighted mixture of the various distributions of the vector Z, under all
possible hitting scenarios corresponding to X = x.

The resulting formula, however, involves determining all hitting scenarios, which becomes
computationally prohibitive for large and even moderate values of p. This issue is closely
related to the NP-hard set-covering problem in computer science (see, e.g. [3]).
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Figure 1: Four samples from the conditional distribution of the discrete Smith model (see Section 3.2),
given the observed values (all equal to 5) at the locations marked by crosses. The values of the parameters

are ρ = 0, β1 = 1, and β2 = 1.

Fortunately, further detailed analysis of the probabilistic structure of the max-linear models
allows us to obtain a different formula of the regular conditional probability (Theorem 2). It
yields an exact and computationally efficient algorithm, which in practice can handle complex
max-linear models with p in the order of thousands, on a conventional desktop computer. The
algorithm is implemented in the R (see [18]) package maxLinear [27], with the core part
written in C/C++. We also used the R package fields (see [14]) to generate some of the
figures in this paper.

We illustrate the performance of our algorithm over two classes of processes: the max-
autoregressive moving average (MARMA) time series (see [6]), and the Smith model (see [24])
for spatial extremes. The MARMA processes are spectrally discrete max-stable processes, and
our algorithm applies directly. In Section 3.1, we demonstrate the prediction of MARMA
processes by conditional sampling and compare our result to the projection predictors proposed
in [6]. To apply our algorithm to the Smith model, on the other hand, we first need to
discretize the (spectrally continuous) model. Section 3.2 is devoted to conditional sampling
for the discretized Smith model. Thanks to the computational efficiency of our algorithm, we
can choose a mesh fine enough to obtain a satisfactory discretization. Figure 1 shows four
realizations from such a discretized Smith model, conditioning only on seven observations
(with assumed value 5). The algorithm applies in the same way to more complex models.

1.2. Multivariate max-stable distributions: a brief review

Consider a general max-stable process X = {Xt }t∈T , indexed by a set T (e.g. T =
[0, 1],R,Rd , or Zd ). We will assume that the finite-dimensional distributions of X are known
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and the ultimate goal is to study the conditional distributions ofX. For convenience and without
loss of generality, we focus on max-stable processes X with α-Fréchet marginals (α > 0) such
that all max-linear combinations

ξ = max
j=1,...,n

ajXtj ≡
n∨
i=1

ajXtj , aj > 0, tj ∈ T ,

have the α-Fréchet distribution:

P(ξ ≤ x) = exp{−σαξ x−α}, x ∈ (0,∞),

with scale coefficient σξ > 0. Any max-stable process can be related to such an α-Fréchet
process by simple transformation of the marginals (see, e.g. [19, Chapter 5]).

Essentially all max-stable processes {Xt }t∈T admit the following extremal integral repre-
sentation:

{Xt }t∈T d=
{∫e

S

ft (s)Mα(ds)

}
t∈T
.

Here the ft s are nonnegative, measurable deterministic functions defined on a suitable mea-
sure space (S, µ) and such that

∫
S
f αt (s)µ(ds) < ∞, and Mα is an α-Fréchet random sup-

measure with control measure µ. The extremal integral
∫e
S
f dMα can be defined for all

f ∈ Lα(S, µ), f ≥ 0, as the limit in probability of extremal integrals of simple functions. For
more details, see [26] and the seminal work [10] for an alternative treatment.

The functions {ft }t∈T are called the spectral functions of the process {Xt }t∈T . They
determine the finite-dimensional distributions of {Xt }t∈T , i.e.

P(Xt1 ≤ x1, . . . , Xtn ≤ xn) = exp

{
−

∫
S

( n∨
i=1

fti (s)

xi

)α
µ(ds)

}

for all ti ∈ T and xi ∈ R+ := (0,∞), i = 1, . . . , n. A popular equivalent representation of
multivariate max-stable laws is as follows:

P(Xt1 ≤ x1, . . . , Xtn ≤ xn) = exp

{
−

∫
Sn−1+

( n∨
i=1

wi

xi

)α
�(dw)

}
.

Here Sn−1+ = {w = (wi)
n
i=1 ∈ Rn : 0 ≤ wj ≤ maxi=1,...,n wi = 1} is the positive unit sphere

in the sup-norm, and � is a unique finite measure on Sn−1+ called the spectral measure of the
distribution (see, e.g. [11, Chapter 6] and [19, Chapter 5]).

Any multivariate max-stable vector (Xtj )
n
j=1 can be approximated arbitrarily well in prob-

ability, by discretizing the extremal integral, i.e.

Xti =
∫e
S

fti (s)Mα(ds) ≈
p∨
i=1

ai,jZj ,

where the Zj , j = 1, . . . , p, are independent standard α-Fréchet variables and ai,j ≥ 0. This
is equivalent to considering multivariate max-stable vectors with discrete spectral measures
concentrated on at mostp points on the unit sphere Sn−1+ . The error of approximation, moreover,
can be controlled explicitly through convenient probability metrics (see, e.g. [26]).
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In this paper we will focus on the class of max-stable processes, i.e.

Xt :=
p∨
j=1

φj (t)Zj , t ∈ T ,

where the φj (t)s are nonnegative deterministic functions. These processes are called spectrally
discrete, since their spectral measures � are discrete. By taking sufficiently large ps and with
judicious φj (t)s, we can build flexible models that can replicate the behavior of an arbitrary
max-stable process. From this point of view, a satisfactory computational solution must be able
to deal with max-linear models with large ps.

The treatment of the exact conditional distributions of general spectrally continuous max-
stable processes requires different tools and still remains an open problem, to the best of the
authors’ knowledge. As we will see, the solution in the discrete case, although complete, is
already quite involved.

2. Conditional probability in max-linear models

2.1. Intuition and basic theory

Consider the max-linear model in (1). We will denote this model by

X = A 	 Z, (2)

where A = (ai,j )n×p is a matrix with nonnegative entries, and X = (X1, . . . , Xn) and Z =
(Z1, . . . , Zp) are column vectors. We assume that the Zj s, j = 1, . . . , p, are independent
nonnegative random variables having probability densities.

In this section we provide an explicit formula for the regular conditional probability of Z

with respect to X (see Theorem 1 below and Appendix A for a precise definition). We start with
some intuition and notation. Throughout this paper, we assume that the matrix A has at least
one nonzero entry in each of its rows and columns. This will be referred to as Assumption A.

Observe that if x = A 	 z with x ∈ Rn+ and z ∈ R
p
+, then

0 ≤ zj ≤ ẑj ≡ ẑj (A, x) := min
1≤i≤n

xi

ai,j
, j = 1, . . . , p. (3)

That is, the max-linear model (2) imposes certain inequality and equality constraints on the
Zj s, given a set of observed Xis. Namely, some of the upper bounds ẑj (A, x) in (3) must be
attained, or hit, i.e. zj = ẑj (A, x) in such a way that

xi = ai,j (i)zj (i), i = 1, . . . , n,

with judicious j (i) ∈ {1, . . . , p}. The next example helps to explain the inequality and equality
constraints.

Example 1. Suppose that n = p = 3 and

A =
⎛
⎝1 0 0

1 1 0
1 1 1

⎞
⎠ .

Let x = A 	 z for some z ∈ R3+. In this case, it necessarily follows that x1 ≤ x2 ≤ x3.
Moreover, (3) yields ẑ = x.

(i) If x = (1, 2, 3) then it trivially follows that z = ẑ = (1, 2, 3), which is an equality
constraint on z.

https://doi.org/10.1239/aap/1308662488 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662488


466 Y. WANG AND S. A. STOEV

(ii) If x = (1, 1, 3) then it follows that z1 = ẑ1 = 1, z2 ≤ ẑ2 = 1, and z3 = ẑ3 = 3. Here,
the ‘equality constraints’must hold for z1 = ẑ1 and z3 = ẑ3, while z2 needs to only satisfy
the ‘inequality constraint’ 0 ≤ z2 ≤ ẑ2.

Write
C(A, x) := {z ∈ R

p
+ : x = A 	 z},

and note that the conditional distribution of Z | X = x concentrates on the set C(A, x). The
observation in Example 1 can be generalized and formulated as follows.

• Every z ∈ C(A, x) corresponds to a set of active (equality) constraints J ⊂ {1, . . . , p},
which we refer to as a hitting scenario of (A, x), such that

zj = ẑj (A, x) for j ∈ J and zj < ẑj (A, x) for j ∈ J c := {1, . . . , p} \ J. (4)

Observe that if j �∈ J then there are no further constraints and zj can take any value in
[0, ẑj ), regardless of the values of the other components of the vector z ∈ C(A, x).

• Every value x may give rise to many different hitting scenarios J ⊂ {1, . . . , p}. Let
J(A, x) denote the collection of all such J s. We refer to J(A, x) as to the hitting
distribution of x with respect to A:

J(A, x) ≡ {J ⊂ {1, . . . , p} : exist z ∈ C(A, x), such that (4) holds}.
To illustrate the notions of hitting scenario and hitting distribution, consider again Example 1.
Therein, we have J(A, x) = {{1, 2, 3}} in case (i), and J(A, x) = {{1, 3}, {1, 2, 3}} in case (ii).

The hitting distribution J(A, x) is a finite set and, thus, can always be identified. However,
the identification procedure is the key difficulty in providing an efficient algorithm for condi-
tional sampling in practice. This issue is addressed in Section 2.2. In the rest of this section,
suppose that J(A, x) is given. Then, we can partition C(A, x) as

C(A, x) =
⋃

J∈J(A,x)

CJ (A, x),

where
CJ (A, x) = {z ∈ R

p
+ : zj = ẑj , j ∈ J, and zj < ẑj , j �∈ J }.

The sets CJ (A, x) and J ∈ J(A, x) are disjoint since they correspond to different hitting
scenarios in J(A, x). Let

r(J(A, x)) = min
J∈J(A,x)

|J |,

where |J | is the number of elements in J . We call r(J(A, x)) the rank of the hitting distribution
J(A, x). It equals the minimal number of equality constraints among the hitting scenarios in
J(A, x). It will turn out that the hitting scenarios J ⊂ J(A, x) with |J | > r(J(A, x)) occur
with (conditional) probability 0 and can be ignored. We therefore focus on the set of all relevant
hitting scenarios:

Jr (A, x) = {J ∈ J(A, x) : |J | = r(J(A, x))}.
Theorem 1. Consider the max-linear model in (2), where the Zj s are independent random
variables with densities fZj and distribution functions FZj , j = 1, . . . , p. Let A = (ai,j )n×p
have nonnegative entries satisfying Assumption A, and let RR

p
+ be the class of all rectangles

{(e,f ], e,f ∈ R
p
+} in R

p
+.
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For all J ∈ J(A, x), E ∈ RR
p
+ , and x ∈ Rn+, define

νJ (x, E) :=
∏
j∈J

δ̂zj (πj (E))
∏
j∈J c

P(Zj ∈ πj (E) | Zj < ẑj ), (5)

where πj (z1, . . . , zp) = zj and δa is a unit point mass at a.
Then, the regular conditional probability ν(x, E) of Z with respect to X equals

ν(x, E) =
∑

J∈Jr (A,x)

pJ (A, x)νJ (x, E), E ∈ RR
p
+ , (6)

for PX-almost all x ∈ A 	 (R
p
+), where, for all J ∈ Jr (A, x),

pJ (A, x) = wJ∑
K∈Jr (A,x)

wK
with wJ =

∏
j∈J

ẑj fZj (̂zj )
∏
j∈J c

FZj (̂zj ). (7)

In the special case when the Zj s are α-Fréchet with scale coefficient 1, we have wJ =∏
j∈J (̂zj )−α .

Remark 1. We state (6) only for rectangle setsE because the projections πj (B) of an arbitrary
Borel set B ⊂ R

p
+ are not always Borel (see, e.g. [25, Chapter 4]). Nevertheless, the extension

of measure theorem ensures that (6) specifies completely the regular conditional probability.

We do not provide a proof of Theorem 1 directly. Instead, we will first provide an equivalent
formula for ν(x, E) in Theorem 2 in Section 2.2, and then prove that ν(x, E) is the desired
regular conditional probability. All the proofs are deferred to Section 4. The next example
gives the intuition behind (6).

Example 2. (Example 1, continued.) (i) If X = x = (1, 2, 3) then ẑ = x and J(A, x) =
{{1, 2, 3}}. Therefore, r(J(A, x)) = 3 and (6) yields

ν(x, E) = νJ (x, E) = δ̂z1(π1(E))δ̂z2(π2(E))δ̂z3(π3(E)) ≡ δ̂z(E),

a degenerate distribution with single unit point mass at ẑ.

(ii) If X = x = (1, 1, 3) then ẑ = x, J(A, x) = {{1, 3}, {1, 2, 3}}, and r(J(A, x)) = 2.
Therefore, Jr (A, x) = {{1, 3}} and (6) yields

ν(x, E) = ν{1,3}(x, E) = δ̂z1(π1(E))P(Z2 ∈ π2(E) | Z2 < ẑ2)δ̂z3(π3(E)).

In this case, the conditional distribution concentrates on the one-dimensional set {1}× (0, 1)×
{3}.
(iii) Finally, if X = x = (1, 1, 1) then ẑ = x and J(A, x) = {{1}, {1, 2}, {1, 2, 3}}. Then,
Jr (A, x) = {{1}} and

ν(x, E) = ν{1}(x, E) = δ̂z1(π1(E))

3∏
j=2

P(Zj ∈ πj (E) | Zj < ẑj ).

The conditional distribution concentrates on the set {1} × (0, 1)× (0, 1).
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We conclude this section by showing that the conditional distributions (6) arise as suitable
limits. This result can be viewed as a heuristic justification of Theorem 1. Let ε > 0, consider

CεJ (A, x) := {z ∈ R
p
+ : zj ∈ [̂zj (1 − ε), ẑj (1 + ε)], j ∈ J, zk < ẑk(1 − ε), k ∈ J c}, (8)

and set
Cε(A, x) :=

⋃
J∈J(A,x)

CεJ (A, x). (9)

Note that the sets A 	 (Cε(A, x)) shrink to the point x, as ε ↓ 0.

Proposition 1. Under the assumptions of Theorem 1, for all x ∈ A 	 (R
p
+), we have, as ε ↓ 0,

P(Z ∈ E | Z ∈ Cε(A, x)) → ν(x, E), E ∈ RR
p
+ .

Proof. Recall the definition ofCεJ in (8). Note that, for all ε > 0, the sets {CεJ (A, x)}J∈J(A,x)

are mutually disjoint. Thus, writing Cε ≡ Cε(A, x) and CεJ ≡ CεJ (A, x), by (9) we have

P(Z ∈ E | Z ∈ Cε) =
∑
J∈J

P(Z ∈ E | Z ∈ CεJ )P(Z ∈ CεJ | Z ∈ Cε)

=
∑
J∈J

P(Z ∈ E | Z ∈ CεJ )
P(Z ∈ CεJ )∑
K∈J P(Z ∈ CεK)

,

where the terms with P(Z ∈ CεJ ) = 0 are ignored. We can see that P(Z ∈ E | Z ∈ CεJ )
converges to νJ (E, x) in (5), as ε ↓ 0. The independence of the Zj s also implies that

P(Z ∈ CεJ ) =
∏
j∈J

P(Zj ∈ [̂zj (1 − ε), ẑj (1 + ε)])
∏
k∈J c

P(Zk ≤ ẑk(1 − ε))

=
∏
j∈J
(fZj (̂zj )̂zj · 2ε + o(ε))

∏
k∈J c

(FZj (̂zj )+ o(ε)). (10)

Observe that, for J ∈ Jr (A, x), the latter expression equals 2wJ ε|J |(1 + o(1)), ε ↓ 0, and
the terms with |J | > r will become negligible since they are of smaller order. Therefore, (10)
yields (6), and the proof is thus complete.

The proof of Proposition 1 provides an insight to the expressions of the weights wJ in (7)
and the components νJ in (5). In particular, it explains why only hitting scenarios of rank r
are involved in the expression of the conditional probability. The formal proof of Theorem 1,
however, requires a different argument.

2.2. Conditional sampling: computational efficiency

We discuss here important computational issues related to sampling from the regular con-
ditional probability in (6). It turns out that identifying all hitting scenarios amounts to solving
the set covering problem, which is NP-hard (see, e.g. [3]). The probabilistic structure of
the max-linear models, however, will lead us to an alternative efficient solution, valid with
probability 1. In particular, we will provide a new formula for the regular conditional probability,
showing that Z can be decomposed into conditionally independent vectors, given X = x. As
a consequence, with probability 1, we are not in the ‘bad’ situation that the corresponding set
covering problem requires exponential time to solve. Indeed, this will lead us to an efficient and
linearly scalable algorithm for conditional sampling, which works well for max-linear models
with large dimensions n× p arising in applications.

To fix ideas, observe that Theorem 1 implies the following simple algorithm.
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Algorithm I.

1. Compute ẑj for j = 1, . . . , p.

2. Identify J(A, x), compute r = r(J(A, x)), and focus on the set of relevant hitting
scenarios Jr = Jr (A, x).

3. Compute {wJ }J∈Jr and {pJ }J∈Jr .

4. Sample Z ∼ ν(x, ·) according to (6).

Step 1 is immediate. Provided that step 2 is done, step 3 is trivial, and step 4 can be carried out
by first picking a hitting scenarioJ ∈ Jr (A, x) (with probabilitypJ (A, x)), settingZj = ẑj for
j ∈ J , and then resampling independently the remaining Zj s from the truncated distributions:
Zj | {Zj < ẑj } for all j ∈ {1, . . . , p} \ J .

The most computationally intensive aspect of this algorithm is to identify the set of all relevant
hitting scenarios Jr (A, x) in step 2. This is closely related to the NP-hard set covering problem
in theoretical computer science (see, e.g. [3]), which is formulated next. Let H = (hi,j )n×p be
a matrix of 0s and 1s, and let c = (cj )

p
j=1 ∈ Z

p
+ be a p-dimensional cost vector. For simplicity,

introduce the notation:
〈m〉 ≡ {1, 2, . . . , m}, m ∈ N.

For the matrix H , we say that the column j ∈ 〈p〉 covers the row i ∈ 〈n〉 if hi,j = 1. The goal
of the set-covering problem is to find a minimum-cost subset J ⊂ 〈p〉 such that every row is
covered by at least one column j ∈ J . This is equivalent to solving

min
δj∈{0,1}
j∈〈p〉

∑
j∈〈p〉

cj δj subject to
∑
j∈〈p〉

hi,j δj ≥ 1, i ∈ 〈n〉. (11)

We can relate the problem of identifying Jr (A, x) to the set covering problem by defining

hi,j = 1{ai,j ẑj = xi}, (12)

where A = (ai,j )n×p and x = (xi)
n
i=1 are as in (2), and cj = 1, j ∈ 〈p〉. It is easy to see that

every J ∈ Jr (A, x) corresponds to a solution of (11), and vice versa. Namely, for {δj }j∈〈p〉
minimizing (11), we have J = {j ∈ 〈p〉 : δj = 1} ∈ Jr (A, x).

The set Jr (A, x) corresponds to the set of all solutions of (11), which depends only on the
matrix H . Therefore, in the sequel we write Jr (H ) for Jr (A, x), and

H = (hi,j )n×p ≡ H(A, x), (13)

where hi,j as in (12) will be referred to as the hitting matrix.

Example 3. Recall Example 2. The following hitting matrices correspond to the three cases
of x discussed therein:

H (i) =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , H (ii) =

⎛
⎝1 0 0

1 1 0
0 0 1

⎞
⎠ , and H (iii) =

⎛
⎝1 0 0

1 1 0
1 1 1

⎞
⎠ .

Observe that solving for Jr (H ) is even more challenging than solving the set covering
problem (11), where only one minimum-cost subset J is needed, and often an approximation of
the optimal solution is acceptable. Here, we need to identify exhaustively all J s such that (11)
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holds. Fortunately, this problem can be substantially simplified, thanks to the probabilistic
structure of the max-linear model.

We first study the distribution of H . In view of (13), it follows that H = H(A,X), with
X = A	Z, is a random matrix. It will turn out that, with probability 1, H has a nice structure,
leading to an efficient conditional sampling algorithm.

For any hitting matrix H , we will decompose the set 〈p〉 ≡ {1, . . . , p} into a certain disjoint
union 〈p〉 = ⋃r

s=1 J
(s)

. The vectors (Zj )
j∈J (s) , s = 1, . . . , r , will turn out to be conditionally

independent (in s), given X = x. Therefore, ν(x, E) will be expressed as a product of
(conditional) probabilities.

We start by decomposing the set 〈n〉 ≡ {1, . . . , n}. First, for all i1, i2 ∈ 〈n〉 and j ∈ 〈p〉, we

write i1
j∼ i2 if hi1,j = hi2,j = 1. Then, we define an equivalence relation on 〈n〉, i.e.

i1 ∼ i2 if i1 = ĩ0
j1∼ ĩ1

j2∼ · · · jm∼ ĩm = i2, (14)

with somem ≤ n, i1 = ĩ0, ĩ1, . . . , ĩm = i2 ∈ 〈n〉, j1, . . . , jm ∈ 〈p〉. That is, ‘∼’is the transitive

closure of ‘
j∼’. Consequently, we obtain a partition of 〈n〉, denoted by

〈n〉 =
r⋃
s=1

Is, (15)

where the Is, s = 1, . . . , r , are the equivalence classes with respect to (14). Based on (15), we
define further

J (s) = {j ∈ 〈p〉 : hi,j = 1 for all i ∈ Is}, (16)

J
(s) = {j ∈ 〈p〉 : hi,j = 1 for some i ∈ Is}. (17)

The sets {J (s), J (s)}s∈〈r〉 will determine the factorization form of ν(x, E).

Theorem 2. Let Z be as in Theorem 1. Furthermore, let H be the hitting matrix corresponding
to (A,X) with X = A 	 Z, and {J (s), J (s)}s∈〈r〉 be the sets defined in (16) and (17). Then,
with probability 1, we have

(i) r = r(J(A,X)),

(ii) for all J ⊂ 〈p〉, J ∈ Jr (A,A 	 Z) if and only if J can be written as

J = {j1, . . . , jr} with js ∈ J (s), s ∈ 〈r〉, (18)

(iii) for ν(x, E) defined in (6),

ν(X, E) =
r∏
s=1

ν(s)(X, E) with ν(s)(X, E) =
∑
j∈J (s) w

(s)
j (X)ν

(s)
j (X, E)∑

j∈J (s) w
(s)
j (X)

, (19)

where, for all j ∈ J (s),
w
(s)
j (x) := ẑj fZj (̂zj )

∏
k∈J (s)\{j}

FZk (̂zk), (20)

ν
(s)
j (x, E) := δπj (E)(̂zj )

∏
k∈J (s)\{j}

P(Zk ∈ πk(E) | Zk < ẑk), (21)

with ẑj = ẑj (x) as in (3).

The proof of Theorem 2 is given in Section 4.
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Table 1: Means and standard deviations (in parentheses) of the running times (in seconds) for the
decomposition of the hitting matrix H , based on 100 independent observations X = A 	 Z, where

A is an n× p matrix corresponding to a discretized Smith model.

n
p

1 5 10 50

2500 0.03 (0.02) 0.13 (0.03) 0.24 (0.04) 1.25 (0.09)
10 000 0.11 (0.04) 0.50 (0.05) 1.00 (0.08) 4.98 (0.33)

Remark 2. Note that this result does not claim that ν(x, E) in (19) is the regular conditional
probability. It merely provides an equivalent expression for (6), which is valid with probabil-
ity 1. We still need to show that (6), or, equivalently, (19), is indeed the regular conditional
probability.

From (20) and (21), we can see that ν(s) is the conditional distribution of (Zj )
j∈J (s) .

Therefore, relation (19) implies that {(Zj )
j∈J (s)}s∈〈r〉, as vectors indexed by s, are conditionally

independent, given X = x. This leads to the following improved conditional sampling
algorithm.

Algorithm II.

1. Compute ẑj for j = 1, . . . , p and the hitting matrix H = H(A, x).

2. Identify {J (s), J (s)}s∈〈r〉 by (16) and (17).

3. Compute {w(s)j }j∈J (s) for all s ∈ 〈r〉 by (20).

4. Sample (Zj )
j∈J (s) | X = x ∼ ν(s)(x, ·) independently for s = 1, . . . , r .

5. Combine the sampled (Zj )
j∈J (s) , s = 1, . . . , r , to obtain a sample Z.

This algorithm identifies all hitting scenarios in an efficient way. To illustrate its efficiency
compared to Algorithm I, consider that r = 10 and |J (s)| = 10 for all s ∈ 〈10〉. Then,
applying (6) in Algorithm I requires storing in memory the weights of all 1010 hitting scenarios.
In contrast, the implementation of (19) requires saving only 10×10 weights. This improvement
is critical in practice since it allows us to handle large, realistic models.

Table 1 demonstrates the running times of Algorithm II as a function of the dimensions n×p
of the matrix A. It is based on a discretized two-dimensional Smith model (Section 3.2) and
measured on an Intel� CoreTM Duo CPU E4400 2.00 GHz with 2 GB RAM. It is remarkable
that the times scale linearly in both n and p.

3. Examples

3.1. MARMA processes

In this section we apply our result to the MARMA processes studied by Davis and Resnick [6].
A stationary process {Xt }t∈Z is a MARMA(m, q) process if it satisfies the MARMA recursion,
i.e.

Xt = φ1Xt−1 ∨ · · · ∨ φmXt−m ∨ Zt ∨ θ1Zt−1 ∨ · · · ∨ θqZt−q (22)

for all t ∈ Z, where φi ≥ 0 and θj ≥ 0, i = 1, . . . , m, j = 1, . . . , q, are the parameters, and
{Zt }t∈Z are independent and identically distributed 1-Fréchet random variables. Proposition 2.2
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of [6] shows that (22) has a unique solution of the form

Xt =
∞∨
j=0

ψjZt−j < ∞ almost surely, (23)

with ψj ≥ 0, j ≥ 0, and
∑∞
j=0 ψj < ∞, if and only if φ∗ = ∨m

i=1 φi < 1. In this case,

ψj =
j∧q∨
k=0

αj−kθk,

where the {αj }j∈Z are determined recursively by αj = 0 for all j < 0, α0 = 1, and

αj = φ1αj−1 ∨ φ2αj−2 ∨ · · · ∨ φmαj−m for all j ≥ 1. (24)

In the sequel we will focus on the MARMA process (22) with unique stationary solution (23).
In this case, the MARMA process is a spectrally discrete max-stable process. Without loss of
generality, we also assume {Zk}k∈Z to be standard 1-Fréchet.

We consider the prediction of the MARMA process in the following framework: suppose
that at each time t ∈ {1, . . . , n} we observe the value Xt of the process, and the goal is to
predict {Xs}n<s≤n+N . We do so by generating independent and identically distributed samples
from the conditional distribution {Xs}n<s≤n+N | {Xt }t=1,...,n. To apply our result, it suffices
to provide a max-linear representation of this model. We will truncate (23) to obtain

X̃t =
p∨
j=0

ψjZt−j for all t = 1, . . . , n+N. (25)

The truncated process can approximate the original process arbitrarily well, if we take p large
enough. Indeed, by using the independence and max-stability of the Zt s, we can show that

P(X̃t = Xt) = P

( p∨
j=0

ψjZt−j ≥
∞∨

j=p+1

ψjZt−j
)

= 1 −
∑∞
j=p+1 ψj∑∞
j=0 ψj

→ 1 (26)

as p → ∞. Moreover, by induction on αj in (24), we can show that αj ≤ (φ∗)�j/m� for all
j ∈ N, and, thus, convergence (26) above is geometrically fast.

Now, we reformulate the prediction problem with the model (25) as follows:

observe X[1,n] = A 	 Z and predict Y[1,N ] = B 	 Z | X[1,n].

Here X[1,n] = (X̃1, . . . , X̃n), Y[1,N ] = (X̃n+1, . . . , X̃n+N), Z = (Z1−p, Z2−p, . . . , Zn+N),
and A ∈ R

n×(p+n+N)
+ and B ∈ R

N×(p+n+N)
+ are determined by (25). In particular,

(
A

B

)
=

⎛
⎜⎜⎜⎜⎜⎝

ψp ψp−1 · · · ψ0 0 0 · · · 0
0 ψp ψp−1 · · · ψ0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 ψp ψp−1 · · · ψ0 0
0 · · · 0 0 ψp ψp−1 · · · ψ0

⎞
⎟⎟⎟⎟⎟⎠ . (27)
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In practice, given the observations X[1,n], we use our algorithm to sample from the conditional
distribution Z | X[1,n]. Therefore, we can sample

Y[1,N ] | X[1,n]
d= B 	 Z | X[1,n]. (28)

Our approach is different from the prediction considered in [6], which we will briefly review.
Davis and Resnick took the classic time series point of view and investigated how to approximate
Xs by a max-linear combination of {Xt }t=1,...,n, with respect to a certain metric d. Namely, for
all Y ∈ H with

H =
{ ∞∨
j=−∞

αjZj : αj ≥ 0,
∞∑

j=−∞
αj < ∞

}
,

they considered a projection of Y onto the space Fn, max-linearly spanned by {Xt }t=1,...,n:
Fn = {∨∞

j=0 bjXn−j : bj ≥ 0,
∑∞
j=0 bj < ∞}. That is, consider the projection PnY defined

by
PnY = argminỸ∈Fn

d(Ỹ , Y ) (29)

with the metric d induced by d(
∨
j αjZj ,

∨
j βjZj ) = ∑

j |αj − βj |. For specific MARMA
processes, Davis and Resnick [6] provided predictors based on the projection (29). We will
refer to these predictors as the projection predictors.

In general, the conditional samplings reflect the conditional distribution (28), and they
provide more information than the projection predictors. Sampling multiple times from (28),
we can calculate, e.g. conditional medians, conditional means, quantiles, etc., which are optimal
predictors with respect to various loss functions.

Example 4. (MAR(m) processes.) Consider the MAR(m) ≡ MARMA(m, 0) process with

Xt = φ1Xt−1 ∨ · · · ∨ φmXt−m ∨ Zt . (30)

The projection predictor for this model can be obtained recursively by

X̂t+k = φ1X̂t+k−1 ∨ · · · ∨ φmX̂t+k−m, (31)

with X̂t = Xt, t = 1, . . . , n (see [6, p. 799]).

Figure 2 illustrates an application of our conditional sampling algorithm in this case. Con-
sider an MAR(3) process {Xt }150

t=1 with φ1 = 0.7, φ2 = 0.5, and φ3 = 0.3. In effect, we use the
truncated model {X̃t }t∈N in (25) with p = 500, but we still write Xt for the sake of simplicity.
Treating the first 100 values as observed, we plot the projection predictor, conditional upper
95% quantiles and the conditional medians of {Xs}150

s=101 based on 500 independent samples
from the conditional distribution.

Observe that the value of the projection predictor in Figure 2 is always below the conditional
median. This ‘underestimation’ phenomenon was typical in all the simulations we performed.
It can be explained by the fact that, the projection predictor in (31) does not account for the
jumps of the process caused by new arrivals {Zt }t>100. Indeed, a large new arrivalZt will cause
the process to jump immediately to Zt at time t , but this will never occur for the projection
predictor X̂t .

Next, we apply our algorithm to examine the bias of the projection predictor. To do this, for
each generated MARMA process, we calculated the cumulative probability that the projection
predictor corresponds to, for each location s = 101, . . . , 150. Namely, using 500 independent
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MARMA process
Condional 95% quantile
Conditional mean
Projection predictor

X
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20

0

0 50 100 150

Figure 2: Prediction of a MARMA(3,0) process with φ1 = 0.7, φ2 = 0.5, and φ3 = 0.3, based on the
observation of the first 100 values of the process.

samples {X(k)s }150
s=101, k = 1, . . . , 500, from the conditional distribution, we calculated

P(Xs ≤ X̂s | {Xt }100
t=1) ≈ 1

500

500∑
k=1

1 {X(k)s ≤ X̂s} for all s > 100, (32)

where X̂s is the projection predictor in (31). This procedure was repeated 1000 times for
independent realizations of {Xt }100

t=1 and the means of the (estimated) probability in (32) are
reported in Table 2. Note that as the time lag increases, the conditional quantiles of the projection
predictors decrease. In this way, our conditional sampling algorithm helps quantify numerically
the observed underestimation phenomenon in Figure 2.

Finally, we compare the generated conditional samples to the true process values at times s =
101, . . . , 150. Our goal is to demonstrate the validity of our conditional sampling algorithm.
The idea is that, at each location s = 101, . . . , 150, the true process should lie below the

Table 2: Cumulative probabilities that the projection predictors correspond to at time 100 + t , based on
1000 simulations.

t Mean (%)

1 70.6
2 50.3
3 35.6
4 25.3
5 17.8

10 2.9
20 0.1
30 0.0
40 0.0
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Table 3: Coverage rates (CRs) and the widths of the upper 95% confidence intervals at time 100 + t ,
based on 1000 simulations.

t CR Width

1 0.956 13.06
2 0.952 26.6
3 0.954 37.8
4 0.957 45.6
5 0.966 51.2

10 0.947 62.8
20 0.943 66.0
30 0.951 66.2
40 0.955 65.4

predicted 95% upper confidence bound of Xs | {Xt }100
t=1, with probability at least 95%. (Note

that due to the presence of atoms in the conditional distributions, the coverage probability may
in principle be higher than 95%.) Motivated by this, we repeat the procedure in the previous
paragraph and record the proportion of the times that Xs is below the predicted confidence
quantile, for each s. We refer to these values as the coverage rates. As discussed, the coverage
rates should be close to 95%. This is supported by our simulation result, shown in Table 3.

Table 3 also shows the widths of the upper 95% confidence intervals. Note that these widths
are not equal to the upper confidence bounds, given by the conditional 95% quantiles, since
the left endpoint of the conditional distributions are greater than 0. When the time lag is small,
the left endpoint is large and the widths are small, due to the strong influence of the past of the
process {Xt }100

t=1. On the other hand, because of the weak temporal dependence of the MAR(3)
processes, this influence decreases fast as the lags increase. Consequently, the conditional
distribution converges to the unconditional distribution, and the conditional quantile to the
unconditional quantile. Note that the (unconditional) 95% quantile of Xs for the MARMA
process (23) can be calculated via the formula 0.95 = P(σZ ≤ u) = exp{−σu−1}, with
σ = ∑p

j=0 ψj . For the MAR(3) process, we have σ = 3.4 and the 95% quantile of Xs equals
66.29. This is consistent with the widths in Table 3 for large lags.

Remark 3. As pointed out by an anonymous referee, in this case we can directly generate
samples from {Xs}Ns=n+1 | {Xt }nt=1, by generating independent Fréchet random variables and
iterating (30). We selected this example only for illustrative purposes and to be able to compare
with the projection predictors in [6]. We can modify slightly the prediction problem, such that
our algorithm still applies by accordingly adjusting (27), while both the projection predictor
and the direct method by using (30) do not apply. For example, consider the prediction problem
with respect to the conditional distribution

P
({Xs}2n+N

s=2n+1 ∈ · ∣∣ {Xt : t = 1, 3, . . . , 2n− 1})
(prediction with only partial history observed) or

P
({Xs}n−1

s=2 ∈ · ∣∣ X1, Xn
)

prediction of the middle path with the beginning and the endpoint (in the future) given). In
other words, our algorithm has no restriction on the locations of observations. This feature is
of great importance in spatial prediction problems.
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3.2. The discrete Smith model

Consider the following moving maxima random field model in R2:

Xt =
∫e

R2
φ(t − u)Mα(du), t = (t1, t2) ∈ R2. (33)

Here Mα is an α-Fréchet random sup-measure on R2 with the Lebesgue control measure.
Smith [24] proposed to use for φ the bivariate Gaussian density,

φ(t1, t2) := β1β2

2π
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)
[β2

1 t
2
1 − 2ρβ1β2t1t2 + β2

2 t
2
2 ]
}
,

with correlation ρ ∈ (−1, 1) and variances σ 2
i = 1/β2

i , i = 1, 2. Consistent and asymptot-
ically normal estimators for the parameters ρ, β1, and β2 were obtained by de Haan and
Pereira [12]. Here, we will assume that these parameters are known and will illustrate the
conditional sampling methodology over a discretized version of the random field (33). Namely,
we truncate the extremal integral in (33) to the square region [−M,M]2 and consider a uniform
mesh of size h := M/q, q ∈ N. We then set

Xt :=
∨

−q≤j1,j2≤q−1

h2/αφ(t − uj1j2)Zj1j2 , (34)

where

uj1j2 = ((
j1 + 1

2

)
h,

(
j2 + 1

2

)
h
)

and

h2/αZj1j2

d= Mα((j1h, (j1 + 1)h] × (j2h, (j2 + 1)h]).
This discretized model (34) can be made arbitrarily close to the spectrally continuous model
in (33) by taking a fine mesh h and sufficiently large M (see, e.g. [26]).

Suppose that the random fieldX in (34) is observed at n locationsXti = xi, ti ∈ [−M,M]2,
i = 1, . . . , n. In view of (34), we have the max-linear model X = A 	 Z, with X = (Xti )

n
i=1

and Z = (Zj )
p
j=1, p = q2. By sampling from the conditional distribution of Z | X = x, we

can predict the random field Xs at arbitrary locations s ∈ R2.
To illustrate our algorithm, we used model (34) with parameter values ρ = 0, β1 = β2 = 1,

M = 4, p = q2 = 2500, and n = 7 observed locations. We generated N = 500 independent
samples from the conditional distribution of the random field {Xs}, where s takes values on a
uniform 100 × 100 grid, in the region [−2, 2] × [−2, 2]. We have already seen four of these
realizations in Figure 1. Figure 3 illustrates the median and 0.95th quantile of the conditional
distribution. The former provides the optimal predictor for the values of the random field given
the observed data, with respect to the absolute deviation loss. The marginal quantiles, on the
other hand, provide important confidence regions for the random field, given the data.

Certainly, conditional sampling may be used to address more complex functional prediction
problems. In particular, given a two-dimensional threshold surface, we can readily obtain the
correct probability that the random field exceeds or stays below this surface, conditionally
on the observed values. This is much more than what marginal conditional distributions can
provide.
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Figure 3: Conditional medians (left) and 0.95th conditional marginal quantiles (right) of the Smith model.
Each cross indicates an observed location of the random field, with the observed value at the right.

4. Proofs of Theorems 1 and 2

In this section we prove Theorems 1 and 2. We will first prove Theorem 2, which simplifies
the regular conditional probability formula (6) in Theorem 1. Then, we show that the simplified
new formula is the desired regular conditional probability, which completes the proof of
Theorem 1. The key step to prove Theorem 2 is the following lemma. Write H·j = {i ∈
〈r〉 : hi,j = 1}.
Lemma 1. Under the assumptions of Theorem 2, with probability 1,

(i) J (s) is nonempty for all s ∈ 〈r〉, and

(ii) for all j ∈ J (s), H·j ∩ Is �= ∅ implies that H·j ⊂ Is .

Proof. Note that to show part (ii), it suffices to observe that since Is is an equivalence class
with respect to relation (14), H·j \ Is and H·j ∩ Is cannot be both nonempty. Thus, it remains
to show part (i). We proceed by excluding several P-measure zero sets, on which the desired
results may not hold.

First, observe that, for all i ∈ 〈n〉, the maximum value of {ai,jZj }j∈〈r〉 is achieved for unique
j ∈ 〈p〉 with probability 1, since the Zj s are independent and have continuous distributions.
Thus, the set

N1 :=
⋃

i∈〈n〉, j1,j2∈〈p〉, j1 �=j2

{
ai,j1Zj1 = ai,j2Zj2 = max

j∈〈p〉 ai,jZj
}

has P-measure 0. From now on, we focus on the event N c
1 and set j (i) = argmaxj∈〈p〉ai,jZj

for all i ∈ 〈n〉.
Next, we show that, with probability 1, i1

j∼ i2 implies that j (i1) = j (i2). That is, the set

N2 :=
⋃

j∈〈p〉, i1,i2∈〈n〉, i1 �=i2
Nj,i1,i2 with Nj,i1,i2 := {j (i1) �= j (i2), i1

j∼ i2}

has P-measure 0. It suffices to show that P(Nj,i1,i2) = 0 for all i1 �= i2. If not, since 〈p〉 and
〈n〉 are finite sets, there exists N0 ⊂ Nj,i1,j2 such that j (i1) = j1 �= j (i2) = j2 on N0, and
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P(N0) > 0. At the same time, however, observe that i1
j∼ i2 implies that hi1,j = hi2,j = 1,

which yields

aik,j ẑj = xik = aik,j (ik)Zj (ik) = aik,jkZjk , k = 1, 2.

It then follows that on N0,Zj1/Zj2 = ai1,j ai2,j2/(ai2,j ai1,j1), which is a constant. This constant
is strictly positive and finite. Indeed, this is because on N c

1 , ai,j (i) > 0 by Assumption A and
hi,j = 1 implies that ai,j > 0. SinceZj1 andZj2 are independent continuous random variables,
it then follows that P(N0) = 0.

Finally, we focus on the event (N1 ∪ N2)
c. Then, for any i1, i2 ∈ Is , we have i1 ∼ i2 and

let ĩ0, . . . , ĩn be as in (14). It then follows that j (i1) = j (̃i0) = j (̃i1) = · · · = j (̃in) = j (i2).
Note that, for all i ∈ 〈n〉, hi,j (i) = 1 by the definition of j (i). Hence, j (i1) = j (i2) ∈ J (s).
We have thus completed the proof.

Proof of Theorem 2. Since the {Is}s∈〈r〉 are disjoint with
⋃
s∈〈r〉 Is = 〈n〉, in the language of

the set-covering problem, to cover 〈n〉, we need to cover each Is . By part (ii) of Lemma 1, any
two different Is1 and Is2 cannot be covered by a single set H·j . Thus, we need at least r sets
to cover 〈n〉. On the other hand, with probability 1, we can select one js from each J (s) (by
part (i) of Lemma 1), which yields a valid cover. That is, with probability 1, r = r(J(H )) and
any valid minimum-cost cover of 〈n〉 must be as in (18), and vice versa. We have thus proved
parts (i) and (ii).

To show (iii), by a straightforward calculation, we have, with probability 1,

∑
J∈Jr (A,x)

wJ =
∑
j1∈J (1)

· · ·
∑
jr∈J (r)

wj1,...,jr

=
∑
j1∈J (1)

· · ·
∑

jr−1∈J (r−1)

[r−1∏
s=1

ẑjs fZjs (̂zjs )
∏
j /∈J (r)

j �=j1,...,jr−1

FZj (̂zj )

×
{ ∑
j∈J (r)

(̂
zjfZj (̂zj )

∏
k∈J (r)\{j}

FZk (̂zk)

)}]

=
r∏
s=1

∑
j∈J (s)

(̂
zjfZj (̂zj )

∏
k∈J (s)\{j}

FZk (̂zk)

)

=
r∏
s=1

∑
j∈J (s)

w
(s)
j . (35)

Similarly, we have

∑
J∈Jr (A,x)

wJ νJ (x, E) =
r∏
s=1

( ∑
j∈J (s)

w
(s)
j ν

(s)
j (x, E)

)
. (36)

By substituting (35) and (36) into (6), we obtain the desired result and complete the proof.
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Proof of Theorem 1. To prove that ν in (6) yields the regular conditional probability of Z

given X, it is enough to show that

P(X ∈ D, Z ∈ E) =
∫
D

ν(x, E)PX(dx) (37)

for all rectangles D ∈ RRn+ and E ∈ RR
p
+ . In view of Theorem 2, it is enough to work with

ν(x, E) given by (19).
We will prove (37) by breaking the integration into a suitable sum of integrals over regions

corresponding to all hitting matrices H for the max-linear model X = A 	 Z. We say such a
hitting matrix H is nice if J (s) defined in (16) is nonempty for all s ∈ 〈r〉. In view of Lemma 1,
it suffices to focus on the set H(A) of nice hitting matrices H . Note that the set H(A) is finite
since the elements of the hitting matrices are 0s and 1s.

For all rectangles D ∈ RRn+ , let

DH = {x = A 	 z : H(A, x) = H , x ∈ D}

be the set of all x ∈ Rn+ that give rise to the hitting matrix H . By Lemma 1(i), for the random
vector X = A 	 Z, with probability 1, we have

X =
∑

H∈H(A)

X 1DH (X)

and, hence, ∫
D

ν(x, E)PX(dx) =
∑

H∈H(A)

∫
DH

ν(x, E)PX(dx). (38)

Now fix an arbitrary and nonrandom nice hitting matrix H ∈ H(A). Let {Is}s∈〈r〉 denote
the partition of 〈n〉 determined by (14), and let J (s), J

(s)
, s = 1, . . . , r , be as in (16). Recall

that J (s) ⊂ J
(s)

and the sets J
(s)
, s = 1, . . . , r , are disjoint.

Focus on the set DH ⊂ Rn+. Without loss of generality, and for notational convenience,
suppose that s ∈ Is for all s = 1, . . . , r . That is,

I1 = {1, i1,2, . . . , i1,k1}, I2 = {2, i2,2, . . . , i2,k2}, . . . , Ir = {r, ir,2, . . . , ir,kr }.

Define the projection mapping PH : DH → Rr+ onto the first r coordinates:

PH (x1, . . . , xn) = (x1, . . . , xr ) ≡ xr .

Note that PH restricted to DH is one-to-one. Indeed, for all i ∈ Is, we have xi = ai,j ẑj and
xs = as,j ẑj for all j ∈ J (s) (recall (16)). This implies that xi = (ai,j /as,j )xs for all i ∈ Is and
all s = 1, . . . , r . Hence, PH (x̃) = PH (x) implies that x̃ = x.

Consequently, can write x = P −1(xr), xr ∈ P (DH ), and∫
DH

ν(x, E)PX(dx) =
∫

PH (DH )

ν(x, E)Q
Xr

H (dx1 · · · dxr),

where Q
Xr

H := PX ◦P −1
H is the induced measure on the set PH (DH ).
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Lemma 2. The measure Q
Xr

H has a density with respect to the Lebesgue measure on the set
PH (DH ). The density is given by

Q
Xr

H (dxr) = 1PH (DH )(xr)

r∏
s=1

∑
j∈J (s)

w
(s)
j (x)

dx1

x1
· · · dxr

xr
. (39)

The proof of this result is given below. In view of (19) and (39), we obtain

∫
PH (DH )

ν(x, E)Q
Xr

H (dxr)

=
∫

PH (DH )

r∏
s=1

(∑
j∈J (s) w

(s)
j (x)ν

(s)
j (x, E)∑

k∈J (s) w
(s)
k (x)

)
︸ ︷︷ ︸

=ν(x,E)

×
r∏
s=1

∑
j∈J (s)

w
(s)
j (x)

dx1

x1
· · · dxr

xr︸ ︷︷ ︸
=Q

Xr
H (dxr )

=
∫

PH (DH )

r∏
s=1

∑
j∈J (s)

w
(s)
j (x)ν

(s)
j (x, E)

dx1

x1
· · · dxr

xr
,

which equals

∑
j1∈J (1),...,jr∈J (r)

∫
PH (DH )

r∏
s=1

w
(s)
js
(x)ν

(s)
js
(x, E)

dx1

x1
· · · dxr

xr︸ ︷︷ ︸
=:I (j1,...,jr )

. (40)

Fix j1 ∈ J (1), . . . , jr ∈ J (r) and focus on the integral I (j1, . . . , jr ). Define

�rH (DH ) :=
{
(zj1 , . . . , zjr ) : zjs = xs

as,js
, s = 1, . . . , r, xr = (xs)

r
s=1 ∈ PH (DH )

}
.

We have, by (20), (21), and replacingxs withas,js zjs , s = 1, . . . , r (simple change of variables),

I (j1, . . . , jr )

=
∫
�rH (DH )

r∏
s=1

(
zjs fZjs (zjs )

∏
k∈J (s)\{js }

FZk (̂zk)

× δπjs (E)(zjs )
∏

k∈J (s)\{js }
P(Zk ∈ πk(E) | Zk < ẑk)

)
dzj1

zj1

· · · dzjr
zjr

=
∫

�rH (DH )

r∏
s=1

fZjs (zjs )δπjs (E)(zjs )

×
∏

k∈〈p〉\{j1,...,jr }
P(Zk ∈ πk(E), Zk < ẑk) dzj1 · · · dzjr . (41)
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Define

�H ;j1,...,jr (DH ) =
{
z ∈ R

p
+ : x = A 	 z ∈ DH ,

zjs = xs

as,js
, s = 1, . . . , r, zk < ẑk(x), k ∈ 〈p〉 \ {j1, . . . , jr}

}
.

By the independence of the Zks, (41) becomes

I (j1, . . . , jr ) = P(Z ∈ �H ;j1,...,jr (DH ) ∩ E). (42)

By substituting (42) into (40), we obtain∫
DH

ν(x, E)PX(dx) =
∫

PH (DH )

ν(x, E)Q
Xr

H (dxr)

=
∑

j1∈J (1),...,jr∈J (r)
P(Z ∈ �H ;j1,...,jr (DH ) ∩ E)

= P(A 	 Z ∈ DH , Z ∈ E), (43)

because the summation over (j1, . . . , jr ) accounts for all relevant hitting scenarios correspond-
ing to the matrix H . Substituting (43) into (38), we have∫

D

ν(x, E)PX(dx) =
∑

H∈H(A)

P(X ≡ A 	 Z ∈ DH , Z ∈ E) = P(X ∈ D, Z ∈ E).

This completes the proof of Theorem 1.

Proof of Lemma 2. Consider the random vector Xr = (X1, . . . , Xr). Observe that, by the
definition of the set PH (DH ), on the event {Xr ∈ PH (DH )}, we have

Xr =
∑

j1∈J (1),...,jr∈J (r)

⎛
⎜⎝
a1,j1Zj1

...

ar,jr Zjr

⎞
⎟⎠ r∏
s=1

1
{ ∨
k∈J (s)\{js }

as,kZk < as,jsZjs

}
︸ ︷︷ ︸

=:1 {Cs,js }

. (44)

Note that, since J (s) ⊂ J
(s)
, s = 1, . . . , r , the events

⋂r
s=1 Cs,js are disjoint for all r-tuples

(j1, . . . , jr ) ∈ J (1) × · · · × J (r).
Recall that our goal is to establish (39). By the fact that the sum in (44) involves only

one nonzero term for some (j1, . . . , jr ), with probability 1, we have, for all measurable sets
� ⊂ PH (DH ), writing ξjs = as,jsZjs ,

Q
Xr

H (�) ≡ P(Xr ∈ �)

=
∑

j1∈J (1),...,jr∈J (r)
P

(
{(ξj1 , . . . , ξjr ) ∈ �} ∩

( r⋂
s=1

Cs,js

))
. (45)

Now, consider the last probability, for fixed (j1, . . . , jr ). The random variables ξjs , s =
1, . . . , r , are independent and they have densities fZjs (xs/as,js )/as,js , xs ∈ R+. We also know
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that the events Cs,js , s = 1, . . . , r , are mutually independent, since their definitions involve
Zks indexed by disjoint sets J

(s)
, s = 1, . . . , r . By conditioning on the ξjs s, we find that the

probability on the right-hand side of (45) equals

∫
�

( r∏
s=1

1

as,js
f

(
xs

as,js

)) r∏
s=1

P

( ∨
k∈J (s)\{js }

as,kZk < xs

)
dx1 · · · dxr

=
∫
�

r∏
s=1

(
1

as,js
f

(
xs

as,js

) ∏
k∈J (s)\{js }

FZk

(
xs

as,k

))
dx1 · · · dxr .

In view of expressions (20) and (44), replacing

∑
j1∈J (1),...,jr∈J (r)

r∏
s=1

· · · by
r∏
s=1

( ∑
j∈J (s)

· · ·
)
,

we find that the measure Q
Xr

H has a density on P (DH ), given by (39).

Appendix A. Regular conditional probability

We recall here the notion of regular conditional probability. Let Z = (Z1, . . . , Zp) and
X = (X1, . . . , Xn), and let BR

p
+ denote the Borel σ -algebra on R

p
+. The regular conditional

probability ν of Z given σ(X) is a function from BR
p
+ × Rn to [0, 1] such that

(i) ν(x, ·) is a probability measure for all x ∈ Rn,

(ii) the function ν(·, E) is measurable for all Borel sets E ∈ BRp ,

(iii) P(Z ∈ E,X ∈ D) = ∫
D
ν(x, E)PX(dx) for allE ∈ BRp andD ∈ BRn , where PX(·) :=

P(X ∈ ·).
See, e.g. Proposition A 1.5.III of [5] for more details.

In Section 2 we provided an expression for the regular conditional probability in the max-
linear model (2):

ν(x, E) := P(Z ∈ E | X = x), E ∈ BR
p
+ , x ∈ Rn+.

The definition of ν implies that∫
Rp
g(z)ν(X, dz) = E(g(Z) | σ(X)) PX-almost surely

for all Borel functions g : Rp → R with E|g(Z)| < ∞. By the strong law of large numbers, the
latter conditional expectations are readily approximated byN−1 ∑N

i=1 g(Z
(i)), where the Z(i),

i = 1, . . . , N , are independent samples from the regular conditional probability ν(X, dz). Thus,
ν is the right distribution to sample from when performing prediction, given prior observed data.
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