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LIMITS OF PURE STATES, II

by R. J. ARCHBOLD and A. M. ZAKI

(Received 18th June 1990)

We answer a question raised in an earlier paper concerning the pure state space of a separable C'-algebra.

1980 Mathematics subject classification (1985 Revision): 46L30

Let A be a unital separable C*-algebra with state space S(A). Let P(A) denote the set
of pure states of A and let F(A) denote the set of factorial states. For (f> e S(A) let n^ be
the associated Gelfand-Naimark-Segal representation of A. It was shown in Archbold
[1] that the mapping 9 defined by 0(0) = ker7t0 is a continuous, open surjection from
F(A) (the weak*-closure of F(A)) onto Primal'(.4) (the set of proper primal ideals of A).
Furthermore, the restriction 90 of 0 to the pure state space P(A) is also surjective
(Archbold [2]).

Question 2 in Archbold [2] asks whether 80 is open. In certain special cases the
answer is affirmative. For example, if A is antiliminal than P(A) = F(A) (Batty and
Archbold [4]) and so 6O = 6. Furthermore, we show that 90 is always "almost open" in
the sense that the image of any non-empty open set has dense interior. However, 90 can
fail to be open and we give an example in which A is liminal and the primitive ideal
space Prim (,4) is Hausdorff.

We begin by recalling from Archbold and Batty [3] that a (closed two-sided) ideal J
of A is said to be primal if whenever n^.2 and JuJ2,...,Jn are ideals of A such that
JlJ2--Jn = {0} then Jt^J for at least one value of i. In this paper we shall be
concerned with the weak topology xw on Primal'(/1) (see Archbold [1]). A base is given
by the family of sets of the form

U(F) = {IePrimal'(A):J<£l for all JeF}

where F is a finite set (possibly empty) of ideals of A. When restricted to Prim(/4),
TW coincides with the Jacobson topology. If Prim (A) is Hausdorff then
Primal'(/l) = Prim(/4) (see Archbold and Batty [3, p. 63]).

Theorem. Let A be a unital separable C*-algebra and let 9Q:P(A)-*Pnma\'(A) be
defined by

(<f>eP(A)).

Let U be any non-empty open subset of P{A). Then the interior of9o(U) is dense in 90{U).
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Proof. Let W=Uc\P{A), a non-empty open subset of P(A). By Pedersen [6, 4.3.3],
60{W) is a non-empty open subset of Prim (A). Hence there exists a non-zero ideal J of
A such that

Define

a Tw-open subset of Pnmal'(A). Since W is dense in U and 90 is continuous (see
Archbold [1, Section 2]), we have

(where the bars denote closures in the appropriate topologies). It remains only to show
that V<=90(U).

Let IeV. Since I^J there exists a primitive ideal Pt of A such that P t 2 / and P X ^J
(Dixmier [5, 2.9.7(ii)]). Hence Pjefl^W) and so there exists ^ E W such that
P1=ker7r^,1. Since A is separable there is a countable family P1 ;P2 , . . . of distinct
elements of Prim ,4 whose intersection is / (Pedersen [6, 4.3.4]). We shall assume that
this family is infinite (in the finite case, a similar but easier argument applies).

For i^2 let </>, be a pure state such that P; = ker ntt>i. For n^. 1 let

Since / is primal, it follows from Archbold and Batty [3, Proposition 3.1] that there is a
net (na) of irreducible representations of A such that 7ra->7i0( for each i^ l . By Archbold
[2, Theorem 2 ((ii)=>(iii))], \jineP(A). Since | |^B-^1 | |^2/« and ^ e t / , there exists N
such that \jiN e I/. However,

i = l i=1

Hence 7e0o(l/) as required. D

We now give an example in which the map 90 is not open. Let Mn(C) denote the
C*-algebra of all nxn complex matrices. Let B be the C*-subalgebra of M6(C)

consisting of all matrices of the form where SeM4(C) and TeM2(C). We

define A to be the C*-algebra of all sequences x = (xn)nil, where xn= eB,

which are convergent to a matrix of the form
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T{x)
0
0

0
T(x)

0

0
0

T(x)_

where T(x)eM2(C). The algebraic operations in A are defined pointwise and the norm
is the supremum norm.

For each n ̂  1 there are irreducible representations nn and an of A given by
nn(x) = Sn(x) and an(x) = Tn(x) for xeA. The only other irreducible representation is the
representation ax given by ac0(x) = T(x) for xeA. Hence Prim(X) consists of the ideals
Pn, Qn (n^ 1) and Q^ where Pn = ker7tn) Qn = keron and

Q0O = kerc7oo = {xeX:xn-+0 as n->oo}.

Each Pn and each Qn is an isolated point in Prim (A). However P , , - * ^ and 6n-*<2oo a s

n->oo. In particular, Prim (A) is Hausdorff and so Primal'^) = Prim (/I). We note also
that A is unital, separable and liminal.

We define 4>eS(A) by

= tr (*„(*)) = tr(T(x)) (xeX)

where tr is the (unique) tracial state of M2(C). We shall show that <j>eP(A) and that
there exists an open neighbourhood U of <f> in P(A) such that 60(U) is not a
neighbourhood of 0OW>) ( = <2J. To see that (t>eP(A), let £ = 2-1/2(l,0,0, l ) e C 4 and
define 4>neP(A) by

Then

as n-»oo. Thus #„-•# (weak*) and so 0e
Now let U be the complement in P(A) of the weak*-closure of the set

W = {ipeP(A):kern,i, = Qn for some n}.

It suffices to show that <f>eU for then Qa> = do(<f>)e^o(u) b u t ^o(^) i s n o t a

neighbourhood of Q^ since Qn$0o(U) for each n.
We show first of all that W^P(A). So let t]/eP(A) with ke r^ = gn for some n. There

exists a net (i/fj in P(A) such that ^ra-»^. Since 0O is continuous, ker7t^a-»Qn in Prim (4).
Hence ker 7r̂ a is eventually equal to Qn. Regarding ip as a state of X/Q,, ( s M2(C)) in the
usual way, we obtain that
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as required.
Let us suppose that <p$U. Then there exists a net ($J in W such that </>o->0. Let

n^. Since <f>x is pure, there exists a unit vector < âeC2 such that

<<r,Jx)&,&> (xeA).

By passing to a subnet if necessary we may suppose that the net (£J is convergent to
some unit vector £eC2. Since $„->$ and 60 is continuous, Qn,-*QX in Prim(^).

Let x e A and e>0. There exists N^l such that ||Tn(x)-T(x)||<e/2 for all n^N.
Since 6,,,-^C,, there exists <x0 such that na^JV for all a^a0- By increasing a0 if
necessary, we may assume that

for all oc^a0. Then for a ^ a 0 we have

Hence <̂ (x) = lim </>a(x) = < T"(x)̂ , $>. This shows that (/> is pure, contradicting the fact
that <f> is defined to be the average of two distinct pure states. This contradiction shows
that (f> e U, as required.

We note that in this example

The interior of 60(U) is {Pn:n^l}. This is dense in 90(U) (since Pn-*Qao as «->oo) as
predicted by the theorem.
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