Proceedings of the Edinburgh Mathematical Society (1992) 35, 227-231 ©

LIMITS OF PURE STATES, II

by R. J. ARCHBOLD and A. M. ZAKI (Received 18th June 1990)

We answer a question raised in an earlier paper concerning the pure state space of a separable C*-algebra.

1980 Mathematics subject classification (1985 Revision): 46L30

Let A be a unital separable C*-algebra with state space S(A). Let P(A) denote the set of pure states of A and let F(A) denote the set of factorial states. For $\phi \in S(A)$ let π_{ϕ} be the associated Gelfand-Naimark-Segal representation of A. It was shown in Archbold [1] that the mapping θ defined by $\theta(\phi) = \ker \pi_{\phi}$ is a continuous, open surjection from F(A) (the weak*-closure of F(A)) onto Primal'(A) (the set of proper primal ideals of A). Furthermore, the restriction θ_0 of θ to the pure state space P(A) is also surjective (Archbold [2]).

Question 2 in Archbold [2] asks whether θ_0 is open. In certain special cases the answer is affirmative. For example, if A is antiliminal than $\overline{P(A)} = \overline{F(A)}$ (Batty and Archbold [4]) and so $\theta_0 = \theta$. Furthermore, we show that θ_0 is always "almost open" in the sense that the image of any non-empty open set has dense interior. However, θ_0 can fail to be open and we give an example in which A is liminal and the primitive ideal space Prim(A) is Hausdorff.

We begin by recalling from Archbold and Batty [3] that a (closed two-sided) ideal J of A is said to be primal if whenever $n \ge 2$ and J_1, J_2, \ldots, J_n are ideals of A such that $J_1J_2\ldots J_n = \{0\}$ then $J_i \subseteq J$ for at least one value of i. In this paper we shall be concerned with the weak topology τ_w on Primal'(A) (see Archbold [1]). A base is given by the family of sets of the form

$$U(F) = \{I \in \text{Primal}'(A) : J \not\subseteq I \text{ for all } J \in F\}$$

where F is a finite set (possibly empty) of ideals of A. When restricted to Prim(A), τ_w coincides with the Jacobson topology. If Prim(A) is Hausdorff then Primal'(A) = Prim(A) (see Archbold and Batty [3, p. 63]).

Theorem. Let A be a unital separable C*-algebra and let $\theta_0: P(A) \rightarrow Primal'(A)$ be defined by

$$\theta_0(\phi) = \ker \pi_\phi \qquad (\phi \in \overline{P(A)}).$$

Let U be any non-empty open subset of $\overline{P(A)}$. Then the interior of $\theta_0(U)$ is dense in $\theta_0(U)$.

227

Proof. Let $W = U \cap P(A)$, a non-empty open subset of P(A). By Pedersen [6, 4.3.3], $\theta_0(W)$ is a non-empty open subset of Prim(A). Hence there exists a non-zero ideal J of A such that

$$\theta_0(W) = \{P \in \operatorname{Prim}(A) : P \not\supseteq J\}.$$

Define

$$V = \{I \in \text{Primal}'(A) : I \not\supseteq J\},\$$

a τ_w -open subset of Primal'(A). Since W is dense in U and θ_0 is continuous (see Archbold [1, Section 2]), we have

$$\overline{V} \supseteq \overline{\theta_0(W)} \supseteq \theta_0(\overline{W}) \supseteq \theta_0(U)$$

(where the bars denote closures in the appropriate topologies). It remains only to show that $V \subseteq \theta_0(U)$.

Let $I \in V$. Since $I \not\cong J$ there exists a primitive ideal P_1 of A such that $P_1 \supseteq I$ and $P_1 \not\cong J$ (Dixmier [5, 2.9.7(ii)]). Hence $P_1 \in \theta_0(W)$ and so there exists $\phi_1 \in W$ such that $P_1 = \ker \pi_{\phi_1}$. Since A is separable there is a countable family P_1, P_2, \ldots of distinct elements of Prim A whose intersection is I (Pedersen [6, 4.3.4]). We shall assume that this family is infinite (in the finite case, a similar but easier argument applies).

For $i \ge 2$ let ϕ_i be a pure state such that $P_i = \ker \pi_{\phi_i}$. For $n \ge 1$ let

$$\psi_n = \frac{n-1}{n} \phi_1 + \frac{1}{n} \sum_{i=2}^{\infty} 2^{-i+1} \phi_i.$$

Since *I* is primal, it follows from Archbold and Batty [3, Proposition 3.1] that there is a net (π_a) of irreducible representations of *A* such that $\pi_a \to \pi_{\phi_i}$ for each $i \ge 1$. By Archbold [2, Theorem 2 ((ii) \Rightarrow (iii))], $\psi_n \in \overline{P(A)}$. Since $\|\psi_n - \phi_1\| \le 2/n$ and $\phi_1 \in U$, there exists *N* such that $\psi_N \in U$. However,

$$\ker \pi_{\psi_N} = \bigcap_{i=1}^{\infty} \ker \pi_{\phi_i} = \bigcap_{i=1}^{\infty} P_i = I.$$

Hence $I \in \theta_0(U)$ as required.

We now give an example in which the map θ_0 is not open. Let $M_n(\mathbb{C})$ denote the C^* -algebra of all $n \times n$ complex matrices. Let B be the C^* -subalgebra of $M_6(\mathbb{C})$ consisting of all matrices of the form $\begin{bmatrix} S & 0 \\ 0 & T \end{bmatrix}$ where $S \in M_4(\mathbb{C})$ and $T \in M_2(\mathbb{C})$. We define A to be the C^* -algebra of all sequences $x = (x_n)_{n \ge 1}$, where $x_n = \begin{bmatrix} S_n(x) & 0 \\ 0 & T_n(x) \end{bmatrix} \in B$, which are convergent to a matrix of the form

$$\begin{bmatrix} T(x) & 0 & 0 \\ 0 & T(x) & 0 \\ 0 & 0 & T(x) \end{bmatrix}$$

where $T(x) \in M_2(\mathbb{C})$. The algebraic operations in A are defined pointwise and the norm is the supremum norm.

For each $n \ge 1$ there are irreducible representations π_n and σ_n of A given by $\pi_n(x) = S_n(x)$ and $\sigma_n(x) = T_n(x)$ for $x \in A$. The only other irreducible representation is the representation σ_{∞} given by $\sigma_{\infty}(x) = T(x)$ for $x \in A$. Hence Prim (A) consists of the ideals P_n , Q_n ($n \ge 1$) and Q_{∞} where $P_n = \ker \pi_n$, $Q_n = \ker \sigma_n$ and

$$Q_{\infty} = \ker \sigma_{\infty} = \{x \in A : x_n \to 0 \text{ as } n \to \infty\}.$$

Each P_n and each Q_n is an isolated point in Prim(A). However $P_n \rightarrow Q_\infty$ and $Q_n \rightarrow Q_\infty$ as $n \rightarrow \infty$. In particular, Prim(A) is Hausdorff and so Primal'(A) = Prim(A). We note also that A is unital, separable and liminal.

We define $\phi \in S(A)$ by

$$\phi(x) = \operatorname{tr} \left(\sigma_{\infty}(x) \right) = \operatorname{tr} \left(T(x) \right) \qquad (x \in A)$$

where tr is the (unique) tracial state of $M_2(\mathbb{C})$. We shall show that $\phi \in P(A)$ and that there exists an open neighbourhood U of ϕ in $\overline{P(A)}$ such that $\theta_0(U)$ is not a neighbourhood of $\theta_0(\phi)$ (= Q_{∞}). To see that $\phi \in \overline{P(A)}$, let $\xi = 2^{-1/2}(1,0,0,1) \in \mathbb{C}^4$ and define $\phi_n \in P(A)$ by

$$\phi_n(x) = \langle \pi_n(x)\xi, \xi \rangle \qquad (x \in A).$$

Then

$$\phi_n(x) = \frac{1}{2} [(S_n(x))_{11} + (S_n(x))_{14} + (S_n(x))_{41} + (S_n(x))_{44}]$$

$$\rightarrow \frac{1}{2} [T(x)_{11} + 0 + 0 + T(x)_{22}]$$

as $n \to \infty$. Thus $\phi_n \to \phi$ (weak*) and so $\phi \in \overline{P(A)}$.

Now let U be the complement in P(A) of the weak*-closure of the set

$$W = \{ \psi \in P(A) : \ker \pi_{\psi} = Q_n \text{ for some } n \}.$$

It suffices to show that $\phi \in U$ for then $Q_{\infty} = \theta_0(\phi) \in \theta_0(U)$ but $\theta_0(U)$ is not a neighbourhood of Q_{∞} since $Q_n \notin \theta_0(U)$ for each *n*.____

We show first of all that $W \subseteq P(A)$. So let $\psi \in P(A)$ with ker $\pi_{\psi} = Q_n$ for some *n*. There exists a net (ψ_{α}) in P(A) such that $\psi_{\alpha} \rightarrow \psi$. Since θ_0 is continuous, ker $\pi_{\psi_{\alpha}} \rightarrow Q_n$ in Prim(A). Hence ker $\pi_{\psi_{\alpha}}$ is eventually equal to Q_n . Regarding ψ as a state of A/Q_n ($\cong M_2(\mathbb{C})$) in the usual way, we obtain that

 $\psi\in\overline{P(A/Q_n)}=P(A/Q_n),$

as required.

Let us suppose that $\phi \notin U$. Then there exists a net (ϕ_{α}) in W such that $\phi_{\alpha} \rightarrow \phi$. Let $Q_{n_{\alpha}} = \ker \pi_{\phi_{\alpha}}$. Since ϕ_{α} is pure, there exists a unit vector $\xi_{\alpha} \in \mathbb{C}^2$ such that

$$\phi_{\alpha}(x) = \langle \sigma_{n_{\alpha}}(x)\xi_{\alpha}, \xi_{\alpha} \rangle \qquad (x \in A).$$

By passing to a subnet if necessary we may suppose that the net (ξ_{α}) is convergent to some unit vector $\xi \in \mathbb{C}^2$. Since $\phi_{\alpha} \rightarrow \phi$ and θ_0 is continuous, $Q_{n_{\alpha}} \rightarrow Q_{\infty}$ in Prim(A).

Let $x \in A$ and $\varepsilon > 0$. There exists $N \ge 1$ such that $||T_n(x) - T(x)|| < \varepsilon/2$ for all $n \ge N$. Since $Q_{n_\alpha} \to Q_\infty$, there exists α_0 such that $n_\alpha \ge N$ for all $\alpha \ge \alpha_0$. By increasing α_0 if necessary, we may assume that

$$\|\xi_{\alpha} - \xi\| < \varepsilon (1 + 4 \|T(x)\|)^{-1}$$

for all $\alpha \ge \alpha_0$. Then for $\alpha \ge \alpha_0$ we have

$$\begin{aligned} |\phi_{\alpha}(x) - \langle T(x)\xi,\xi\rangle \rangle| &= |\langle T_{n_{\alpha}}(x)\xi_{\alpha},\xi_{\alpha}\rangle - \langle T(x)\xi,\xi\rangle |\\ &< |\langle T(x)\xi_{\alpha},\xi_{\alpha}\rangle - \langle T(x)\xi,\xi\rangle | + \frac{\varepsilon}{2} \\ &\leq ||T(x)(\xi_{\alpha} - \xi)|| ||\xi_{\alpha}|| + ||T(x)\xi|| ||\xi_{\alpha} - \xi|| + \frac{\varepsilon}{2} \end{aligned}$$

≦ε.

Hence $\phi(x) = \lim \phi_{\alpha}(x) = \langle T(x)\xi, \xi \rangle$. This shows that ϕ is pure, contradicting the fact that ϕ is defined to be the average of two distinct pure states. This contradiction shows that $\phi \in U$, as required.

We note that in this example

$$\theta_0(U) = \{P_n : n \ge 1\} \cup \{Q_\infty\}.$$

The interior of $\theta_0(U)$ is $\{P_n:n\geq 1\}$. This is dense in $\theta_0(U)$ (since $P_n \rightarrow Q_\infty$ as $n \rightarrow \infty$) as predicted by the theorem.

Acknowledgement. Part of this work was done while the first-named author was visiting the University of Aswan. The support of the British Council and the hospitality of the host institution are gratefully acknowledged.

https://doi.org/10.1017/S0013091500005502 Published online by Cambridge University Press

230

LIMITS OF PURE STATES, II

REFERENCES

1. R. J. ARCHBOLD, Topologies for primal ideals, J. London Math. Soc. (2) 36 (1987), 524-542.

2. R. J. ARCHBOLD, Limits of pure states, Proc. Edinbrugh Math. Soc. 32 (1989), 249-254.

3. R. J. ARCHBOLD and C. J. K. BATTY, On factorial states of operator algebras, III, J. Operator Theory 15 (1986), 53-81.

4. C. J. K. BATTY and R. J. ARCHBOLD, On factorial states of operator algebras, II, J. Operator Theory 13 (1985), 131-142.

5. J. DIXMIER, Les C*-algèbres et leurs représentations (2nd edition, Gauthier-Villars, Paris, 1969).

6. G. K. PEDERSEN, C*-Algebras and their Automorphism Groups (Academic Press, London, 1979).

DEPARTMENT OF MATHEMATICAL SCIENCES THE EDWARD WRIGHT BUILDING DUNBAR STREET ABERDEEN AB9 2TY DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE Aswan Egypt