INTEGERS OF BIQUADRATIC FIELDS

BY
KENNETH S. WILLIAMS ${ }^{1}$)
Let Q denote the field of rational numbers. If m, n are distinct squarefree integers the field formed by adjoining \sqrt{m} and \sqrt{n} to Q is denoted by $Q(\sqrt{m}, \sqrt{n})$. Since $Q(\sqrt{m}, \sqrt{n})=Q(\sqrt{m}+\sqrt{n})$ and $\sqrt{m}+\sqrt{n}$ has for its unique minimal polynomial $x^{4}-2(m+n) x^{2}+(m-n)^{2}, Q(\sqrt{m}, \sqrt{n})$ is a biquadratic field over Q. The elements of $Q(\sqrt{m}, \sqrt{n})$ are of the form $a_{0}+a_{1} \sqrt{m}+a_{2} \sqrt{n}+a_{3} \sqrt{m n}$, where $a_{0}, a_{1}, a_{2}, a_{3} \in Q$. Any element of $Q(\sqrt{m}, \sqrt{n})$ which satisfies a monic equation of degree ≥ 1 with rational integral coefficients is called an integer of $Q(\sqrt{m}, \sqrt{n})$. The set of all these integers is an integral domain. In this paper we determine the explicit form of the integers of $Q(\sqrt{m}, \sqrt{n})$ (Theorem 1), an integral basis for $Q(\sqrt{m}, \sqrt{n})$ (Theorem 2), and the discriminant of $Q(\sqrt{m}, \sqrt{n})$ (Theorem 3). (With $Q(\sqrt{m}, \sqrt{n})$ considered as a relative quadratic field, that is, as a quadratic field over $Q(\sqrt{m})$, an integral basis for $Q(\sqrt{m}, \sqrt{n})$ has been given in [1].)
The form of the integers of a quadratic field are well known [3]. If k is a squarefree integer then the integers of $Q(\sqrt{k})$ are given by $\frac{1}{2}\left(x_{0}+x_{1} \sqrt{k}\right)$, where x_{0}, x_{1} are integers such that $x_{0} \equiv x_{1}(\bmod 2)$, if $k \equiv 1(\bmod 4)$; and by $x_{0}+x_{1} \sqrt{k}$, where x_{0}, x_{1} are integers, if $k \equiv 2$ or $3(\bmod 4)$. Thus we know the integers of the subfields $Q(\sqrt{m}), Q(\sqrt{n}), Q(\sqrt{m n})$ of $Q(\sqrt{m}, \sqrt{n})$.

We begin by making some simplifying assumptions about m and n. We let $l=(m, n)$ and write $m=l m_{1}, n=l n_{1}$ so that $\left(m_{1}, n_{1}\right)=1$. Since m, n are squarefree we have the following possibilities for the residues of $m, n, m_{1} n_{1}$ modulo 4 .

$\frac{m}{1}$	$\frac{n}{1}$	$\frac{m_{1} n_{1}}{1}$
1	2	2
1	3	3
2	1	2
2	2	1 or 3
2	3	2
3	1	3
3	2	2
3	3	1

Received by the editors March 16, 1970.
${ }^{(1)}$ This research was supported by National Research Council of Canada Grant A-7233.

Thus as

$$
Q(\sqrt{m}, \sqrt{n})=Q\left(\sqrt{m}, \sqrt{m_{1} n_{1}}\right)=Q\left(\sqrt{n}, \sqrt{m_{1} n_{1}}\right)=Q(\sqrt{n}, \sqrt{\bar{m}})
$$

we may suppose without loss of generality that

$$
\begin{equation*}
(m, n) \equiv(1,1),(1,2),(2,3) \text { or }(3,3)(\bmod 4) \tag{1}
\end{equation*}
$$

We now determine the form of the integers of $Q(\sqrt{m}, \sqrt{n})$, where (here and throughout) m, n satisfy (1).

Theorem 1. Letting $x_{0}, x_{1}, x_{2}, x_{3}$ denote rational integers, the integers of $Q(\sqrt{m}, \sqrt{n})$ are given as follows:
(i) if $(m, n) \equiv\left(m_{1}, n_{1}\right) \equiv(1,1)(\bmod 4)$, the integers are

$$
\frac{1}{4}\left(x_{0}+x_{1} \sqrt{m}+x_{2} \sqrt{n}+x_{3} \sqrt{m_{1} n_{1}}\right)
$$

where $x_{0} \equiv x_{1} \equiv x_{2} \equiv x_{3}(\bmod 2), x_{0}-x_{1}+x_{2}-x_{3} \equiv 0(\bmod 4) ;$
(ii) if $(m, n) \equiv(1,1),\left(m_{1}, n_{1}\right) \equiv(3,3)(\bmod 4)$, the integers are

$$
\frac{1}{4}\left(x_{0}+x_{1} \sqrt{m}+x_{2} \sqrt{n}+x_{3} \sqrt{m_{1} n_{1}}\right)
$$

where $x_{0} \equiv x_{1} \equiv x_{2} \equiv x_{3}(\bmod 2), x_{0}-x_{1}-x_{2}-x_{3} \equiv 0(\bmod 4)$;
(iii) if $(m, n) \equiv(1,2)(\bmod 4)$, the integers are

$$
\frac{1}{2}\left(x_{0}+x_{1} \sqrt{m}+x_{2} \sqrt{n}+x_{3} \sqrt{m_{1} n_{1}}\right),
$$

where $x_{0} \equiv x_{1}, x_{2} \equiv x_{3}(\bmod 2)$;
(iv) if $(m, n) \equiv(2,3)(\bmod 4)$, the integers are

$$
\frac{1}{2}\left(x_{0}+x_{1} \sqrt{m}+x_{2} \sqrt{n}+x_{3} \sqrt{m_{1} n_{1}}\right),
$$

where $x_{0} \equiv x_{2} \equiv 0, x_{1} \equiv x_{3}(\bmod 2)$;
(v) if $(m, n) \equiv(3,3)(\bmod 4)$, the integers are

$$
\frac{1}{2}\left(x_{0}+x_{1} \sqrt{m}+x_{2} \sqrt{n}+x_{3} \sqrt{m_{1} n_{1}}\right),
$$

where $x_{0} \equiv x_{3}, x_{1} \equiv x_{2}(\bmod 2)$.
Proof. Let θ be an integer of $Q(\sqrt{m}, \sqrt{ } \bar{n})$, where m, n satisfy (1). Then θ can be written

$$
\begin{equation*}
\theta=a_{0}+a_{1} \sqrt{ } \bar{m}+a_{2} \sqrt{n}+a_{3} \sqrt{m_{1} n_{1}}, \tag{2}
\end{equation*}
$$

where $a_{0}, a_{1}, a_{2}, a_{3} \in Q$. As θ is an integer of $Q(\sqrt{m}, \sqrt{n})$ so are its conjugates over Q, namely,

$$
\left\{\begin{array}{l}
\theta^{\prime}=a_{0}+a_{1} \sqrt{m}-a_{2} \sqrt{ } \bar{n}-a_{3} \sqrt{m_{1} n_{1}}, \tag{3}\\
\theta^{\prime \prime}=a_{0}-a_{1} \sqrt{m}+a_{2} \sqrt{ } \bar{n}-a_{3} \sqrt{m_{1} n_{1}}, \\
\theta^{\prime \prime \prime}=a_{0}-a_{1} \sqrt{m}-a_{2} \sqrt{ } \bar{n}+a_{3} \sqrt{ } \overline{m_{1} n_{1}} .
\end{array}\right.
$$

The three quantities

$$
\left\{\begin{array}{l}
\theta+\theta^{\prime}=2 a_{0}+2 a_{1} \sqrt{m} \in Q(\sqrt{m}) \tag{4}\\
\theta+\theta^{\prime \prime}=2 a_{0}+2 a_{2} \sqrt{n} \in Q(\sqrt{n}) \\
\theta+\theta^{\prime \prime}=2 a_{0}+2 a_{3} \sqrt{m_{1} n_{1}} \in Q\left(\sqrt{m_{1} n_{1}}\right)
\end{array}\right.
$$

are therefore all integers of $Q(\sqrt{ } \bar{m}, \sqrt{n})$. Hence they must be integers of $Q(\sqrt{m})$, $Q(\sqrt{n}), Q\left(\sqrt{m_{1} n_{1}}\right)$ respectively.

We consider the cases $(m, n) \equiv(1,2),(2,3),(3,3)(\bmod 4)$ first so that at least two of $m, n, m_{1} n_{1}$ are not congruent to $1(\bmod 4)$, and so at least two of (4) have integral coefficients. Since $2 a_{0}$ is common to all three of (4), the third one must also have integral coefficients. Hence $2 a_{0}, 2 a_{1}, 2 a_{2}, 2 a_{3}$ are all integers and we can write (2) as

$$
\begin{equation*}
\theta=\frac{1}{2}\left(b_{0}+b_{1} \sqrt{ } \bar{m}+b_{2} \sqrt{n}+b_{3} \sqrt{m_{1} n_{1}}\right) \tag{5}
\end{equation*}
$$

where $b_{0}: b_{1}, b_{2}, b_{3}$ are all integers. Let us define

$$
\begin{gather*}
c=b_{0}^{2}-m_{1} n_{1} b_{3}^{2}, \quad d=b_{0}^{2}-m b_{1}^{2}-n b_{2}^{2}+m_{1} n_{1} b_{3}^{2} \tag{6}\\
e=2\left(b_{0} b_{3}-b_{1} b_{2} l\right)
\end{gather*}
$$

so that θ satisfies

$$
\begin{equation*}
\theta^{4}-2 b_{0} \theta^{3}+\left(c+\frac{d}{2}\right) \theta^{2}+\frac{\left(b_{3} m_{1} n_{1} e-b_{0} d\right)}{2} \theta+\frac{\left(d^{2}-m_{1} n_{1} e^{2}\right)}{16}=0 . \tag{7}
\end{equation*}
$$

If $\theta \in Q(\sqrt{m}), Q(\sqrt{n})$ or $Q\left(\sqrt{m_{1} n_{1}}\right)$ the theorem is easily verified so we suppose that $\theta \notin Q(\sqrt{m}), Q(\sqrt{n}), Q\left(\sqrt{m_{1} n_{1}}\right)$. Thus the coefficients of (7) must all be integers, that is, we must have

$$
\begin{equation*}
d^{2}-m_{1} n_{1} e^{2} \equiv 0(\bmod 16) \tag{8}
\end{equation*}
$$

since as e is even this implies that d must be even too.
If $(m, n) \equiv(1,2)(\bmod 4)$, so that $l \equiv 1(\bmod 2), m_{1} n_{1} \equiv 2(\bmod 4),(8)$ is equivalent to $d \equiv e \equiv 0(\bmod 4)$, or

$$
\begin{align*}
b_{0}^{2}-b_{1}^{2}-2 b_{2}^{2}+2 b_{3}^{2} & \equiv 0(\bmod 4) \tag{9a}\\
b_{0} b_{3}-b_{1} b_{2} & \equiv 0(\bmod 2) \tag{9b}
\end{align*}
$$

If $b_{0} \not \equiv b_{1}(\bmod 2)$ then $b_{0}^{2}-b_{1}^{2} \equiv 1(\bmod 2)$ and $(9 \mathrm{a})$ is insoluble. Thus we must have $b_{0} \equiv b_{1}(\bmod 2)$, so $b_{0}^{2}-b_{1}^{2} \equiv 0(\bmod 4)$ and $(9 \mathrm{a})$ implies $2\left(b_{2}^{2}-b_{3}^{2}\right) \equiv 0(\bmod 4)$, that is $b_{2} \equiv b_{3}(\bmod 2)$. Clearly (9b) is then satisfied and this proves case (iii) of the theorem.

If $(m, n) \equiv(2,3)(\bmod 4)$, so that $l \equiv 1(\bmod 2), m_{1} n_{1} \equiv 2(\bmod 4),(8)$ is equivalent to $d \equiv e \equiv 0(\bmod 4)$, or

$$
\begin{align*}
b_{0}^{2}-2 b_{1}^{2}+b_{2}^{2}+2 b_{3}^{2} & \equiv 0(\bmod 4) \tag{10a}\\
b_{0} b_{3}-b_{1} b_{2} & \equiv 0(\bmod 2) \tag{10b}
\end{align*}
$$

If either b_{0} or b_{2} is odd (10 a) implies that the other is odd too. Then (10 b) implies $b_{1} \equiv b_{3}(\bmod 2)$ and $(10 \mathrm{a})$ becomes $1-2 b_{1}^{2}+1+2 b_{1}^{2} \equiv 0(\bmod 4)$, which is impossible. Thus $b_{0} \equiv b_{2} \equiv 0(\bmod 2)$ and so $b_{1} \equiv b_{3}(\bmod 2)$. This proves case (iv) of the theorem.

If $(m, n) \equiv(3,3)(\bmod 4)$, so that $l \equiv 1(\bmod 2), m_{1} n_{1} \equiv 1(\bmod 4),(8)$ is equivalent to $d \equiv e(\bmod 4)$, or

$$
b_{0}^{2}+b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \equiv 2\left(b_{0} b_{3}-b_{1} b_{2}\right)(\bmod 4)
$$

or

$$
\left(b_{0}-b_{3}\right)^{2}+\left(b_{1}+b_{2}\right)^{2} \equiv 0(\bmod 4)
$$

Thus we have $b_{0} \equiv b_{3}, b_{1} \equiv b_{2}(\bmod 2)$, which proves case (v) of the theorem.
We now consider the case $(m, n) \equiv(1,1)(\bmod 4)$, which has been excluded up to this point. We have $m_{1} n_{1} \equiv 1(\bmod 4)$ so that $2 a_{0}, 2 a_{1}, 2 a_{2}, 2 a_{3}$ are either all integers or all halves of odd integers.

If $2 a_{0}, 2 a_{1}, 2 a_{2}, 2 a_{3}$ are all integers then as in the case $(m, n) \equiv(3,3)(\bmod 4)$ we have $d \equiv e(\bmod 4)$, that is,

$$
b_{0}^{2}-b_{1}^{2}-b_{2}^{2}+b_{3}^{2} \equiv 2\left(b_{0} b_{3}-b_{1} b_{2}\right)(\bmod 4)
$$

or

$$
\left(b_{0}-b_{3}\right)^{2}-\left(b_{1}-b_{2}\right)^{2} \equiv 0(\bmod 4)
$$

which implies

$$
b_{0}-b_{3} \equiv b_{1}-b_{2}(\bmod 2)
$$

or

$$
b_{0}-b_{1}+b_{2}-b_{3} \equiv 0(\bmod 2)
$$

This gives θ in the form $\frac{1}{4}\left(c_{0}+c_{1} \sqrt{m}+c_{2} \sqrt{n}+c_{3} \sqrt{m_{1} n_{1}}\right)$, with $c_{0}, c_{1}, c_{2}, c_{3}$ integers such that

$$
c_{0} \equiv c_{1} \equiv c_{2} \equiv c_{3} \equiv 0(\bmod 2), \quad c_{0}-c_{1} \pm c_{2}-c_{3} \equiv 0(\bmod 4)
$$

If $2 a_{0}, 2 a_{1}, 2 a_{2}, 2 a_{3}$ are all halves of odd integers we can write (2) as

$$
\begin{equation*}
\theta=\frac{1}{4}\left(c_{0}+c_{1} \sqrt{m}+c_{2} \sqrt{n}+c_{3} \sqrt{m_{1} n_{1}}\right) \tag{11}
\end{equation*}
$$

where $c_{0}, c_{1}, c_{2}, c_{3}$ are integers such that $c_{0} \equiv c_{1} \equiv c_{2} \equiv c_{3} \equiv 1(\bmod 2)$. We have

$$
\begin{equation*}
c=\frac{c_{0}^{2}-m_{1} n_{1} c_{3}^{2}}{4}, \quad d=\frac{c_{0}^{2}-m c_{1}^{2}-n c_{2}^{2}+m_{1} n_{1} c_{3}^{2}}{4}, \tag{12}
\end{equation*}
$$

$$
e=\frac{c_{0} c_{3}-c_{1} c_{2} l}{2}
$$

These are all integers as $c_{0} \equiv c_{1} \equiv c_{2} \equiv c_{3} \equiv l \equiv 1(\bmod 2)$ and $m \equiv n \equiv m_{1} n_{1} \equiv 1(\bmod 4)$. Moreover

$$
\begin{aligned}
c_{0}^{2}-m c_{1}^{2}-n c_{2}^{2}+m_{1} n_{1} c_{3}^{2} & \equiv 1-m-n+m_{1} n_{1}(\bmod 8) \\
& \equiv 1-m-n+l^{2} m_{1} n_{1}(\bmod 8) \\
& =1-m-n+m n \\
& =(1-m)(1-n) \\
& \equiv 0(\bmod 8),
\end{aligned}
$$

so that d is even. Now θ satisfies

$$
\begin{equation*}
\theta^{4}-c_{0} \theta^{3}+\left(c+\frac{d}{2}\right) \theta^{2}+\left(\frac{c_{3} m_{1} n_{1} e-c_{0} d}{4}\right) \theta+\left(\frac{d^{2}-m_{1} n_{1} e^{2}}{16}\right)=0 . \tag{13}
\end{equation*}
$$

Clearly $\theta \notin Q(\sqrt{m}), Q(\sqrt{n}), Q\left(\sqrt{m_{1} n_{1}}\right)$ so that the coefficients of (13) must all be integers, that is, we must have

$$
\begin{equation*}
d^{2}-m_{1} n_{1} e^{2} \equiv 0(\bmod 16) \tag{14}
\end{equation*}
$$

since (14) implies, as $d \equiv 0(\bmod 2), m_{1} n_{1} \equiv 1(\bmod 4)$, that $d \equiv e(\bmod 4)$ and so

$$
c_{3} m_{1} n_{1} e-c_{0} d \equiv c_{3} e-c_{0} d \equiv d\left(c_{3}-c_{0}\right) \equiv 0(\bmod 4)
$$

Clearly as $d \equiv 0(\bmod 2),(14)$ is equivalent to $d \equiv e(\bmod 4)$.
Writing $c_{i}=2 d_{i}+1(i=0,1,2,3)$ we have

$$
\begin{aligned}
d & =\left(d_{0}^{2}-m d_{1}^{2}-n d_{2}^{2}+m_{1} n_{1} d_{3}^{2}\right)+\left(d_{0}-m d_{1}-n d_{2}+m_{1} n_{1} d_{3}\right)+\frac{\left(1-m-n+m_{1} n_{1}\right)}{4} \\
& \equiv\left(d_{0}^{2}-d_{1}^{2}-d_{2}^{2}+d_{3}^{2}\right)+\left(d_{0}-d_{1}-d_{2}+d_{3}\right)+\frac{\left(1-m-n+m_{1} n_{1}\right)}{4}(\bmod 4),
\end{aligned}
$$

and

$$
e=\left(2 d_{0} d_{3}-2 l d_{1} d_{2}\right)+\left(d_{0}-l d_{1}-l d_{2}+d_{3}\right)+\frac{1-l}{2}
$$

Thus if $l \equiv 1(\bmod 4)$, so that $\left(m_{1}, n_{1}\right) \equiv(1,1)(\bmod 4)$, we have

$$
\begin{aligned}
& d \equiv\left(d_{0}^{2}-d_{1}^{2}-d_{2}^{2}+d_{3}^{2}\right)+\left(d_{0}-d_{1}-d_{2}+d_{3}\right)+\frac{1-l}{2}(\bmod 4) \\
& e \equiv\left(2 d_{0} d_{3}-2 d_{1} d_{2}\right)+\left(d_{0}-d_{1}-d_{2}+d_{3}\right)+\frac{1-l}{2}(\bmod 4)
\end{aligned}
$$

and so $d \equiv e(\bmod 4)$ gives

$$
\left(d_{0}-d_{3}\right)^{2}-\left(d_{1}-d_{2}\right)^{2} \equiv 0(\bmod 4)
$$

that is

$$
d_{0}-d_{3} \equiv d_{1}-d_{2}(\bmod 2)
$$

or

$$
c_{0}-c_{1}+c_{2}-c_{3} \equiv 0(\bmod 4)
$$

which completes the proof of case (i) of the theorem.

If $l \equiv 3(\bmod 4)$, so that $\left(m_{1}, n_{1}\right) \equiv(3,3)(\bmod 4)$, we have

$$
\begin{aligned}
& d \equiv\left(d_{0}^{2}-d_{1}^{2}-d_{2}^{2}+d_{3}^{2}\right)+\left(d_{0}-d_{1}-d_{2}+d_{3}\right)+\frac{1+l}{2}(\bmod 4) \\
& e \equiv\left(2 d_{0} d_{3}+2 d_{1} d_{2}\right)+\left(d_{0}+d_{1}+d_{2}+d_{3}\right)+\frac{1-l}{2}(\bmod 4)
\end{aligned}
$$

and so $d \equiv e(\bmod 4)$ gives

$$
\left(d_{0}-d_{3}\right)^{2}-\left(d_{1}+d_{2}\right)^{2}-2\left(d_{1}+d_{2}\right)-1 \equiv 0(\bmod 4)
$$

that is,

$$
d_{0}-d_{3} \equiv d_{1}+d_{2}+1(\bmod 2)
$$

or

$$
c_{0}-c_{1}-c_{2}-c_{3} \equiv 0(\bmod 4)
$$

which completes the proof of case (ii) of the theorem.
We give three simple examples of Theorem 1.
Example 1. $\theta=\frac{1}{4}(5+3 \sqrt{5}+\sqrt{13}+3 \sqrt{65})$ is an integer of $Q(\sqrt{5}, \sqrt{13})$. θ satisfies $\theta^{4}-5 \theta^{3}-71 \theta^{2}+120 \theta+1044=0$.

Example 2. $\theta=\frac{1}{4}(1+\sqrt{21}+\sqrt{33}-\sqrt{77})$ is an integer of $Q(\sqrt{21}, \sqrt{33})$. θ satisfies $\theta^{4}-\theta^{3}-16 \theta^{2}+37 \theta-17=0$.

Example 3. The integers of $Q(\sqrt{2}, \sqrt{-1})$ are of the form $a_{0}+a_{1} \sqrt{2}+a_{2} \sqrt{-1}$ $+a_{3} \sqrt{-2}$, where a_{0}, a_{2} are both integers and a_{1}, a_{3} are both integers or both halves of odd integers (see [2] for example).

As a consequence of Theorem 1 we have
Theorem 2. An integral basis for $Q(\sqrt{m}, \sqrt{n})$ is given by

$$
\begin{array}{ll}
\text { (i) }\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{\left.1+\sqrt{m}+\sqrt{n}+\sqrt{m_{1} n_{1}}\right\},}{4},\right. & \text { if } \begin{aligned}
&(m, n) \equiv(1,1), \\
&\left(m_{1}, n_{1}\right) \equiv(1,1)(\bmod 4), \\
& \text { (ii) }\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{1-\sqrt{m}+\sqrt{n}+\sqrt{m_{1} n_{1}}}{4},\right. \text { if } \begin{aligned}
&(m, n) \equiv(1,1), \\
&\left(m_{1}, n_{1}\right) \equiv(3,3)(\bmod 4), \\
& \text { (iii) }\left\{1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{m_{1} n_{1}}}{2}\right\}, \text { if }(m, n) \equiv(1,2)(\bmod 4), \\
& \text { (iv) }\left\{1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{m}+\sqrt{m_{1} n_{1}}}{2}\right\},\text { if }(m, n) \equiv(2,3) \bmod 4), \\
& \text { (v) }\left\{1, \sqrt{m}, \frac{\sqrt{m}+\sqrt{n}}{2}, \frac{1+\sqrt{m_{1} n_{1}}}{2}\right\}, \text { if }(m, n) \equiv(3,3)(\bmod 4) .
\end{aligned} \\
&
\end{aligned}, \\
&
\end{array}
$$

Proof. We just give the proof of (i) since the other four cases are very similar. By Theorem 1 the general integer of $Q(\sqrt{m}, \sqrt{n})$ can be written $\frac{1}{4}\left(x_{0}+x_{1} \sqrt{m}\right.$ $\left.+x_{2} \sqrt{n}+x_{3} \sqrt{m_{1} n_{1}}\right)$, where $x_{0}, x_{1}, x_{2}, x_{3}$ are integers such that

$$
x_{0} \equiv x_{1} \equiv x_{2} \equiv x_{3}(\bmod 2), \quad x_{0}-x_{1}+x_{2}-x_{3} \equiv 0(\bmod 4) .
$$

Write $z_{3}=x_{3}$. As $x_{0} \equiv x_{1} \equiv x_{2} \equiv z_{3}(\bmod 2)$ there are integers y, z_{1}, z_{2}, such that

$$
x_{0}=z_{3}+2 y, \quad x_{1}=z_{3}+2 z_{1}, \quad x_{2}=z_{3}+2 z_{2} .
$$

But as $x_{0}-x_{1}+x_{2}-z_{3} \equiv 0(\bmod 4)$ we have $y \equiv z_{1}+z_{2}(\bmod 2)$, so there is an integer z_{0} such that $y=2 z_{0}+z_{1}+z_{2}$. Hence

$$
\begin{aligned}
\frac{1}{4}\left(x_{0}+x_{1} \sqrt{m}+x_{2}\right. & \left.\sqrt{n}+x_{3} \sqrt{m_{1} n_{1}}\right) \\
& =z_{0}+z_{1}\left(\frac{1+\sqrt{m}}{2}\right)+z_{2}\left(\frac{1+\sqrt{n}}{2}\right)+z_{3}\left(\frac{1+\sqrt{m}+\sqrt{n}+\sqrt{m_{1} n_{1}}}{4}\right)
\end{aligned}
$$

which proves the result as

$$
1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{1+\sqrt{m}+\sqrt{n}+\sqrt{m_{1} n_{1}}}{4}
$$

are integers of $Q(\sqrt{m}, \sqrt{n})$.
We illustrate Theorem 2 with a simple example.
Example 4. An integral basis for $Q(\sqrt{5}, \sqrt{13})$ is

$$
\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=\left\{1, \frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{13}}{2}, \frac{1+\sqrt{5}+\sqrt{13}+\sqrt{65}}{4}\right\}
$$

and the integer $\frac{1}{4}(5+3 \sqrt{5}+\sqrt{13}+3 \sqrt{65})$ is given in terms of this integral basis as $\alpha_{0}-\alpha_{2}+3 \alpha_{3}$.

Finally as the discriminant of an algebraic number field is just the discriminant of an integral basis of the field, we have

Theorem 3. The discriminant of $Q(\sqrt{m}, \sqrt{n})$ is given by
(i) $l^{2} m_{1}^{2} n_{1}^{2}, \quad$ if $(m, n) \equiv(1,1)(\bmod 4)$,
(ii) $16 l^{2} m_{1}^{2} n_{1}^{2}, \quad$ if $(m, n) \equiv(1,2)$ or $(3,3)(\bmod 4)$,
(iii) $64 l^{2} m_{1}^{2} n_{1}^{2}, \quad$ if $(m, n) \equiv(2,3)(\bmod 4)$.

Thus, for example, we have
Example 5. The discriminant of $Q(\sqrt{2}, \sqrt{-1})$ is 256 .
8-с.м.в.

References

1. H. Hancock, Foundations of the theory of algebraic numbers, Dover, N.Y., Vol. 2 (1964), 392-396.
2. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, London, 4th ed. (1960), 230-231.
3. H. Pollard, The theory of algebraic numbers, Carus Math. Monograph, No. 1, M.A.A. Publ. (1961), 61-63.

Carleton University,

Ottawa, Ontario

CORRECTIONS

On the Hahn-Banach Extension Property, by Ting-On To. Canad. Math. Bull. (1) 13 (1970), 9-13.

A minor error in the proof of the theorem on page 12 is corrected upon replacing the penultimate sentence by "Let V_{1} be a subspace of V complementary to V_{0}. Then $V_{1} \cong V / V_{0}$ and $V=V_{1} \oplus V_{0}$, the algebraic direct sum of the subspaces V_{1} and V_{0}."

A Note on Endomorphism Semigroups, by Craig Platt. Canad. Math. Bull. (1) $\mathbf{1 3}$ (1970), 47-48.

On page 48 , the fourth sentence of paragraph 2 should read "If $\psi \in$ End (B), then because of β_{a}, β_{d}, and β_{c}, we have $\psi(a)=a, \psi(d)=d$, and $\psi(c)=c$."

