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Abstract

in approach to /»-adic interpolation via divided differences is used to give alternative proofs of
esults of van der Poorten on />-adic exponential polynomials and to derive a p-adic analogue of
"uran's first main theorem on sums of powers.
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1. Introduction

ks can be seen, for example, from Gelfond (1960) or Baker (1975), an important
>art in the theory of transcendence is played by auxiliary results about classical
xponential polynomials

m P ( ' ) - 1

E(z) = 2 2 <Vexp(Hz) (z S C),
i=l y=0

yhere the frequencies w , , . . . , tom and the coefficients a(j, for i = 1, . . . , m and
= 0, . . . , p(i) — 1, belong to the complex field C. These auxiliary results give

ipper bounds for the ratio M{R)/M{r), where 0 < r < R and

nd hence for the number of zeros of E in a certain disk and for the absolute
alues of its coefficients under certain conditions. Proofs of such results typically
ivolve the use of interpolation, and recent work of this kind is described, for
xample, in van der Poorten (1977) and also in Balkema and Tijdeman (1973),
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420 Vichian Laohakosol and Jane Pitman [21

where an interpolation method is used to obtain an upper bound for
M(R)/M(r) and also to prove refinements of Turan's theorems on sums of
powers.

In 1972, Shorey (1972 a and b) initiated the investigation of corresponding
results and their applications for /?-adic exponential polynomials, that is, ex-
ponential polynomials over ttp, the completion (with respect to the p-adic
valuation | \p) of the algebraic closure of the/?-adic field Qp, for a given prime/?.
Shorey used />-adic interpolation methods modelled on the classical case, with
Schnirelman integrals in place of contour integrals. Van der Poorten (1976 a and
b) applied different methods and (1976b) obtained more refined estimates by
using a precise form of the Hermite interpolation formula. Subsequently Robba,
in a paper (1977) which came to our notice only after the present paper was
completed, gave a very simple and elegant proof, depending on the Newton
polygon, the differential equation and the power series, of van der Poorten's
theorem on zeros.

In this paper we present a different approach to p-&dic interpolation and
apply it (in sections 4 and 5) to obtain alternative proofs of theorems on
exponential polynomials corresponding to those of van der Poorten. We also use
it (in section 6) to obtain a p-adic analogue of the version of Turan's first main
theorem considered by Balkema and Tijdeman (1973), and we indicate how a
corresponding approach simplifies their proof of the complex version of this
theorem. The essence of our approach is that it avoids complicated interpolation
formulae by depending heavily on divided differences.

To indicate the kind of result obtainable by this approach, we now give, in a
slightly weakened form, our main result on exponential polynomials (Theorem 2
below), which is very close to the corresponding result on page 13 of van der
Poorten (1976b).

For fixed positive real 0, and positive integral m, p(l), p(2), . . . , p(m), let
n = 2™- iP(0.let Wi» • • • » Wm be distinct elements of Qp such that

hi , </,-'/<'-'>-' ( / = l , . . . , m ) ,
and let E be a fixed exponential polynomial function of the form

,=1 7=0

where

au S tip ( i - l m,y = a . . . , p(i) ~ !)•

Further, for fixed positive integral / and non-negative integral s,, s2, . . ., s,, let
/

5 = 2 S,,
1 = 1
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[31 Applications of />-adic interpolation 421

and let /?,, . . . , /8, be distinct elements of Q,p such that

I A I , < i (/ = i , . . . , / ) .

Let w, b, B be real numbers such that w > 0, b > 0,

\E°K Pi)/f-\P <B (0 < j < s, - 1, K i < /).

If n > 1 and

(1.1) s > (/i - 1) + ([log,(/i - 1)] + 1 - 1/ (p - \))/9,

then for each pair of integers M, N such that 1 < M < m, 0 < N < p(M) - 1,
we have

where aMN is the coefficient of z ^exp^^z) in £(z).
By applying the above theorem to an exponential polynomial with at least s

zeros in the unit circle where J satisfies (1.1), we see that the right-hand side of
(1.1) also gives an upper bound for the number of zeros in the unit circle of an
exponential polynomial which does not vanish identically. This theorem on
zeros can also be proved directly, without recourse to Theorem 2, and it will
appear as Theorem 1 below.

The work described here originated in the idea, which was due to Vichian
Laohakosol, of finding />-adic analogues of the methods of Balkema and
Tijdemann (1973) and using them to improve the results of Shorey (1972a, b) on
exponential polynomials. A more detailed discussion of /»-adic interpolation,
including an account of an earlier version of this work, is given in Laohakosol
(1978).

2. Preliminaries on/>-adic analysis.

section 1, and all functions considered have domain and range contained in iip.
Throughout sections 2 to 5, p is a fixed prime, and Qp, | \p, Slp are as defined in
ction 1, and all functions considered have domain and

For r > 0 and a function/bounded on \z\p = r, we write

M/r) = maxfl/tz)!,; \z\p = r).

We assume the basic results on />-adic analysis, most of which are set out in
Adams (1966), and, in particular we need the following results.
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LEMMA 1 (maximum modulus theorem). For given R > 0, let f be analytic in

\A,<R>

/(z)= f CjzJ (\z\p<R).
7 = 0

Then for any r such that 0 < r < R

(2.1) \f(z)\p < M / r ) for all z such that \z\p < r,
(2.2) M/(r)=max|c,|,r')

(2.3) |/»(0)|, < U ^ M / r ) ^ 0' = 0, 1, 2, . . . ).

PROOF. See the lemma following the statement of Theorem 1 of Adams and
Straus (1971) and Theorem 9 of Adams (1966).

LEMMA 2. For any positive integer m, let s(m) denote the sum of the p-adic digits
of m,

s(m) = a0 + « ! + • • • +ar

where

m = aj>' + a,_xp'-x + • • • +alP + a0, 0 < at < p - 1 (i = 0, . . . , /).

Then
| w | | _ ( -m +*("•))/(/>-1)_

PROOF. See Lemma 3.1 of Bachman (1964).

It then follows (see, for example, page 306 of Adams (1966) or Theorem 3.1 of
Bachman (1964)) that the p-adic exponential function defined by

(=0 '•

is well-defined and analytic on \z\p < / J " 1 / ( P " " 1 ) , and

\z-^> \e l\p — \z\p \\z\p ^P ) •

At one point we shall use the Schnirelman integral o f / o n the circle \z\p = R,
where/ is analytic on \z\p < p and 0 < R < p. This integral, which is defined on
page 298 of Adams (1966), is denoted by

•'O,R

It is easily shown (see, for example, Theorem 1 of Adams (1966)) that

(2.5) f f(z)dz <M/(R).
J0,R p
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3. Basic results on/>-adic interpolation

3.1 Throughout section 3, the following notation will be used: m, n are fixed
positive integers, p(i) (i = 1, . . . , m) are fixed positive integers such that

n = f P(0,
i = i

a, (/ = 1, . . . , m) are distinct fixed elements of £lp, and for / = \, . . . , m we
write a, for the p(f)-dimensional vector with all components equal to a,, so that

a, = (a,, «,, . . . , a,) G 0*'>.

As in the classical case (see, for example, Gelfond (1971)), for any given set of
elements ctJ (J = 0, . . . , p(/) — 1, i = 1, . . . , m) of Qp, there is a unique poly-
nomial P (over Qp) of the form

p(z) = "2

which we shall say is "of degree at most n — 1", such that

(3.1) p W ( o , ) - c y 0 = 0, . . . , p ( 0 - U = l , . . . , « ) .

In particular, for each pair M, N such that

(3.2) 1 < M < m, 0 < N < p(M) - 1

we denote by QMN the unique polynomial of degree at most n — 1 such that for
r, j as above

0.3) eftw{I
1.0 otherwise.

Clearly the unique polynomial P satisfying (3.1) is then given by
m P(')"1

(3-4) P(z) = 2 2 cyG,(z).

3.2 We shall be concerned with the unique interpolation polynomial P of
degree at most n - 1 such that

(3.5) pv\a,) = /» (« , ) 0 = 0 , . . . , p(i) - 1, / = 1, . . . , An),

where/is analytic in \z\p < p and

la,.^ < p.

We write

(Vo> Vi, • • • , T\n- l) = («1- «2- • • • . « J

= (a,, . . . , a,, a2, . . . , a2, . . . , am, . . . , am),
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where, in the vector on the right, each a, is repeated p(i) times, and we write

(3.6) P = / (mod T)0, . . . , TJB_ ,)

if and only if (3.5) holds. The divided differences [TJ,., TJ, + 1, . . . , T),+y; f] are
defined as follows:

h , ; / ] = / U ) (o < « < » - l) ,
and, for 0 < / ' < / + j < n and TJ, ^ Tj,+y,

(3.7) h , , . . . . W / ] [ " ^ - ^ [ ^

while, for 0 < / < / + j < n and TJ, = Tj,+y,

r,, . . . , TJ,+,; /] = hm

For (TJ0, . . . , rjn_,) a n d / a s above, if TJ, = TJ,+>, then we have

and it is easily shown that

[TJ,, • • • , Vi+J;f] = [T,,., T,,., . . . , T,,.;/] = /0>(i,,)//!.

3.3 As with Newton's formula in the classical case, it is easily shown that the
interpolation polynomial P of degree at most n — 1 such that (3.5), or equiva-
lently (3.6), holds, satisfies

n-\

(3.8) P(z) = 2 ]

(3.9) /(z) - P{z) = [z, TJ0, . . . , TJM_I ; /](Z - TJ0) • • : (z - !,„_,).

Moreover, if

maxla,^ = maxlTj,.̂  <R < p

then for/as above it is easily shown by induction that

f(z)z &
\ R (z - TJ0) • • • (z - TJ,)

It then follows from (3.9) that if

\z\p <R

then

f(z)-p(z)=f "j[ (±^k)Ji^L du.
J(),Ri = 0 \ " - T J , / ( M - z )

By applying (2.5) to this integral, we obtain the following estimate of the error.
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LEMMA 3. Suppose that

Kip < \zo\P < R < P (i = \, . . • , m),

and P is the interpolation polynomial of degree at most n — 1 such that (3.5) holds,
where fis analytic on \z\p < p. Then

| / ( z 0 ) - P(zo)\p< \zo\;R-»Mf(R).

3.4 The following lemmas give some further results on divided differences and
interpolation polynomials which will be used later.

LEMMA 4. For integral j , let P be the function defined by

(3.10) P{z) = z\

and let TJ0, . . . , r\k be given, for non-negative integral k.
(i) Suppose that |ij,|p < A for i = 0, . . . , k, andj > k; then

(ii) Suppose that TJ0, . . . , -qk are distinct, \j]\p > 1 for i = 0, . . . , k andj > 1;
then

\[v0'vi, • • •, %; i~j]\P < Iwh • • • vk\p
l-

PROOF. It is easily verified that for j > k

[I* . . . , vk; I
J] - 2 i/oV1' • • I**.[ ]

where the summation is extended over all non-negative integers s0, . . . , sk such
that

so+ st+ • • • +sk=j - k,

and (i) then follows. For any function / and distinct T)o, . . . , t]k, we have, as in
the classical case,

by applying this to both the relevant divided differences we obtain

[ V , . . . , Tfc1; P+k~l] = ( - 1 ) \ • • • Tfc[T,0, . . . , % ; I~J],

and by using (i) and the condition lij,"1^ < 1 we get (ii).

LEMMA 5. For m, n, p(l), . . . , p(w), a,, . . . , am as in subsection 3.1 and given

positive A and p, suppose that

max|a,|p < A < p
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and that f is analytic in \z\p < p with power series

f(z) = I CjzJ.
7-0

Let P be the unique polynomial of degree at most n — 1 such that (3.5) holds, and
write

Then

Pk - ck\P < max |c | AJ k (0 < k < n - 1).
j>n

PROOF. Taking T)0, . . . , t\n_l as in subsection 3.2, we see from the properties
of power series that

00

[ T , 0 , . . . , T , , . ; / ] = 2 C j [ V o , . . . , T, , . ; / > ] ( 0 < i < n - 1 ) ,
7 = 0

where Z7 is as in (3.10). By (3.8), it follows that

P(*) = I .̂P/z) = S' of + f c,̂ (z),
7 = 0 y = 0 y = n

where

n - l

i = 0

that is, Pj is the unique polynomial of degree at most n — 1 such that

Pj = / 7 (mod7} 0 , . . . ,•»)„_,).

As \i\i\p < 4̂ for all /, the /?-adic value of the coefficient of zk in
(z - 7)0) • • • (z — TJ,_^ for / — 1 > A: is at most A'~k. Also, by Lemma 4 (i)

| [ 7 ,0 , . . . , T , , ; / ' ] ! , < ,4 ' - ' .

Multiplying, we see that the/?-adic value of the coefficient of z* in CjPj(z) for
j > n is at most

I/- I 4J~'4'~k — \r\ AJ~k

\ j\p ~ I AP '

and the required inequality follows.

LEMMA 6. For m, n, p(l), . . . , p(m), a,, . . . , am as in subsection 3.1, suppose

further that

(3.11) \at\p < 1 (/ = 1, . . . , m), |a,. - o,|, > a (i
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19] Applications of p-adic interpolation 427

For given M, N satisfying (3.2), let Q = QMN be the unique polynomial of degree
at most n — 1 such that (3.3) holds, and write

Then

(k = 0, . . . , / ! - 1).

PROOF. Without loss of generality, suppose M = 1 and hence TV < p(l) — 1.
We define r\0, . . . , Tjn_, as in subsection 3.2 (so that 17, = 7)0 = a, for 0 < / <
p(l) - 1), and note that the [T)(, 17, + , , . . . , TJ,:+J; Q] are uniquely determined by
the conditions (3.3). Therefore the identity corresponding to (3.8) holds with P
and/replaced by Q, and since |TJ,-|P < 1 for all 1 it follows that for all k

(3.12) \qk\p < m a x { | [ i , 0 , . . . , 7 , , ; G ] | , ; 0 < ; < « - l } .

By subsection 3.2 (applied to Q) and (3.3) with M = 1, we see that if TJ,+7 = TJ,

then

10 otherwise.

By using (3.7) when TJ/+7- T^ T/,, we see that the divided differences before the Mh
are all zero, and that for 0 < / < n — 1 - N the M h differences satisfy

10 otherwise.
Since 1 > |i)/+7- — TJ,^ > a if T)(+J. ?t TĴ  it follows by induction on_/ (starting with
j = JV) that for 0 < j < n - 1 and 0 < i < n - 1 - j ,

and (3.12) now yields the required result.

By a more careful argument along the same lines, it can be shown that for
i + j > p(l) and / < p(l) - \ - N

This leads to the more precise inequality

(3.13) \N\qk\p < a-»<»>+i +

The following lemma is an immediate consequence of Lemma 6 and (3.4).
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LEMMA 7. For m, n, p ( l ) , . . . , p(m), a,, . . . , am as in Lemma 6 (so that (3.11)
holds), and c^j (1 < / < m,0 < j < p(/) — 1) such that

- ^ < C (1 < i < m, 0 < / < p(i) - 1),
7- /.

let P be the unique polynomial of degree at most n — 1 such that

P°X<*i) = ctj (1 < i <m,0 <j < p(i) - 1).

If\z\p > I, then

\p(z)\p < ca'-izi;-1.

4. Zeros of p-adic exponential polynomials

We shall use Lemma 5 to prove the following theorem.

T H E O R E M 1. For given positive real 0 and positive integral m , p ( l ) , . . . , p ( m ) ,
such that

n = _£ P(') > 1,

let uv . . . , u>m be distinct elements of £lp such that

(4.1) max|«,L = W < ^ - ' / ( P - D - «
i

and/ /e/ £• be an exponential polynomial of the form

m P ( ' ) - l
E(z) = 2 2 ^exp(<o,.z) (|z|

,=i y=o

ay GO, ( i = l fflJ-0,..., P(0 - 1).

/ / £ </(?« no/ vanish identically, then the number zeros of E (counted with
multiplicity) in \z\p < 1 is at most H, where

(4.2) H = n- 1+ max { °U) ~ \ \
Kj<n-\\(p - 1)0 /

and s(j) denotes the sum of the p-adic digits of j , as in Lemma 2.

The value of H given here is the same as that obtained by Robba (1977),
whereas van der Poorten (1976b) gives

(4.3) H<n- 1 + Q J

which is very close to (4.2), since s(J) < ([logy] + !)(/> — !)•
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Our estimate of the number of zeros of E will be derived by obtaining upper
and lower bounds for ME(R)/ME(r) for suitable R, r such that 1 <r <R <pe,
and, as in the classical case, the required upper bound is obtained by using an
appropriate interpolation polynomial, which we now introduce.

For fixed v E. Slp such that

R<p\

let/be the function analytic in \z\p < p l/(p l) 9 defined by

/(z) = exp(uz).

Let P be the unique polynomial of degree at most n — 1 such that for i,j as in
Theorem 1

The following lemma gives the connection between E and P.

LEMMA 8. Let v, E(z), P(z) be as above and let

Then

E(v) = "2 j
j-o

PROOF. The proof is as in the classical case, for example, see in the proof of
Lemma 1 page 121 of Baker (1975).

We now use this lemma to get our upper bound for ME(R)/ME(r).

LEMMA 9. Let 0, W, and E be as in Theorem 1, so that (4.1) holds, and let r and
R be such that

1 <r <R <p9.

Then

ME(R) < ME(r)R max r^Wl~J\j\\p.
1 <y < 1

In particular, for given positive 0 and e such that 9 > 2e, we have

ME{p"-') < PKME(p'),
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where

(4.4) K = max
Kj<

( ^
Kj<n-l { p ~ 1

< (« - 1)(0 - e) + max ^ -

PROOF. By applying Lemma 8 with v such that \v\p = R and using (2.3) of
Lemma 1, we deduce that

(4.5) ME(R) -

By applying Lemma 5 and using the facts that Ico,̂  < W (from (4.1)) and that

/(z) = exp(uz) = 2 — zJ,

with \c\p — R,v/e see that

(4.6) \p/.\p < max(#, r n a x l y l ^ ^ p J .

Now as n > 1, it follows from (2.2) of Lemma 1 and (2.4) and (4.1) that

(RW)'
max y ' < max{|ez - 1|,; \z\p = RW} = RW.

Moreover, since RW <pl/ip~l) by (4.1), Lemma 2 implies that fory' > 1

RJ < U l l ^
Thus the required inequality for ME(R) and ME(r) now follows from (4.5) and
(4.6), on noting that, by (4.6), \po0\\pr-° < 1 < Rr~l.

Taking R = p9~e and r = p" and using Lemma 2 again to estimate \j\\p, we
obtain the final result.

PROOF OF THEOREM 1. We now suppose that E does not vanish identically and
hence has a finite number, h, say, of zeros in \z\p < 1 (as follows, for example,
from Theorem 14 of Koblitz (1977)). Let a,, . . . , ah be all zeros of E(z) in
\z\p < 1. Define the function g by

(z - a,)(z - a2) • • • (z - ah)

Clearly, g is analytic in \z\p <pe. Hence, for any r, R such that 1 < r < R <p9,
we have, using Lemma 1,
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and hence

* \ * ^ ME(R)

ME{r) '

For fixed e satisfying 0 < e < \0, take R = pe~e, r = pe. Then by Lemma 9

( 4 ) * = p ( e ~ 2 ' ) h < pK>

where AT is given by (4.4). It follows that

K . ,. 0 - e

Letting e -» 0, we obtain

* < „ - ! + max

as required.

Uj < n — 1 </», then s(J) = 7. Hence we obtain

COROLLARY 1. Let the hypotheses of Theorem 1 be satisfied. If n < p, then the
number of zeros, h, of E in \z\p < 1 satisfies

h < l +
 n ~ 2

For all n, we have

h<n-\+ ( [ l o g > - 1)] + 1 - 1/ (p - \))/0.

We note also that exclusion of the case n = 1 from the above results does no
harm, since by (2.4) we already know that if n = 1 then ^ ( z )^ = \aoi\p for all z
such that \z\p <pe.

5. Coefficients of p-adic exponential polynomials

As a further application of our bound for ME(R)/ME(r) in Lemma 9, we
prove the following theorem, which is independent of Theorem 1 but uses, in
addition, Lemmas 3, 6 and 7.
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THEOREM 2. Let 9, W and E be as in Theorem 1, so that (4.1) holds, and far
given positive integral I and non-negative integral s{, . . . , s,, let

i

s = 2 s,,
i - i

and let fix, . . . , fii be distinct elements ofUp such that

IAI, < i (/ = i , . . . , / ) .
Let w, b, B be real numbers such that w > 0, b > 0,

|«, - aj\p > w (

\E°\ P,)/jl\p <B (0<j<s,-l,0<i< I).

If s > H, where H is given by (4.2), as in Theorem 1, then for each pair of integers
M, N such that

1 < M < m, 0 < N < p(M) - 1,

we have

\N\aMN\p <wx + N-"bx-*B,

(where aMN is the coefficient of z Nexp(uMz) in E(z)).

In order to estimate the coefficient aMN, we use the following lemma.

LEMMA 10. For fixed positive integers M, N, let

be the unique polynomial of degree at most n — 1 such that

0 otherwise,

where i runs from 1 to m and] runs from 0 to p(/) — 1 with

p(l) + • • • +p(m) = n.

Then

7=0

PROOF. See section 5 pages 87-88 of Mahler (1967).

We now prove Theorem 2, and so we suppose that s > H, where H is given by
(4.2). By Lemma 10 and (2.3) of Lemma 1 we have that for any r such that
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\<r<pe,

\N\aMN\p< max \N\qJ[pr^\j\\pME{r).
0 <j < n — 1

By Lemma 6, it follows that

(5.1) \N\aMN\p < wi+N-"ME(r).

We must now estimate ME(r) and to do this we use an interpolation poly-
nomial P, the unique polynomial of degree at most s — 1 such that

Pw( /?,) = £a >( ft) (/ = 1, . . . , l;j = 0, . . . , st - 1).

By Lemma 3, for any R such that 1 < r < R <p$, we have for \z\p = r,

\E{z) - P(z)\p < ( ^ ) V W -

For any e such that 0 < e < \9, we may take R = pe~', r = />'. Then it follows
from the above inequality and Lemma 9 that for \z\p = p',

\E(z) - P(z)\p < p-«°-^ME(R) < P
LME(r),

where

L = -s(0 - 2e) + (n - 1)(» - e) + max J ^
l < < l P — \

Since s > H, where H is given by (4.2), it follows that if e is sufficiently small,
then L < 0 and so

\E{z) - P{z)\p < ME(r),

and hence, by the strong triangle inequality

ME(r) = MP(r).

Also, by Lemma 7, since r > 1, we have

MP{r) < Bbl~srs~l.

We now see, by (5.1), that for all e > 0 sufficiently small

from which the required result follows by letting e —> 0.
A more precise result could clearly be obtained (as is done in Laohakosol

(1978)), at the price of more notational complexity, by using the more precise
version (3.13) of the inequality in Lemma 6 and a corresponding refinement of
Lemma 7. The result of van der Poorten (1976b) corresponding to the above
theorem again has H defined by (4.3).

https://doi.org/10.1017/S1446788700017900 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017900


434 Vichian Laohakosol and Jane Pitman

6. Turan's first main theorem on sums of powers

[161

In order to derive a /?-adic version of Turan's first main theorem, we shall
require the following lemma, which follows easily from the strong triangle
inequality.

LEMMA 11. Let Q{z) = S^=o Qkzk be a p-adic polynomial. Then for any two
sequences TJ0, TJ,, . . . , i\r and b0, bt, . . . , br of elements of$lp, we have

i \l -
< I max |qrA| )l max

0<A<n \ 0 < i < n

PROOF. See Shorey (1972b), Lemma 6.

We shall now prove

THEOREM 3 (p-adic analogue of Turan's first main theorem). Let m, n be two
non-negative integers, and let b0, . . . , bn and TJ0, . . . , T,B be two sequences of
elements of Slp. Then there exists an integer v with m + \ < y < / w + / i + l such
that

k = Q

>

p

n

2 K
k = 0

mm |
, 0<Kn

'U\p-

P R O O F . We may suppose without loss of generality that

mm |
0<(<n

1,

and by using continuity we may also suppose that T)0, . . . , rjn are distinct. Thus

we must show that there exists an integer v with m+l<i><m + n+\ such

that

where TJ0, . . . , rjn are distinct. Using the notation (3.10), let Q be the unique
polynomial of degree at most n such that

(6.1) Q = / — ' (mod T,0, . . . , r , J .

By (3.8), we have

( 6 . 2 ) Q{z) = 2 [•%> - . . , % ;
k=0

say. Lemma 4 (ii) shows that

-x](z - r , 0 ) • • • ( z - Tfc

| r , 0 - • -Tfcl ; 1 ( 0 < k < n ) ,

= 2 1kz
k,

k-0
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and hence, using the condition \-q^\p > 1, we see that

\qk\p < 1 (0 < k < n).

Since Q(r}i) = vFm~'»it now follows from Lemma 11 that

max
0 < i < n

Writing bk-qk
m+l for 6t , we get the required result.

In fact, as we shall now show, the above approach also leads to simplification
of the proof in the complex case by Balkema and Tijdeman (1973) of the version
of Turan's first main theorem due to de Bruijn (1960) and Makai (1959), which
appears as Theorem C of Balkema and Tijdeman.

THEOREM 3'. Let m and n be non-negative integers, and let b0, . . . , bn and
TJ0, . . . , i\n be sequences of complex numbers. Then there exists an integer v with
w + 1 <i><m + n+l such that

2 *, min |
0<i<n

The proof depends on the following classical analogue of Lemma 4, which is
proved in the same way as Lemma 4, except that the ordinary triangle inequality
must now be used.

LEMMA 4'. For integral j , let P be defined by

P(z) = ZJ (z e C),

and let rj0, . . . , r\k be given elements of C,for non-negative integral k.
(i) Suppose that |TJ,| K A for i = 0, . . . , k, andj > k; then

(ii) Suppose that TJ0, . . . , t]k are distinct, |TJ(-|J,

then
> 1 for 0 < i < k, and j > 1;

We now prove Theorem 3'. As before, it is sufficient to prove that if
TJ0, . . . , rfk are distinct and |T),| > 1 for all /', then the given inequality holds with
1 in place of min|7)1|

1', for some v such that m + 1 < v < m + n + 1. Once again
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we take Q as the unique polynomial of degree at most n such that (6.1) holds (in
the classical sense), we write

n

Q(z) = 2 <7*z*>

and Q is again of the form (6.2). By Lemma 4',

| [ r , 0 , . . . , V k ; r m ~ l ] \ < (m + k ) \ V o - • • Vk\'
1 ( 0 < k < n ) ,

and so it follows from (6.2) and the condition |rj,| > 1 that

k=0

say. It is easily seen (as in Balkema and Tijdeman (1973), Lemma 1) that

2 bkQ(r,k) < 2 Iftl

and since g(-rj,-) = V, m '» w e obtain

< C. max

which gives the required result as before.
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