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What conditions determine when a collection of points A lies on a collection 
of parallel lines each member of which intersects a set B? In order to describe 
these conditions the following notations and definitions are used. Also for 
earlier results see Robkin and Valentine (2). 

Notations. We use the following abbreviations where En is ^-dimensional 
Euclidean space and where S C En, x £ En, y G En: 

cl 5 = closure of S, int 5 = interior of S, 

bd 5 = boundary of S, conv S = convex hull of 5, 

xy = closed line segment joining x and y when x ^ y, 

L (xy) = line determined by x and y when x ^ y, 

0 = empty set, 0 = origin of S. 

The symbols \J, P\, and ~ are used for set union, set intersection, and set 
difference respectively. 

DEFINITION 1. A set of points A in En has the m-point parallel line intersection 
property P(m) relative to a set B in En if every collection of m or fewer points of A 
lies on a collection of parallel lines each member of which intersects B. 

The set A in En is said to have the parallel line intersection property P(A) 
relative to the set B in En if all the points of A lie on a collection of parallel lines 
each member of which intersects B. 

In this treatment we shall characterize those compact convex sets B in the 
plane £2 such that if A is a closed connected set in Ei which is disjoint from B 
and which has property P(m) relative to B, then A also has property P(A) 
relative to B (m is an integer). 

The concepts of ''exposed point" and ''antipodal points" play a crucial 
role in this development. 

DEFINITION 2. A point x in the boundary of a closed convex set B C E2 is 
called an exposed point of S if there exists a line of support L to B such that 
LC\B = x. 
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DEFINITION 3. A pair of distinct points x and y are antipodal points of a plane 
convex set S if there exist two parallel lines of support to S, say L\ and L2, such 
that L\ C\ S = x, L2 O S = y. 

The following theorem contains the most general results for compact 
convex sets B in E2. The reader is advised to glance ahead to Corollaries 1 and 2 
in order to appreciate the content of the theorem more fully. In the following, 
m is a fixed positive integer. 

THEOREM 1. Let B be a compact convex set in the Euclidean plane E2. 
(a) If m > 2 and if each closed arc in bd B whose end points are antipodal 

points of B contains at most m exposed points of B, then each closed connected 
set A C E2 which is disjoint from B and which has the m-point parallel line 
intersection property Pirn) relative to B also has the parallel line intersection 
property P (A ) relative to B. 

(b) On the other hand, if there exists a pair of antipodal points which are the 
end points of a closed arc in bd B containing at least m + 1 exposed points of B, 
then there exists a closed connected set A which is disjoint from B, which has 
property P(m) relative to B, but which does not have property P(A) relative to B. 

Proof. To prove (a) when m > 2, first observe that if A lies in the closed 
strip bounded by two parallel lines of support to B, then A obviously has 
property P(A) relative to B. Hence, suppose A does not lie in any such strip. 
In this case, however, there exist two parallel lines of support, say L(x) and L(y), 
such that x and y are antipodal points of B with L(x) r\ B = x, L(y) Pi B = y, 
and such that A has points in each of the two components of the complement of 
the strip conv (L(x) KJ L(y)). This is easy to prove as follows. First, since the 
two end points of a diameter of B are a pair of antipodal points of S, the 
hypotheses in (a) imply that B has a finite number of exposed points, so that 
bd B is a convex polygon. Since we are assuming that A is not contained in a 
closed strip bounded by a pair of parallel supporting lines to B, there exists 
a pair of parallel supporting lines of B, say L(u) and L(v), such that points 
of A lie in at least one of the two open components of the complement of 
conv (L(u) \J L(v)). Now rotate the lines L(u) and L(v) about bd B in such 
a way that they remain at all stages parallel lines of support to B. Since a 
rotation through -K radians interchanges L(u) and L(v), and since A is a closed 
connected set disjoint from B, and since we have assumed that no parallel 
strip of support contains A, there must exist a pair of parallel lines of support 
L(x) and L(y) to B such that A intersects both components of 

E2 ~ conv (L(x) U L(y)). 

If x and y are not both antipodal, then a sufficiently small rotation of L(x) and 
L(y) in the appropriate direction will yield two parallel lines of support of 
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the type described in the above italicized sentence. This is illustrated in 
Fig. 1. 

FIGURE 1 

Now, to complete the proof, the lines determined by the edges of bd B 
divide E2 into convex parts. If xt is a vertex of B, let V(xt) be the closed 
F-shaped region abutting B externally at xu and if xtxi+i is an edge of B, 
let V(xt xi+i) be the open half-plane that abuts B externally along L(xt xi+i). 
Return to the two parallel lines of support described above and illustrated in 
Fig. 1. There exists an arc of bd B joining x and y, denoted by arc xy, with 
consecutive vertices (relative to an order on bd B) 

Xy Xi , x2j . • . y x$, y} 

such that if we define A t (i = 1, . . . , r) as follows: 

A0 = A H V(xxi), Ai = A n V(xi), A2 = AC\ V(xix2), 

Az^ A r\ V(x2), . . . , Ar ^ A C\ V(xsy), 

then 

A r\Ai 9^ 0 (i = 0, . . . , r ) , 

where r depends on s. Also since arc xy contains at most m exposed points of B, 
we have 

(2) s < m - 2. 

To continue, for each point x G A, let C(x) denote the union of all rays that 
emanate from x and intersect B. Also let D(x) be that translate of C(x) such 
that x goes to the origin 0 of E2. Clearly D(x) is a closed convex cone having 0 
as its vertex, and D(x) ~ 0 is contained in an open half-space bounded by a 
line through 0 since A P\ B = 0. We shall prove that there exists a ray R 
emanating from 0 such that 

(3) RQr\IiAD{x). 
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At this point it should be noted that although the hypotheses of Theorem 1 
imply that every m members of the two-napped cones determined by D(x), 
x f i , and their reflections through 0 have a line in common, this, in itself, 
does not imply (3) without additional argument. Next, observe that if 

a £ Au 6 Ç Ai+1, xo G Ai+2 

(see (1)), then property P(m) (m > 2) implies that 

(4) Dia) r\D(b)r\D{xo) * 0. 

By a simple induction, property P(m), m > 2, and the condition (2), namely 
s < m — 2, imply that condition (4) also holds for every three points a, b, x0 

in the set 

(5) Q=UAt. 

Let C = [x : ||x|| = 1] be the unit circle with centre at 0 and fix a point 
Xo G Q. Each of the elements of the collection 

9JÎ s {Cr\D(a)r\D(x,),a Ç Q] 

is a compact arc of C which is less than a semicircle. Condition (4) implies 
that every two members in 2ft have at least one point in common with a 
semicircular arc of C. Hence Helly's theorem for 1-dimensional space (1) 
implies that there exists a point u in common to all the members of 2)?. {Helly's 
theorem. Let % be a family of compact convex sets in En containing at least 
n + 1 members. If every n + 1 members of % have a point in common, then 
all the members of g have a point in common.) Let L be the line determined 
by 0 and u9 and for x G A let Lix) be that line through x which is parallel 
to L. Clearly the definition of C(x), x £ A implies L(x) Pi B ^ 0 for x Ç Q. 
This implies that the set Q given by (5) lies between two parallel lines of 
support to B, denoted by L(c) and L(d). However, since Q intersects both 
components of the complement of conv (L(x) VJ L(y)) (see Fig. 1), then at 
least one of the two parallel lines L(c) and L(d) will support B in such a way 
that the set A is not connected. Thus we have arrived at a contradiction, 
and therefore A does lie between two parallel lines of support to B, and state
ment (a) has been proved when m > 2. 

When m = 2, the hypotheses in (a) imply that B is either a point or a closed 
line segment. In this case condition (3) follows immediately from Helly's 
theorem, and statement (a) is also true. Hence (a) has been proved. 

To prove statement (b) for m > 1, let x and y be a pair of antipodal points 
such that an arc xy in bd B contains at least m + 1 exposed points of B. 
Let xi, #2, . . . , xm-i designate m — 1 consecutive exposed points on arc xy, 
ordered from x to y between x and y. There exist parallel lines of support 
L(x) and L(y) to B such that L(x) C\ B = x, L(y) C\B = y. Let L(xt) be a 
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line such that L(xt) C\B = xt (i = 1, . . . , m — 1). Then there exist points 
%ij, y h Jm-i such that 

L(xt) C\ L(XJ) = Xij (i?*j,i,j = l,...,in- 1), 
L(x) C\ Lioci) = yh 

L{y) C\ L(xm-i) = ym-i. 

Extend the segment %\ y\ to xi x0 and extend xm_i ym-i to xm~i xm so that 
x0 G int H, xm G int i7, and so that 

rfix (L(x0 X) H L(jxm«i) H Zf ^ 0, 
^Dj (L(xm y) C\ L(pcxi) H i f ^ 0, 

where H is the half-plane bounded by L(xy) which contains arc xy. Define 

A i = Xo Xi2 U Xi2 X23 W . . . U Xw_2,w_l Xm. 

We shall modify A i to obtain 4̂ as follows. At the vertex xi replace a segment 
a of Xo X12 with mid-point Xi by a semicircular arc C\ which misses B and which 
has its end points at the extremities of a, as illustrated in Fig. 2. Perform the 

FIGURE 2 

corresponding construction at each of the vertices xt (i — \, . . . ,m — 1). 
The resulting connected set consisting of line segments and semicircular arcs 
is the set A. Clearly A C\ B = 0. Now we shall prove that the radii rt = r of 
the arcs Ci (i = 1, . . . , m — 1) may be chosen sufficiently small so that A 
will have property P(A) relative to B. First, the radii rt = r can be chosen 
sufficiently small so that each of the sets A ~ d (i = 1, . . . ytn — 1) has 
property P(A) relative to B. Furthermore, if zt Ç d (i = 1, . . . , m — 1) 
and if zm is any other point of A\, then we may choose the radii rt = r smaller, 
if necessary, so that the set of points {zh z2, . . . , zm} have property P(m) 
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relative to B because of condition (6). To see this, suppose, without loss of 
generality, that zm Ç x0 yi, zm 9^ y\. In this case if r is sufficiently small the m 
lines L(zt) (i = 1, . . . , m), where zt £ L(zt), which are parallel to L(zm x) all 
intersect B because of condition (6). Combining both evaluations for the 
radii rt = r, we see that A has property P(m) relative to B. However, the set 
A does not have property P(A) relative to B obviously (see Fig. 1). Hence, 
statement (b) has been proved when m > 1. When m = 1, the proof is trivial. 

COROLLARY 1. Let B be a compact convex set in the Euclidean plane E2 which 
contains at most m exposed points with m > 2. (Hence bd B is a polygon.) 
Then each closed connected set A in E2 which is disjoint from B and which has the 
m-point parallel line intersection property P(m) relative to B also has the parallel 
line intersection property P(A) relative to B (see Definition 1). 

COROLLARY 2. Suppose that B is a compact convex set in E2 and suppose that 
B contains at least 2m — 1 exposed points (m is a positive integer). Then there 
exists a closed connected set A in E2 which is disjoint from B, which has the 
m-point parallel line intersection property P(m) relative to B, but which does not 
have the parallel line intersection property P(A) relative to B. 
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