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DOMINATED EXTENSIONS OF FUNCTIONALS AND
V-CONVEX FUNCTIONS ON CANCELLATIVE CONES

S. ROMAGUERA, E.A. SANCHEZ PEREZ AND O. VALERO

Let C be a cancellative cone and consider a subcone Co of C. We study the natural
problem of obtaining conditions on a non negative homogeneous function <j>: C -> R+

so that for each linear functional / defined in Co which is bounded by <j>, there exists
a linear extension to C In order to do this we assume several geometric conditions
for cones related to the existence of special algebraic basis of the linear span of these
cones.

1. INTRODUCTION

Let R be the field of real numbers and let R+ be the set of non-negative real numbers.
A cone C is a triple (C, +, .) such that (C, +) is a monoid and the product . : i ? + x C - > C
satisfies the usual axioms of a linear space when restricted to non negative scalars. A
subset B of a real linear space X is said to be algebraically closed when a + b € B and
\a € B for each pair a,b € B and A G R+. It can be proved that each cancellative cone
can be identified with an algebraically closed subset of a linear space (see [2, 11]). A
non negative function <j> defined on a cone C is called positively homogeneous if <j>(ax)
= a<p(x) for every x € C and a € R+. Such a function is convex provided that <f>(x + y)
< <t>(x) + (j){y), x,y £ C. In [6] the reader can find several results related to extensions
of such kind of functions defined from cancellative cones to linear spaces.

It is possible to find a lot of dominating extension results for functionals defined on
cones in the bibliography (see for example [2, 11, 1]). However, these results depend on
particular properties of the dominating function </>, for which is usual to require convex-
ity. Arguments related to order relations defined in the cones are also used (see [13]).
Moreover, the results are often obtained for extended functions cj> (that is, functions <j>
defined in the extended non negative real line i?+U{oo}). In this paper we deal with can-
cellative cones that satisfy a geometric condition related to certain generating properties
of algebraic basis of the linear space that contains the cone. We obtain those conditions
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that a positively homogeneous real function <j> defined on a cancellative cone C must have
so that each linear function defined on a subcone Co and dominated by <f> has a linear
extension to the whole C.

Our notation is standard. The natural numbers will be denoted by N. The main
references about the Hahn-Banach Theorem for linear spaces and cones are [12, 2, 11].
If B is a subset of a cone C, we define span{B} as the set of positive linear combinations
of elements of B, that is, the elements of span{5} would be written as Ai^i H \- Xnxn,

where n is a natural number, Aj € R+ and xt € B for every i = 1 , . . . , n. It is obvious
that span{B} is a subcone of C. Since C is a subset of a linear space X, we can also
consider the linear subspace linspan{B} of X defined as the (non necessarily positive)
linear combinations of elements of B. If C is a cancellative cone and B is a basis of
linspan{C} we shall simply say that B is a basis of C. Thus, we shall say that the
dimension of a cone C is n if the dimension of linspan{C} is n, n G N U {oo}.

DEFINITION 1: Let C be a cancellative cone and let Co be a subcone of C. We
say that Co is compatible with an algebraic basis V — {v{ : i G 1} of linspan{C} (In-
compatible for short) if there is a subset J oil such that Vo = {vi : i € J} is an algebraic
basis of linspan{C0}.

It is well known that each linear space X has an algebraic basis. Moreover, if W is
a basis for a subspace 5 of AT, it can be always found a basis V for X such that W CV
(see [8, Theorem 2.4, Chapter IV]). This means that for each subcone Co of a cancellative
cone C there exists always a basis V of C such that Co is V-compatible.

DEFINITION 2: We say that a cancellative cone C is well generated by an algebraic
basis V = {v{ : i € / } of linspan{C} if for every subset J of I and each i0 € / - J, we
can find for every element

y € linspan{{v, : i G J}, vio} n C,

a representation y — x + Xvio, where x £ C C\ linspan{uj : i € J} and A 6 R.

It is easy to find examples of well generated cones by algebraic basis. For instance,
every linear space is well generated by any algebraic basis. Another easy example is
the positive cone of Rn, that is well generated by the canonical basis of Rn. However,
we can find examples of cones that are not well generated by particular basis. For
instance, consider the positive cone (R3)+ of R3 and the basis given by the set of vectors
B = {(1,1,0), (1,0,1), (0,0,1)}, where (x,y,z) are the coordinates with respect to the
canonical basis. The element (0,1,0) of the positive cone of R3 can not be written as a sum
of an element of linspan{(l, 1,0), (1,0,1)} n {R3)+ and an element of linspan{(0,0,1)}.

2. V'-CONVEXITY AND DOMINATED EXTENSIONS OF FUNCTIONALS.

DEFINITION 3: Let C be a cancellative cone. Consider an algebraic basis V = {vt :
i G / } of C. Let Co be a V-compatible subcone of C with a basis Vo = {vt : i G J } ,
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j c / , J ^ / . We say that a positively homogeneous function 4> is V-convex with respect
to Co if for every i e I - J and x,y € Co such that x + vuy -vt e C,

<t>(x + y) ^<ftx + Vi) + 4>(y-Vi).

It is easy to see that convexity for the function <j> implies V-convexity with respect
to every V-compatible subcone Co and each algebraic basis V. The following example
shows that the converse is not true, that is, we can find a V-convex function with respect
to a one dimensional subcone of a semiplane of R2 that is not convex.

E X A M P L E 4: Consider the canonical basis B = {ei,e2} of R2 and the cone C
= span{ei,e2, —e2}. We can consider the subcone Co = span{ei} and the function <j>0

given by
<t>Q(z) = A + |/i|, z = \ex+ne2, A > 0, \i € R,

and <f>0(Xe2) = <#o(-Ae2) = 0 for every A e R+.

This function is not convex, since $o(ei+e2) = 2 but ^o(ei) = 1 and <fo(e2) = 0. However,
it is S-convex with respect to Co, since for each Aj, A2 > 0,

A2ei) = Xx + A2 < Xi + A2 + 2 = <t>o(^iei + e2) + 0o("^ei - e2),

and in the case that Ai = 0 or A2 = 0 the inequalities also hold.

DEFINITION 5: We say that a cone C has the 1-extension property with respect to
4> if for each one dimensional subcone D of C and each linear function / : D —> R such
that / ^ <j> on D there is a linear extension f to C that satisfies f(x) ^ 4>{x) for every
xeC.

THEOREM 6. Let C be a cancellative cone. Consider a positively homogeneous
function <$>: C —> R+. IfC has the 1-extension property with respect to (j>, then for every

algebraic basis V of C and every V-compatible subcone Co, </> is V-convex with respect

to Co.

PROOF: Let V be an algebraic basis of C. Suppose that <j> is not V-convex with
respect to the V-compatible subcone Co- Let Vo C V be a basis of Co- Then there
are elements Vi £ V — VQ and x, y G Co such that x + vt,y — Vi £ C and 4>{x + y)
> 4>(x + Vi) + <f>{y — V{). We can define the linear function / : linspan{x + y} DC -> R
by f(X{x + y)) := X<j>(x + y), A e R. We have that linspan{x + y} D C C Co- By the
1-extension property with respect to (j) of C we can extend / to a function f0 : Co -> R
that satisfies fo(z) ^ <j>(z) for every z € Co- But for such an extension we have

fo[x) + My) = f(x + y) = (f>(x + y)> 4>(x + v{) + 4>{y - V i ) ,

and then

fo(y) - <t>{y - ^) > 4>{x + v^ - fo(x).
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Let us show that we can not define an extension / of the restriction of f0 to linspan{z, y}

D C dominated by 4> to the subcone linspan{x, y, V{} D C, which provides a contradiction

since there is a dominated extension to the whole C. Suppose that there is such an

extension / that satisfies f(y — Vi) ^ <j>{y — V{). There must be an a with f(y — Vi)

— f(y) — a< a n d t n e n w e obtain

a > 7(y) - 4>(v - ^ > <t>{* + «0 - /(*)•

Thus,
7(x + Vi) = J(x) +a> 7(x) + <f>{x + Vi) - J(x) = <j>(x + v^,

and hence / can not be dominated by <j>. D

LEMMA 7 . Let C be a cancellative cone and let Co be a subcone ofC. Let f be
a linear function f : Co —» R. Then the set (Co) — linspan{C0} DC is a subcone of C
and the extension f(Co) of f to (Co) given by f(co)(z) := f(x + z) - f(x), where x e Co

is an element such that x + z € Co, is a well-defined linear map.

PROOF: It is clear that (Co) is a cone, since linspan{C0} and C are cones. Let us
show that /(Co) is a well-defined linear map. First we show that for every z € (Co) there
is an element x € Co such that x + z £ Co. Indeed, there are elements u, v € Co such
that z = u — v, since Co is a subcone and z 6 linspan{Co}, and then z + v = u e Co-

Now, suppose that there are two elements x,y e Co such that x + z, y + z € Co. Then
f{x + z) + f(y) = f(x + z+ y) = f(y + z)+f(x) and f{x+ z)-f{x) = f(y + z)-f(y).

Thus, f(c0) is well-defined. Straightforward calculations show that f(CQ) '• {Co) -> R is a
linear function. D

The following theorem gives conditions for a function <j> satisfied a dominated exten-
sion theorem for every linear function defined on a particular subcone Co-

THEOREM 8 . Let C be a canceWative cone. Consider a positively homogeneous

function <f> : C —¥ R+. Let V be an algebraic basis such that C is well generated by V,

and let Co be a V-compatible subcone. Then the first of the following statements implies

the second one.

(1) The function <f> is V-convex with respect to each V-compatible subcone

that contains CQ.

(2) For every linear function f : Co —> R such that

there is an extension f to C satisfying f(z) < <j>(z) for every z € C.

PROOF: Let / : Co —> R be a linear function satisfying the condition (2). Consider

the subcone (Co) of C and the extension /(Co) of / given by Lemma 7. The definition of

f(Co) makes clear that f(co)(
z) ^ <f>(z) f°r e a c n z e (Co). Moreover, a direct argument
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shows that (Co) is V-compatible if C is well generated by a basis V = {vi : i € I}.

Consider a 1-dimensional non trivial extension of (Co) given by an element vt 6 V such

that

d = linspanjui, (Co)} DC ^ (Co).

For each element z of Ct- there is a unique representation as a sum z = x + Xvi, X 6 R,

since C is well generated by V. Then we define the extension by mean of the formula

fi(z) := f(Co)ix) + Aa, where a must satisfy

a ^ inf{</>(z + v^ - /<co)(z) : x € (C0),x + v{ 6 d} = ax

and

a ^ sup{/(Co)(z) - 0(x - vt) : x € (C0),x - v{ € Cj} = a2.

Given an e > 0, we can find ii,X2 € (Co) such that

<j>(xi + v^ - f{co){xi) < on + e

and

a2-e < f(co){x2) - HX2 - v^.

The following inequalities are consequences of the V-convexity of 4> and show that there

exists such an a , since

f(CQ){xi) + /<Co)(Z2) = /<CO)(Z1 + X2) < 0(X1 + X2)

and then

a2 - e < f(co)(x2) - <t>(x2 - v^

Now let us show that fi(z) ^ <f>(z) for every z of C<. If z = x + Aui, where A ̂  0, we

obtain

On the other hand, if z = x — /xi;, for ji ̂  0,

/ •W = f(Ca){x) - na ̂  /<co>(a0 -

We have shown that there is a non trivial extension of the linear function /(co>

to Ci induced by the element Vi € V. Since Co is V-compatible, there is a subset J

of / such that linspan{i;j : i € J} (~l C = (Co). Consider the set K = I - J. If

L C K, we define the subcone C ,̂ of C given by Ci — linspan{L U J} n C. Note that

Co C (Co) C CL and (CL) = Ct for every L C K. Take the family of subcones of C

given by T = {CL- L C K} and define the family of extensions

?={(CLtfLJl):Cl.eT,teT},
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where T is a collection of index such that for each L C K and t € T, fLit : CL -¥ R
extends /(Co) and JLAZ) ^ <^(z) f° r every 2 € CL- Note that the well generation of C by
V implies that for each L and for each r which is not in L U J, if z s linspan{tv, Cz,} n C
there is a A 6 iJ and an element x £ CL such that 2 = x + XvT. We can define an order
relation in T in the usual way, that is, {CL, fitt) ^ (C#, fu,s) HCL C C# and ///i3 extends
/ t i t . To see that every chain gives an upper bound, it is enough to consider the union of
all the elements of the chain and the corresponding natural definition of the extension.
Moreover, such a union can also be written as an element of J-. Since we have shown
that T is non void, we can apply Zorn's Lemma to find a maximal element (CM,JM,T)-

The proof finishes with the observation that CM = C. If this is not the case, we could
find an element vr € V such that CM / linspan{ur, CM} l~l C. The same argument given
for the construction of the one dimensional extension in the begining of the proof would
give a proper extension of {CM, /M,«-)> which contradicts its maximality. D

COROLLARY 9 . Let C be a cancellative cone and let </>: C -* R+ be a positively
homogeneous function. IfC has the 1-extension property with respect to <j>, then for every
algebraic basis V such that C is well generated by V, for every V-compatible subcone Co
and for every linear function f : CQ —> R such that

f(x + z) - f{x) ^ <t>{z), x, x + z e Co, z € C,

there is a dominated extension f to C, that is, f{z) ^ <j>{z) for every z € C.

We conclude this paper with an application to the case of linear spaces. If the cone
is a linear space it is well generated by any algebraic basis. Note that similar arguments
could also be used for cones with the same kind of geometric properties. In this case we
obtain, up to a point, an equivalence between V-convexity, the existence of dominated
extensions for functions defined on subcones and the 1-extension property.

DEFINITION 10: Let £ be a linear space. We say that a positively homogeneus
function <t>: E —> R+ is a Hahn-Banach function for E if for every subspace Eo of E and
each algebraic basis V such that Eo is K-compatible, then every K-compatible subspace
Ec that contains Eo, <j> is V-convex with respect to Ec.

COROLLARY 1 1 . Let E be a linear space and let <j>: E -t R+ be an homogeneous
function. Then the following are equivalent.

(1) (f> is a Hahn-Banach function for E.

(2) Ifx,y,z € E and z ^ 0 is not a linear combination of x and y, then

(3) For every subcone Co of E and every linear function f : Co -> R such that

f{x + z) - f{x) < <j>(z), x,x + z€C0,zeE,
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there is a linear extension f to E dominated by <f>.

(4) T i e space E has the 1-extension property with respect to <f>.

PROOF: The equivalence between (1) and (2) holds from the fact that each linearly

independent subset of a linear space can be used to construct an (algebraic) basis for the

space (see [8. Theorem 2.4, Chapter IV]). To prove the equivalence of (1) and (3) it is.

enough to note that the existence of a dominated extension for every linear functional

defined in a subcone Co of E is a direct consequence of Theorem 8. On the other hand,

(3) implies in particular that E has the 1-extension property with respect to (j>. Finally,

(4)—>(1) is a consequence of Theorem 6. D

Following [4, 5, 6, 7], an asymmetric norm (quasi-norm in [1, 3]) on a linear space

E is a non negative real valued function || • || on E such that for all x,y € E and A € R+,

(i) |N | = | | - x | | = 0 ^ a ; = 0;

(ii) ||Ai|| = A ||a:||; and

(hi) ||z + y|K||z|| + |M|.
The pair (E, \\ • ||) is then called an asymmetric normed linear space.
Each asymmetric norm || • || on £" induces in a natural way a topology on E which

has as a open neighbourhood basis for each x € E the sets of the form {y 6 E : \\y - x\\

< r},r > 0.

Recent applications show that asymmetric norms contitute an efficient tool in the
study of some problems in the theory of computational complexity ([10]) and in approx-
imation theory ([9]).

Since every asymmetric norm is a positively homogeneous function, we can obtain a
Hahn-Banach type theorem as a consequence of Theorem 8. This will be done with the
help of the following result, which can be found in [1].

LEMMA 12 . Let (X, || • ||i) and (Y, \\ • ||2) be two asymmetric normed linear spaces
and let f : X —+ Y be a linear function. Then f is continuous if and only if there is
M > 0 such that \\f{x)\\2 ^ M \\x\\x for all xGX.

Notice that each asymmetric norm || • || defined on a linear space E is a convex
function, so it is a Hahn-Banach function on E. Hence we obtain the following corollary.

COROLLARY 1 3 . Let (E, || • ||) be an asymmetric normed linear space. Then for
every subcone Co and every linear function f : Co —> R such that

f(x + z)-f(x)^\\z\\

for all x e Co and z G E with x + z e Co, there exists a continuous linear extension J to
E.
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