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A LOWER BOUND FOR THE CLASS NUMBER 
OF A REAL QUADRATIC FIELD OF ERD-TYPE 

R. A. MOLLIN, L.-C. ZHANG AND PAULA KEMP 

ABSTRACT. In this paper, we use the Lagrange neighbour and our equivalence the
orem for primitive ideals to obtain lower bounds which are sharper than those given in 
the literature for class numbers of real quadratic fields Q(\fd) in general, but applied to 
greatest advantage when d is of ERD type. 

1. Notation and preliminaries. Throughout the paper J is a positive square-free 
integer, K — Q(y/d), h{d) is the class number of K and r is the divisor function. 

The Z-module {ax + (5y : x,y G Z} is denoted by [a,/3\. Therefore, the maximal 
order (or the ring of algebraic integers) OK of AT is [\,u] where we define LU as UJ = 
(a - 1 + \fd)jo and a = 1 if d = 2,3 (mod 4), G = 2 if d = 1 (mod 4). Moreover, 
the discriminant of K is then A = (u — Co)2 where Q is the algebraic conjugate of UJ. The 
norm of a G A' is N(a) = aâ. 

It is well-known (cf. [12]) that / is an ideal of OK if and only if / has a representation 
as / = [a, b + CUJ] where a > 0, b > 0, c | b, c \ a and ac \ N(b + ecu). In fact, for a given 
/, the integers c and a are uniquely determined, where a is the least positive integer in 
/. If c — 1, the ideal / is called primitive and moreover, in this case a = N(I) = norm 
of/. An ideal / is said to be reduced if/ is primitive and there does not exist a non-zero 
element a in I with both |a| < N(I) and |â| < N(I). 

It has recently been proved (see [ 1 ] and [3]) that ifd = cr + \ where a is an odd integer 
greater than one, then 

( 1 . 1 ) h(d)>2r(a)-2. 

This is a sharp bound for some d. For example, h(S2) = 4 = 2r(9) — 2. On the other 
hand, this bound is not very good for other J's. In particular, if d = q1 + 1, where q is an 
odd prime, then 2r{q) — 2 = 2, and the bound becomes trivial. 

Moreover, from the genus theory of Gauss, one can see that 

( 1 . 2 ) h{d)>2s~\ 

where s is the number of distinct prime divisors of d, excluding one prime congruent to 
3 modulo 4 (if such primes divide d). However when d = a2 + 1 = 2/?, where p = 1 
(mod 4) is a prime, then (1.2) only gives a trivial bound h(d) > 2s ' = 2. 
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Also in [1] and [3] it is shown that if d = a + 4, a > 1, and a odd, then 

(1.3) h(d)>r(a)~ 1. 

Again this bound is sharp for some d. For example h(229) = 3 = r(15) — 1. On the other 

hand, if d — q2 + 4, where q is an odd prime then r(q) —1 = 1 gives the trivial bound. 

The forms of d above are special cases of more general forms called Extended 

Richard-Degert-types (or simply ERD-types); i.e., those of the form d = a2 + r where 

r | 4a. In this paper, our general bounds for class numbers of real quadratic fields are best 

applied to ERD-types and give better bounds than those in (1.1)-(1.3) above, as well as 

those in [2] and elsewhere. 

First, for completeness we state the following theorem which is proved by Mollin and 

Zhang in [11]. 

THEOREM 1.1. Ifl\ = [a\,b\ + uo] and h = [ci2,t>2 + u] are primitive ideals in 

OK = [ 1, uo\ then I\ is equivalent to h if and only if there exist coprime rational integers 

x, y satisfying the following three conditions: 

(1.4) \(aa\X + (ab\ + a — \)y) — dy2\ — a2a\a2 

(1.5) a2 | {a\x + (b\ +b2 + cr — l ) j ) 

(1.6) ,<j2a\a2\ (a2a2(b2-b\)x+(d—(ab\+a — \)2^)y). 

We also remind the reader of the following from [11]. 

DEFINITION 1.1. If / = [a, b + uo] is a primitive ideal in 0K, then the Lagrange 

neighbour^ = [a+,b++u] is defined by b+ = —b+a[(b+uj)/a\ anda+ = —N(b++u;)/a, 

where [ J denotes the greatest integer function. 

2. Main results. We first need some preliminary results. 

LEMMA 2.1. Let I = [m, b + LU] be a primitive ideal in OK with 1 < m < —N(b + uo) 

and \b\ < (y/Â - a + l ) / 2 . IfN(b + u) has no proper divisor c > 1 which is a norm of 

a principal reduced ideal in OK then I is not principal. In fact, I ~ I+ and I+ is reduced 

and not principal. 

PROOF. If / is reduced then / cannot be principal since m divides N(b+uu). Therefore, 

we may assume that / is not reduced; whence, m > y/Â/2 by Corollary 4.2 of [11]. 

CLAIM, [(b + uj)/m\ = 0. 

If b < 0 then [(b + uj)/m\ < (b + uo)/m < (uo - \)/m < 1. If b > 0 and m < 

\/Â then the fact that b < (\/Â — a + l ) / 2 allows us to invoke Corollary 4.3 of [11] 

which says that m — uo > b; i.e., am — a + 1 — y/d > ob from which it follows that 

1 > (crb + G — 1 + y/d) J am = (b + uo)/m. If b > 0 and m > y/Â, then in order that 
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b + uj > m> \J~K we must have b > (A/A — cr + 1 ) /2 , a contradiction which secures the 

claim. 

We may now display the Lagrange neighbour /+ of / explicitly as /+ = 

[—N(b + uj)/m,—b + UJ] which is reduced since 1 < — N(b + UJ)/m < A / À / 2 . Thus 

/+ 7̂  ( 1 ) since —N(b + UJ) / m is a proper divisor of N(b + UJ). Since /+ ~ /, this secures 

the result. • 

We now turn to consequences of Lemma 2.1 for ERD-types (defined below). 

DEFINITION 2.1. d = a2 + r is said to be of Extended Richaud-Degert type (or ERD-

type) if r | 4a. 

DEFINITION 2.2. Let d = a2 + r and set 

2a + r — 1 if a = 1 and r < 0, 
a/2 + (r- l ) / 4 if <j = 2 and r i s odd, 
« + r / 4 — 1 if cr = 2 and r < 0 is even, 
1 otherwise, 

r|/cr2 if a — 2 and r i s even, 
r\ otherwise, 

B 

and 

and let 

C = 
a/2-(r~\)/4 

S 

if a = 2 and r > 0 is odd, 
otherwise, 

{ft > 1 integer | n = A, /? or C}. 

COROLLARY 2.1. Let d = a2 + r w/z<?r<? r | 4a and \r\ < 2a. Moreover, let I = 

[m, b + uj] be a primitive ideal in OK with 1 < m < —N(b + UJ) and \ b\ < ( y A — a + 1 ) / 2. 

If no proper divisor n > 1 ofN(b + a;) /s in the set S then I is not principal. 

PROOF. We need only look at a list of continued fraction expansions of UJ for each 

ERD-type (which we have given in the proof of Corollary 3.3. of [11]) to see that the 

only possible norms of prinicpal reduced ideals are those in S (together with 1). By 

Lemma 2.1, the result follows. • 

EXAMPLE 2.1. Let d = 226 = 152+ 1 = 2 • 113 a n d / = [63,10 + V ^ ô ] with 

1 <m = 63 < - N ( 1 0 + v /226) = 126. T h e n / - / + = [ 2 , - 1 0 + ^ / 2 2 6 ] = [2, A / 2 2 6 ] , 

/+ is clearly reduced and /+ is not principal since the continued fraction expansion of 

UJ = A / 2 2 6 has period 1 and (1) is the only principal reduced ideal. On the other hand, 

J = [63, 17 + \/226] = (17 + \/226) is a principal ideal with norm = 63 which is a 

proper divisor of N( 10 + A / 2 2 6 ) . Note that S is vacuous. 

LEMMA 2.2. If[ca\, b+uj] — [022, b+uj] are primitive ideals in OK, then [a\, b+uj] — 

[a2,b + UJ]. 

PROOF. Since [ca\, b+uj] — [c^2, b+uj], by Theorem 1.1 there exist coprime integers 
x and y satisfying the conditions 

(2.1) (oca i x + (crb + a — 1 )y) dr o^Caxa-* 
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(2.2) 

(2.3) 

From (2.2) 

(2.4) 

CLAIM. 

If there 

we 

c 

is a 

get that 

\y-
power of a 

ca2 (ca\x + 
2 2 1 / » 

G c a\ai \[d -

c\(2b 

(2b-

-(ab 

f f f -

prime, pe, dividing c 

\-G — 

+ ( 7 -

Dj. 

Dy) 
- D> 

but not dividing y, then from (2.3) /?2 

J - (crZ? + G - l)2. If p = 2 then clearly a = 2 and so by (2.4) 2 | (2b + G - 1), a 
contradiction. Hence/? > 2 and from (2.2) we get that/?2 | (Gb + G— l)2; whence,/?2 | d, 
contradicting that d is square-free. Therefore the claim is established. 

Now we set / — yjc and so from (2.1)—(2.3) we get 

cr<2ix + (Gb + G — \)y ) — dy \ = G a\a2 

ai I {a\x + (2b + G — 1)/) 

G2a\a2 | (d — (Gb + G— \)2)y'. 

By Theorem 1.1 the result now follows. • 

DEFINITION 2.3. If d = a2 + r where r \ 4a, then set 
2 ( 0 - 1 ) if r = —1 
2a/a2 i f r = 1 mdd^5, 
a ifr = 4, 
a-2 if r = - 4 , 
2(0 — 2) if r = —2a, 
a /3 i f r = - 4 f l / 3 , 
a —A if r = -4a , 
|r|/cr2 if r ^ { ± l , ± 4 , - 2 a , - 4 a / 3 , - 4 a } . 

Let ^ > 0 be any integer and suppose that (u, v) is a rational integral 
= ±cr2/\ We say that (w, v) is a trivial solution when t — m2 and m 

M: 

DEFINITION 2.4. 

solution of x2 — dy 
divides both u and v. Otherwise (u, v) is called nontrivial. 

REMARK 2.1. For the sake of completeness, and in order to make the paper more 
self-contained we now generalize [4, Theorem 1.1, p. 41] from ordinary RD-types (i.e., 
those d = a2 + r with r \ 4a and — a < r < a) to the more general ERD-types defined in 
Definition 2.1. 

LEMMA 2.3. Let d = a2 + r be ofERD-type and let t be any positive integer. Ifx2 — 
dy2 = ±G2t has a nontrivial solution, then t > M where M is defined in Definition 2.3. 

PROOF. Upon examination of the proof of [4, Theorem 1.1, p. 41] we see that it 
holds for all r | 4a except for r G {—2a, —4a/3, —4a}. If r — —2a, then d — cr2 — 2a — 
(a — l)2 — 1, and we may invoke [4, ibid.] with r = —2a replaced by r = — 1 in which 
case M becomes 2(a — 2). If r — —4a then d — a2 — 4a — (a — 2)2 — 4, and so we may 
invoke [4, op. cit.] with r = —4a replaced by r = — 4 in which case M becomes a — 4. If 
r = —4a j3 then by [4, Lemma 1.1, p. 40] we must have t > a/3 — 4/9 which secures 
the proof. • 
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LEMMA 2.4. Let d = a +r with r dividing 4a and let f — [aiy b + LU] for i — \,2 be 

two primitive ideals in OK with a\ ^ a2. If ai = ga\for i = 1,2 where g = gcd(a\,ci2) 

and 1 < a\a'2 < M where M is given by Definition 2.3, then I\ 7̂  I2. 

PROOF. Without loss of generality we may assume that a'2 > a\. UJ\ = [a\, b+uj] 7̂  

[a'2, b + uj] = J2 then it follows from Lemma 2.2 that I\ 7̂  I2 so we prove only the former. 

Assume that J\ ~ J2; then by Theorem 1.1 there exist coprime integers x and y such that 

(2.5) \(<jdxx + (ab + a — \)yY — dy2\ — (j2a\d2 

(2.6) a2 J {a\x + (2b + a - \)y) 

(2.7) o~a\d2 (d—(ab + cr— 1) jy. 

By Lemma 2.3, (2.5) is only possible if a\ a'2 = t1 for some t dividing both y and aa\x + 

(ab + o — \)y\ whence t divides both oa\x and y. Since gcd(a /,,a2) = 1, set a\ — t\ and 

a2 — t\ with gcd(/i, ti) = 1. From (2.6) we get 

t\ J (rjjc + (2^ + cr — l)y); 

whence, ti \ x. However, t2 > 1 and ti also divides y, a contradiction. • 

We are now in a position to prove the main result. 

THEOREM 2.1. Let d — a2 + r with r I 4a and set —N(b + UJ) = mn where \b\ < 

( v A — G + 1 ) / 2 and m < M (with M defined as in Definition 2.3). Ifmn has no proper 

divisor I with l G S (with S defined as in Definition 2.2), then 

h(d) > max{r(m),r(m) + d(n) — 1} 

where d(n) denotes the number of prime (not necessarily distinct) divisors ofn. 

PROOF. Let 1 — a\ < a2 < • • • < at = m be all the divisors of m and set t = r(m). 

By Lemma 2.3, [at,b + UJ] 7̂  [aj,b + UJ] for any / ^ j \ whence, h(d) > r(m). (Observe 

that since m < M, no proper divisor of m is in S). 

Let n = p\ '-'pr (not necessarily distinct primes). Since no proper divisor of 

—N(b + UJ) — mn is in 5 , invoking Corollary 2.1 and Lemma 2.2 for 1 < /, j < 

r — 1 = d(n) — 1, we find that [mp\ • • • p{,b + UJ] 7̂  [mp\ • • •/?/,b + uj] and for 1 < / < t, 

1 < , / < / * - l , w e find that [mp\ • • • /7;,b + uj] ^ [«/,/? + u;]. Therefore, h(d) > t + r— \ = 

T(m) + d(n) — 1. • 

REMARK 2.2. We note that in Theorem 2.1 the assumption that N(b + UJ) has no 

proper divisor in S is always satisfied for d = a2 + a2, where a is odd, because S is 

vacuous in that case. 

REMARK 2.3. Theorem 2.1 actually shows that, for example, if d = a2 + r with 

|r| G {1,4} and h(d) = 1, then all primes p < M must be inert in K. This was shown 

in [7, Lemma 2.3, p. 148] where Mollin and Williams listed all such d's with h(d) = 1 

(under a suitable Riemann hypothesis). Later they were able to remove the Riemann 
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hypothesis assumption in [8] where they proved that the list is complete, with one pos
sible exceptional value of d remaining whose existence would be a counterexample to 
the Riemann hypothesis. They extended these techniques in [9] where they listed all J's 
with h(d) = 1 (with one possible exception) where k < 24 (k is the period length of the 
continued fraction expansion of UJ (observe that k < 4 when d is of ERD-type)). Then in 
[10] Mollin and Williams concluded with some algebraic and computational advances 
which allowed them to effectively compute all d's (with one possible exception) where 
h(d) = 2 and k < 24. 

REMARK 2.4. Theorem 2.1 also shows that if d ^ 1 (mod 4) is of ERD-type and 
\r\ > 2 then h(d) > 1. This was proved in [5, Theorem l,p. 162]. Also, ifd = a2 + 1 with 
a odd then h{d) = 1 if and only if d = 2. Moreover, if d = 1 (mod 8) is of ERD-type 
then either d = 33 or h(d) > 1. 

REMARK 2.5. We note that Theorem 2.1 gives better bounds than those found in [2]. 
For example, in [2] the bound for h(d) where d = 4097 is given as h(d) > 5, whereas 
if we consider — N(\5 + UJ) = 24 • 72 and take m = 24 and n — I2 then h{d) > 6 is our 
bound from Theorem 2.1. Also for d = (132)2 — 4 = 28557 the bound given in [2] is 
h(d) > 3. However, we note that N(4 + UJ) = 32 • 13 • 61 and taking m — 32 • 13, n = 61, 
one can see that our bound is h(d) > 6. Similarly, we improve upon other bounds in [2]. 

To see that the bounds we found are better for some d than the bounds given in 
( 1.1 )-( 1.3) and elsewhere, we provide the following examples. 

EXAMPLE 2.2. Let d = 170 = 132 + 1. From (1.1), /z(170) > 2r(13) - 2 = 2. By 
Theorem 2.1, choosing b — 4, d — b2 = 154 = 2 • 7 • 11 and m — 14, we find that 
h(\10) > 4. Actually, /z(170) = 4. 

EXAMPLE 2.3. Let d = 442 = 212 + 1 = 2 • 13 • 17. The bound from (1.1) is 
2r(21) - 2 = 6. The bound from (1.2) is 23_1 = 4. By Theorem 2.1, choosing b = 8, 
d - b2 = 378 = 2 • 33 • 7, and m = 2 • 32, we have /z(442) > 7. Actually, h(442) = 8. 

EXAMPLE 2.4. Letd = 226= 152+1 = 2-113. From (1.1),/z(226) > 2r(21)-2 = 
6. The bound from (1.2) is clearly 2 because s — 2. By Theorem 2.1, choosing b = 8, 
d - b2 = 162 = 2 • 34 and m = 18 we have that h(d) > 7. In fact, h(226) = 8. 

EXAMPLE 2.5. Let d = 1373 = 372 +4. The bound from (1.3), is r(37) - 1 = 1. 
Noting that — N(b + a;) = 343 = 73 where b = 0. Taking m = 7 and n = 72, by 
Theorem 2.1 we find that //(1373) > 3. Actually, /*(1373) = 3. 

EXAMPLE 2.6. Let d = 3485 = 592 + 4. The bound from (1.3) is r(59) - 1 = 1. 
However, -N(b + u) = 715 = 5 • 11 • 13 with b = 12. Taking m = 5 • 11 = 55, by 
Theorem 2.1 we find that /z(3485) > 4. Actually, /z(3485) = 4. 

EXAMPLE 2.7. Let d = 2405 = 492 + 4. The bound from (1.3) is r(49) - 1 = 2 . 
However, -N(b + UJ) = 595 = 5 • 7 • 17, with b = 2. Taking m = 5 • 7 = 35, by 
Theorem 2.1 we find that /?(2405) > 4. Actually, /z(2405) = 4. 
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EXAMPLE 2.8. Let d = 25935 = 1612 + 4. The bound from (1.3) is r( 161)- 1 = 3. 
Taking N(u>) = 25935 = 3 • 5 • 7 • 13 • 19 and m = 3 • 5 • 7 and n = 13 • 19, we get 
h(d) > 9. Actually, /z(25935) = 16. 

EXAMPLE 2.9. Let d = 142 + 7 = 203. Then -N(9 + u) = 2 • 61. Taking m = 2 and 
n = 61 we have h(d) > r{m) + d(n) — 1 = 2. In fact, h(d) = 2. 

ACKNOWLEDGEMENTS. The first author's research is supported by NSERC Canada 
grant #A8484. Moreover, the authors wish to thank the referee for a suggestion which 
led to the paper being more self-contained. 

REFERENCES 

1. F. Halter-Koch, Quadratische Ordnungen mit grosser Klassenzahl, J. Number Theory 34( 1990), 82-94. 

2. , Quadratische Ordnungen mit grosser Klassenzahl, II, J. Number Theory 44( 1993), 166-171 . 
3. R. A. Mollin, On the divisor function and class numbers of real quadratic fields I, Proc. Japan Acad. Ser. 

A 6(1990), 109-111. 

4. , On the insolubility of a class of diophantine equations and the nontriviality of the class numbers 

of related real quadratic fields of Richard-Degert type, Nagoya Math. J. 105( 1987), 39-47. 
5 , Class number one criteria for real quadratic fields II, Proc. Japan Acad. 63( 1987), 162-164. 

6. R. A. Mollin and H. C. Williams, Class Number Problems for real Quadratic Fields, Number Theory and 

Cryptography, (ed. J. H. Loxton), London Lecture Note series 154, 1990, 77-105. 

7. , On prime valued polynomials and class numbers of real quadratic fields, Nagoya Math. J. 112 
(1988), 143-151. 

8. , Solution of the class number one problem for real quadratic fields of extended Richard-Degert type 

(with one possible exception), Number Theory (ed. R. A. Mollin), Walter de Gruyter, Berlin-New York, 

1990,417-425. 

9. , On a determination of real quadratic fields of class number one and related continued fraction 

period length less than 25, Proc. Japan Acad. Ser. A 67(1991), 20-25. 

10. , On real quadratic fields of class number two, Math. Comp. 59( 1992), 625-632. 

11. R. A. Mollin and L.-C. Zhang, Reduced ideals, the divisor function, continued fractions and class numbers 

of real quadratic fields, Publ. Math. Debrecen, to appear. 

12. H. C. Williams and M. C. Wunderlich, On the parallel generation of the residues for the continued fraction 

factoring algorithm, Math. Comp. 177(1987), 405-423 . 

Mathematics Department 

University of Calgary 

Calgary, Alberta 

T2N 1N4 

e-mail: ramollin@acs.ucalgary.ca 

Mathematics Department 

Southwest Missouri State University 

Springfield, Missouri 65804 

U.S.A. 

e-mail: liz917f@smsvma.bitnet 

https://doi.org/10.4153/CMB-1994-014-8 Published online by Cambridge University Press

mailto:ramollin@acs.ucalgary.ca
https://doi.org/10.4153/CMB-1994-014-8

