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Abstract. We consider a study of MZ and DZ twin pairs ascertained because one or both 
twins have a disease. Genotypes at a major locus are known and putative environmental 
risk factors have been measured for all individuals. The power of the study to estimate 
the effect on liability of the measured and residual genetic and environmental effects 
(G , Gr, E , Ef) and all two-way interactions between them (except Gr x Er)is estimat­
ed by simulation. If liabilities can be indexed on a continuous scale (eg, blood pressure as 
an index of liability to hypertension), then a study of 600 MZ and 600 DZ pairs would 
have sufficient power to detect quite subtle interaction effects, even if ascertainment is 
greatly biased toward MZ twins. If liabilities cannot be measured and only affection 
status is known, then the power of the study would be much lower, although not im­
practicably so. There, appears to be no advantage in augmenting the twins with a sample 
of control individuals who have been drawn at random from the population regardless of 
disease status, at least for the case we have considered in which the disease threshold on 
the liability scale is assumed to be known without error. The argument is developed in 
terms of the utility of the design for research into breast cancer. 

Key words: Twins, Genotype x environment interaction, Breast cancer, Disease liability, 
Oncogenes 

INTRODUCTION 

Most genetic models for the etiology of disease assume either that environmental effects 
are random or, if they are not random, that they contribute additively with the genotype 
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to liability for disease. Thus, traditional models for segregation and linkage treat the 
environment as a random variable whose contribution to disease liability can be summa­
rized adequately by a reduction in the "penetrance" of a given genotype. 

There is, however, an extensive animal and plant literature which shows that the 
additive model for genetic and environmental effects is far from adequate because sensi­
tivity to the environment is itself under genetic control. That is, there are genes which 
affect the phenotype by making the organism more or less sensitive to particular environ­
mental effects. The genetic architecture of such "genotype x environment interaction" 
(G x E) has been analyzed extensively in species from fungi to mice [12] with the result 
that certain important principles have been established: 
1) Genes which affect sensitivity to the environment are often quite distinct (ie, are 
different loci) from those which affect average response over a range of environments 
[9]; 
2) Genes affecting sensitivity to the environment have distinct additive and domi­
nance effects from those which affect overall response (ie, they have probably quite 
different relationships to fitness); 
3) Different sets of genes control sensitivity to different specific environmental 
factors. 

What do these findings mean for human disease? In the first place, they warn us that 
many of the models geneticists use for family resemblance in man may not capture the 
essence of gene expression in particular cases. Eaves [2], for example, has shown that 
ignoring the effects of G x E in family data, when it is actually present, may lead to 
seriously biased estimates of gene frequencies from segregation analyses. Ignoring the 
effects of G x E in counseling may lead to misleading estimates of risk to relatives [6]. 

More importantly, however, many of the ideas currently formulated by epidemiol­
ogists about the etiology of common disease relate much more closely to notions of 
G x E interaction than they do to the models for segregation and family resemblance 
traditionally employed in genetic epidemiology. The notion of inherited vulnerability 
to psychiatric disorder, for example, amounts to a recognition that certain individuals 
are genetically more sensitive to environmental stress. The idea that some forms of 
hypertension may be the result of inherited sensitivity to sodium can only be expressed 
mathematically in models for G x E interaction. 

Nowhere is the need to consider models for G x E interaction more pressing than in 
the area of cancer genetics. Despite the extensive evidence for familial aggregation, at least 
for some forms of breast cancer, and the many clues implicating proto-oncogenes in the 
etiology of breast cancer, the MZ twin concordance is low, around 15%, and the DZ 
concordance only a few percent points lower. The main known risk factors, early menar-
che, late first full-term pregnancy (FFTP) and late menopause [4], are probably largely 
environmental, although they almost certainly also have polygenic components of var­
iation [11]. One explanation consistent with all these facts is that genes and environment 
are both important in cancer etiology, but not necessarily in a simple additive way. Large 
genetic effects influencing sensitivity to environmental risk factors to which the indi­
vidual is exposed relatively rarely would produce low twin concordance [2,6]. 

Recently, Krontiris et al [7] have found a disproportionately high number of certain 
"rare" alleles (defined by restriction enzyme techniques) at the Harvey ras oncogene in a 
sample of cancer patients compared with normal controls. Their patient sample was diag-
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nostically heterogeneous but the "rare" alleles appeared to be more frequent in many of 
the different forms of cancer. In particular, we note that in 13 breast cancer patients, 4 
out of 26 alleles were of the "rare" type, a significantly higher frequency than in the 
control sample (9 out of 230). What sets this finding apart from run-of-the-mill associa­
tions between diseases and genetic markers is that many independent lines of evidence 
prior to this finding had implicated ras and other oncogenes in the etiology of cancer. 

Given that certain oncogene variants confer greater risk of cancer, the critical ques­
tion is how. Two extreme hypotheses can be proposed. The first is that the alleles confer 
increased risk quite independently of any exogenous factors, simply having a higher 
probabiltiy of being involved in transformation of a normal to a precancerous cell. We 
shall call this the constitutive hypothesis. The second hypothesis is that the alleles confer 
increased risk by causing the individual to be more sensitive to exogenous factors (eg, 
carcinogens). This hypothesis posits a major role for genotype x environment interaction 
(G x E) and we shall call it the environmental sensitivity hypothesis. Surprisingly, this 
second hypothesis is commonly neglected by human geneticists, despite extensive evi­
dence, noted above, for the importance of G x E from the study of animal and plant 
species. 

One way to resolve constitutive and environmental sensitivity hypotheses would be 
to study genetic and environmental risk-factors in a series of incident breast cancer cases 
and controls. This approach would be very powerful if all relevant genetic and environ­
mental risk factors had been successfully identified and measured. However, this approach 
cannot detect interactions involving unmeasured environmental or genetic risk factors, 
and hence has low power when some of these risk factors have still to be identified. 

A more powerful way to distinguish between the constitutive and environmental 
sensitivity hypotheses is to type polymorphisms and measure environmental factors 
putatively associated with increased risk, in twin pairs both concordant and discordant 
for cancer. The theoretical basis for testing the principal and subsidiary hypotheses will 
be developed formally below and for the present we shall merely note the results to be 
gained by various comparisons. 

By including both monozygotic (MZ) and dizygotic (DZ) twins we can estimate the 
effects of background genotype on cancer risk, ie, the effect of unidentified genes. It is 
the principal purpose of the conventional twin study, in which concordance or correlation 
for a trait is compared in MZ and DZ twins, to estimate the component of variance due to 
genetic differences. By typing twins at particular loci, this variance can be further parti­
tioned into that due to measured genotype and the residual due to unmeasured or back­
ground genotype. Background genotype, for example, could include variability at other, 
untyped oncogenes, or indeed at a host of other loci with greater or lesser influences on 
oncogenesis. The advantage of the proposed design is that one can not only estimate the 
effect of background genotype, but also its interactions with measured genotypes (epis-
tasis) and measured environmental risk factors. If any of these interaction effects, or the 
main effect of genetic background is large, then one inference would be that one is not 
typing (all) the right genes. 

It can be seen that the study of cancer risk in MZ and DZ twins in whom some, but 
not all, pertinent genotypes and environmental risk factors are measured, is potentially 
a most useful design for unravelling etiology. But how powerful is it? 

We have been stimulated to attempt an answer to this question by the existence of 
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the Twin Cancer Registry, compiled by Dr. T.M. Mack and his coUeagues at the University 
of Southern California. They have already identified more than 1400 pairs of twins 
where at least one has breast cancer. Detailed diagnostic and putative risk factor informa­
tion is available for about 1200 of these pairs, half MZ and half DZ. We were tempted to 
ask what the prospect would be of detecting the various types of interaction discussed 
above (if they exist!) if one could type all these twins for a polymorphic candidate 
gene like Ha-ras. 

A subsidiary question is whether there would be any gain in the power of such a 
study by including randomly selected controls. One possibility is a matched sample of 
female controls for whom disease status, major genotype and environmental risk factor 
data would be collected. Far easier would be to obtain blood samples of the twins' hus­
bands for genotyping, but no comparable environmental risk factor data could be collect­
ed for them. 

Because there are many questions about the design and power of the proposed study, 
it was decided to simulate it in some detail in order to assess the consequences of various 
sampling strategies. Key questions to be answered include: 
1) What is the power to detect main effects of the measured and residual genotype 

(G and G ) and the measured and residual environment (E and E ) and all six of 
v m t in i 

their two way interactions? 
2) Is there an advantage in including controls, even if measured environmental indices 

(E ) are not available for them (as would be the case if we used husbands as controls)? 
3) What is the power of the study when 1) we assume that we can measure (or obtain 

an index of) liability, and 2) only affection status for individuals is known? 
4) How are estimates and power affected by different assumptions about ascertain­

ment? In particular, how are they affected if ascertainment differs in MZ and DZ 
twins? 

METHODS 

Simulation 

We have only considered the case of a rare dominant gene predisposing to a disease and 
we have done all our modelling as if for the rare Ha-ras alleles and breast cancer, ie, with 
the frequency of the rare dominant p = 0.05 and a lifetime risk of 7% [7,16 ]. 

In generating the data, components of variance in liability due to Gm, Gr, Em and Er 

are chosen to add to unity. These variance components have the values B,, B2, B,, B4 

respectively, so Bj + B2 + B, + B4 = 1.0. 
For the case of complete dominance, the contribution of a pair of alleles A,a to varia­

tion in disease liability is shown in the following picture: 

aa m Aa/AA 

H - >\4 ^ * | 
The average liability of the dominant and recessive phenotypes is denoted m. The 

mean liability of the dominant phenotype is then m + d and of the recessive, m - d. In our 
simulations m and d are calculated such that the population mean of the major gene effect 
is zero and the population variance in liability due to the major gene is B . Thus, if the 
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frequency of the dominant allele is p and p + 1 = 1, then d = Bj/(1 - (p - q + 2pq) ) 
and m = d(q - p - 2pq). Major genotypes of MZ twins and of controls are obtained by 
sampling individuals from a population in Hardy-Weinberg equilibrium. Pairs of DZ twins 
are generated by first sampling two parents from this population and then sampling a 
gamete from each of them, once for each twin. 

Background (or residual) genotypes are obtained for MZ twins and controls simply 
by sampling at random from an N(0,1) distribution. For DZ twins they are obtained by 
sampling from the bivariate normal distribution N(0,0,1,1, p = 0.5). Contributions of the 
measured environment and unmeasured environment are also sampled from N(0,1) dis­
tributions, independently for each twin and control individual. Thus, we have only con­
sidered the case of additive polygenic variation, a reasonable restriction in view of the low 
power of the twin study to detect non-additive genetic variance [10]. Likewise our treat­
ment is restricted to environmental influences which are specific to the individual and not 
shared by the cotwin (ie, El/ES and not E2/EC). 

We can generate all possible two-way interactions between the four main effects by 
use of the terms b, to b1Q which are the regression coefficients of the phenotype on the 
appropriate product terms of the main effects. Thus: 

b5 generates Gm x Em interaction 
b6 generates Gm x Er interaction 
bj generates G x E interaction 
bg generates G x E interaction 
bg generates Gm x Gr interaction 
b1Q generates Em x Er interaction 

One of these interactions, G x E , the interaction of residual genetical and specific 
environmental effects (generated by the coefficient b8), is completely confounded with 
E (B4) and therefore cannot be estimated separately from it. Furthermore, its presence 
would violate the assumption of multivariate normality implicit in the estimation pro­
cedure and might therefore bias the estimates of other parameters. How serious this prob­
lem might be and how to deal with it need further investigation [5]. For the present, we 
shall avoid the problem by omitting this type of interaction from further consideration. 
In any case, it is the interactions involving the measured effects which are the focus of 
our attention and the stimulus for this work. 

Having obtained the major genotype of an individual and measures of the back­
ground genotype, measured and residual environmental deviations, the liability (X) for 
the i'th individual is calculed as: 

(1) Xj = m + Sj • d + b-, • gj + b3 • enij + b4 • er̂  + Sj • b5 • em; + s; • bg • e^ 

+ b? • g . . e m i + s i . b 9 - g i + b 1 0 . e m i - e r i 

where g, is the residual polygenic deviation, eirij and er- are the measured and unmeasured 
environmental deviations and s; is —1 if the i'th individual is of recessive phenotype and 
+1 if of dominant phenotype. In the above, b2 , b 3 , b4 are the positive square roots of the 
quantities B2, B3, B4 as previously defined. 

Because the present exercise was prompted by the case of breast cancer, we wished 
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to generate data in which approximate 7% of cases were affected. This would correspond 
to a standard normal deviate of 1.48 if liability were distributed N(0,1). However, the 
expected population variance of liability will differ from unity as a complex function of 
the parameters chosen to generate the data. Furthermore, since a major dominant gene is 
segregating, the distribution will be skewed. We calculated an approximate value of the 
population variance V(P), ignoring the covariance terms between effects and took the 
threshold T above which individuals are deemed affected as: -

(2) T= 1.48/VV(P) 

For the range of parameter values we considered, this procedure generated samples of un-
selected controls in which 5.5-7% of individuals were affected. 

Liability scores for pairs of MZ and DZ twins and for control individuals are generated 
according to (1) and the procedures outlined above. All control individuals are accepted 
into the sample. A twin pair is accepted into the sample if at least one of them has a liability 
X > T. Twins and controls accepted into the sample have the following information about 
them stored for data analysis: whether they are affected or unaffected, their liability X, 
their genotype at the major locus, and their measured environmental index, em. 

Data may also be generated with different values of n, the probability of inclusion in 
the sample given that an individual is affected. Thus, for values of n < 1, a twin pair is 
only included in the sample if at least one of them has X > T and, for this individual, a 
random number from a U(0,1) distribution is < II. MZ and DZ twins may be generated 
with the same or with different values of fl but the control sample, by definition, is never 
subject to any selection. 

To test the power of the proposed study under the most stringent conditions, data 
were simulated in which all two-way interaction effects except Gr x Er (see above), were 
generated. 

Since our tentative experimental design calls for n pairs of MZ, n pairs of DZ and n 
control individuals, we have simulated r = 5 replicates of unit size n for each design modi­
fication. The three designs considered were: 

Design I: MZ, DZ, controls 

Design II: As in I but no measured environmental indices for controls 

Design III: MZ, DZ, no controls 

Thus, design I envisages collecting the same detailed environmental risk factor data in 
controls as we have for the twins, design II recognizes the difficulty of this and design III 
questions whether there is any benefit in having controls at all. 

Model Fitting 
Models incorporating different main effect and interaction parameters may be fitted to 
the raw observations by the method of maximum likelihood. We shall consider two cases: 
1) liabilities are known for individuals; 2) liabilities are not known, only whether an indi­
vidual is affected or unaffected. 

1) Liabilities are known 

We follow the approach of Lange et al [8] which assumes that the distribution of scores in 
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a pedigree is multivariate normal, conditional upon the measured genotypes and environ­
ments. For a given pedigree of n individuals we define a vector of observed scores, x and 
a corresponding vector of expected values, Ex. The values of the elements of Ex will 
depend upon the known genotype at the major locus and the measured environmental 
index. 

Similarly, we define the expected covariance matrix, £ , of individuals in the pedigree. 
The elements of £ will depend upon the major genotypes, the environmental indices and 
the relationship between the individuals, in our case whether twins are MZ or DZ. 

For a given Ex and £ the log likelihood of obtaining the pedigree of individuals of 
given observation vector x is: 

(3) L = In |Z| (x - Ex) '2T1 (x - Ex) + constant 

The joint log-likelihood of obtaining a sample of pedigrees of varying measured genotypes 
and environmental indices, some MZ twins, some DZ, and some singleton controls, is 
simply the sum of the log-likelihoods of the individual pedigrees. Estimation involves the 
selection of parameter values under a given hypothesis which maximize the joint likelihood 
of observing the given set of pedigrees. Conventional methods of minimization may be 
used to minimize - L with respect to the parameters of the model. We use the optimization 
routine E04JAF from the NAG Library (NAG, Mark 11) which allows the user to specify 
bounds for parameters but no other constraints. 

The elements of Ex are calculated as: 

E(Xj) = m + Sj d + enr • (b3 + s4 b5) 

The parameters are as defined above, except that they are now replaced by their estimates. 
The expected variance-covariance matrix, S, will contain the appropriate variances 

for twin 1 and twin 2 as the diagonal elements and the expected covariance of the twins 
in the off-diagonal element. For controls, £ will contain only one element, namely the 
variance appropriate for an individual of that major genotype and environmental index. 
The expected variance for the i'th individual is: 

V(X.) = B2 • (1 + s. bg + b7 • em,)2 + B4 • (1 + s. bg + b 1 0 • em;)2 

The covariance of twins i and j is: 

W(Xj, X.) = [B2 • (1 + s. b9 + b ? • em;) (1 + Sj b9 + b7 • em.)]/z 

where z is 1 for MZ and 2 for DZ twins. Note that since both measured and residual 
environmental effects are specific to the individual, there is no term in B4 in the co-
variance. 

Correction for ascertainment 

In the above we have assumed that pairs are ascertained at random from the population 
of twins and then examined to determine their disease status. Clearly this is not the case 
in our study since ascertainment requires that at least one twin already have breast cancer. 
The likelihoods computed on the assumption of random sampling, therefore, have to be 
modified to allow for our ascertainment procedure. 
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No correction for ascertainment is completely free of assumptions. Typically, it is 
assumed in human genetic applications that an affected individual has a probability, n, 
of being ascertained and that affected individuals in a family are ascertained independ­
ently. In our simulated data sets we know that these assumptions are correct but this will 
not necessarily be the case in the real world. Two extreme cases are normally distinguished 
[1]. Ascertainment is complete when 11= 1. The limiting case as I I - • 0 is described as 
"single ascertainment". 

The usual correction for ascertainment [3] requires multiplying the likelihood (3) 
above by the ratio A/B where A is the probability that a pair with a affected individuals 
will actually be ascertained, and B is the probability that a pair of a given measured geno­
type and environmental index will be ascertained. 

A is simply 1 - (1 - TlJ1, where a = 1 or 2 in the case of twins, and is the proba­
bility that as least one individual is ascertained from a pair in which a are affected. 

The probability that both members of a randomly selected twin pair will be affect­
ed, given their genotype and environmental indices is <f>. j . Let the probability that the 
first twin will be affected and the second twin not be 4>1Q. $Q1 is the probability that the 
first twin will be unaffected and the second twin affected. These probabilities can be 
calculated from the bivariate normal density function, N. 

[T - E(X; | G;, emi)]/VE(V(Xi)), then 

/ / N(0,0,l,l,p,x1,x2)3xi9x2, 
tj t 2 

- t 2 

/ / N(0,0,l,l,p,x1,x9)dx1 dx2 and 
t 1 — 

( 1 -
/ / N(0,0,U,p,x1,x2)ax1 9x2. 
- t 2 

where G- is the major genotype of the i'th individual and p is the correlation between 
twins predicted under the model. The same threshold value, T, is employed as was used 
to generate the data (see equation 2 above). 

Thus, the probability that a pair will be ascertained, given their genotypes and 
environmental indices is: 

B = * n ( i - ( i - n ) 2 ) +(^^n. 

B is thus the sum of 1) the probability that at least one individual is ascertained from 
pairs in which both are affected and 2) the probability that the affected individual in 
pairs where only one is affected will be ascertained. The <f> values are functions of the 
genetic and environmental parameters of the model. FI can also be estimated as another 
parameter (and we have done this successfully in a variety of simulations) but in the real 
world we are more likely to supply a fixed, independently estimated value of LI during 
our estimation procedure. 

Ifti = 

*11 = 

%1 = 

https://doi.org/10.1017/S0001566000004542 Published online by Cambridge University Press

https://doi.org/10.1017/S0001566000004542


Genotype x Environment Interaction in Twins 13 

2) Liabilities are not known: only affection status is known 

If liabilities are not known then the likelihood of a twin pair, given their major genotypes 
ans environmental indices is one of the three conditional probabilities given above, viz, 
•fcj if both twins are affected, <f>10 if the first is affected and the second not, 
and <1>01 if the first is unaffected and the second is affected. This likelihood must, as for 
the continuous case, be multiplied by the appropriate correction for ascertainment. For 
the discontinuous case, then, likelihoods of twin pairs are a direct function of the three 
<t's and II For control individuals the likelihood is simply the normal integral from 
minus infinity to t (defined above) if the individual is unaffected, or one minus this 
probability if the individual is affected. 

Estimation of power 

To test our design under the most exacting circumstances, data sets have been simu­
lated with all main effects and interactions (except G x E ) contributing simultaneously 
to liability. We first obtain the log-likelihood, L0, for the full model which contains all 
the parameters used to generate the data, viz, m, d, B2, B3, B4, b 5 , bfi, b ? , b g , b , 0 . To 
the same data we then fit seven subsidiary models, omitting in turn d, B2, b5 , bg, b , , b9 

and b 1 0 . Preliminary studies showed that there is always ample power to detect E (B,) 
and E (B4) and omitting them from the model frequently causes considerable numerical 
difficulties. Log-likelihoods for each of these models, L, — L,, are then used to calculate 
likelihood ratio chi squares: 

X2 = 2(L0 - Lj), each on 1 df, 

to test the effect of the parameter omitted from the i'th model. These are summed across 
replicates to obtain I,\ . 

To estimate the sample size, N, required to detect each effect at the a = 0.05 signif­
icance level with a probability (power), j3, of 0.95, 0.80 and 0.50, we first obtain an 
estimate of the noncentrality parameter, 

\' = 2x /nr, and then 

where \ is the non-central chi square value for a = a, 0 = b, and c degrees of freedom 
[10]. For a = 0.5, c = 1 and (3 = 0.95, 0.80 and 0.50, X is 12.995, 7.849 and 3.841 
respectively [14]. 

RESULTS 

We shall first consider the results of simulations in which liabilities are assumed to be 
known. Then we shall consider the power of studies in which only affection status is 
known. Finally, the consequences of different assumptions about ascertainment will be 
explored. 

Numbers required when liabilities are known 

For each of designs I, II and III, r = 5 replicates of n = 600 were generated. Numbers 
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required to detect effects with 95% power are shown in Table 1 for data generated with 
two different sets of parameter values, the interaction effects in Table 1(b) being consid­
erably greater than those in Table 1(a). For approximately 80% power, multiply these 
numbers by 0.6 and for 50% power by 0.3. 

Table 1 - Estimated numbers required to detect effects at a = 0.05 with 95% power when liabilities 
are known, there is complete ascertainment, B, = 0.1, B2 = B-, = B. = 0.3, and 

(a) t>5 = b& = b? = t>9 = bjQ = 0.1 

Design I 
Design II 
Design III 

(b) b5 

Design I 
Design II 
Design III 

d 

37 
42 
50 

= b6 

d 

34 
39 
43 

B 2 

25 
23 
39 

= 0.1, 

B2 

28 
31 
52 

b5 

183 
251 
247 

b7 = b 9 

b5 

211 
211 
231 

b6 

443 
552 
308 

= b i o : 

b6 

349 
804 
333 

b7 

931 
714 

1302 

= 0.3 

b7 

157 
242 
288 

b 9 

1421 
1119 
1627 

b 9 

345 
386 
415 

b10 

627 
618 
331 

b10 

80 
109 
92 

In design I, for the parameter values used in Table 1 (a), mean MZ pairwise concord­
ance over five replicates was 16.8% and mean DZ concordance was 9.3%. The "disease" 
gene was 7.4 times more common in affected than unaffected individuals. 

Thus in Table 1(b), we see that in order to detect the direct effect of the major gene on 
liability (d) at the 5% significance level in 95% of studies, we should need 34 pairs of MZ 
twins, 34 pairs of DZ twins and 34 control individuals (Design I), or if no environmental 
index measurements were available for controls we should need 39 in each group (Design 
II). Alternatively, we could simply use 43 pairs of MZ and 43 pairs of DZ twins (Design 
III). 

Liabilities are not known; only affection status is known 

Now we consider what happens when liabilities are not known and the only information 
we have is whether an individual is affected or unaffected. All data were generated and 
estimated with the ascertainment probability 11= 1. For the discontinuous case we found 
that power was much lower so a unit sample size of n = 2000 was used, with 5 replicates 
as before. Because power to detect interaction effects of the sizes used in Table 1 was low, 
data were generated with larger values of b5 - b 1 0 = 0.3. Numbers required for both 95% 
and 50% power are shown in Table 2. In the 10,000 pairs generated in each category in 
design I, the MZ concordance for the disease was 19% the DZ concordance was 9.7% and 
the relative frequency of the "disease" gene in affected vs unaffected controls was 9.33. 
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Table 2 - Estimated numbers required to detect effects at <X = 0.05 with 95%and 50% power when 
liabilities are not known, there is complete ascertainment and B, = 0.1, B^ = B = B. = 
= b5 = b6 - b7 - b9 - b1Q - 0.3. 

(3= 0.95 

Design I 
Design II 
Design III 

j3.= 0.50 

Design I 
Design II 
Design III 

d 

1525 
1879 
1954 

450 
555 
557 

B , 

238 
538 
283 

70 
159 

83 

b5 

2260 
1773 
1558 

668 
524 
460 

b 6 

6762 
14315 

3823 

1998 
4231 
1130 

b 7 

1587 
4582 
2218 

469 
1354 

655 

b 9 

5274 
9174 
4944 

1559 
2711 
1461 

b 10 

1067 
1124 
961 

315 
332 
248 

How accurate are the parameter estimates from the discontinuous case? The mean 
and sd of the estimates of each parameter under the full model over the five replicates are 
shown in Table 3 beneath their expected values. 

Table 3 - Means (and sd's) of five estimates of parameters under the full (correct) model when only 
affection status is known and ascertainment is complete. Expected values of parameters are 
shown. 

Exp. value 

Design I 
sd 

Design II 
sd 

Design HI 
sd 

m 

0.43 

0.43 
0.11 

0.50 
0.07 

0.47 
0.06 

d 

0.53 

0.56 
0.13 

0.53 
0.09 

0.48 
0.12 

B2 

0.30 

0.29 
0.05 

0.24 
0.03 

0.33 
0.04 

B 3 

0.30 

0.28 
0.06 

0.44 
0.04 

0.34 
0.08 

B 4 

0.30 

0.31 
0.03 

0.38 
0.05 

0.30 
0.05 

b5 

0.30 

0.25 
0.10 

0.26 
0.12 

0.36 
0.10 

b 6 

0.30 

0.23 
0.16 

0.19 
0.14 

0.39 
0.11 

b 7 

0.30 

0.34 
0.12 

0.25 
0.07 

0.27 
0.11 

b 9 

0.30 

0.29 
0.12 

0.26 
0.12 

0.33 
0.13 

b10 

0.30 

0.26 
0.06 

0.24 
0.03 

0.32 
0.12 

Effect of ascertainment bias 

A further potential complication arises if ascertainment differs between MZ and DZ twins. 
To investigate the effect of such ascertainment bias on estimation we have simulated one 
of the more difficult situations we could imagine. It has been alleged that n is greater for 
MZ than for DZ twins. We simulated data for the continuous case using the same para­
meters as in Table 1(a) but with I lM Z = 0.20 and [ID Z = 0.05. Thus a twin pair is only 
included in the sample if at least one twin is affected and, for this individual, a random 
number from a U(0,1) distribution is < II. In designs I and II the control sample, by defi­
nition, is never subject to any selection. 
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Using the methods above, models were then fitted to these data sets assuming 
n M Z = I1D Z = 0.10. As before, r = 5 replicates of n = 600 were generated. Results are 
shown in Table 4. In order to see whether biassed ascertainment causes bias in parameter 
estimates, means and standard deviations of estimates from five replicates of each design 
were calculated and these are shown in Table 5 beneath their expected values. 

Table 4 - Effects of ascertainment bias when Uabilities are known. Estimated numbers required to 
detect effects at a - 0.05 with 95% power when B. = 0.1, B, = B. = B. = 0.3, b- = bk = 
= b? = b9 = b1Q = 0.1. Data were generated with n M Z = 0.20 and n Q Z = 0.05. Estimation 
assumed n M Z = n D Z = 0.1. 

Design 
Design 
Design 

I 
II 

III 

d 

35 
39 
48 

B2 

28 
24 
43 

b 5 

190 
240 
195 

b 6 

329 
691 
371 

b 7 

1216 
803 

1673 

b 9 

1464 
1489 
3304 

b10 

443 
792 
458 

Table 5 - Means and sd's of five estimates of parameters under the full (correct) model when data 
were generated with rk.- = 0.20 and n „ 7 = 0.05, and parameters were estimated with 
nMZ = nDZ = 0-1 0-

Exp. value 

Design I 
sd 

Design II 
sd 

Design III 
sd 

m 

0.43 

0.44 
0.04 

0.40 
0.01 

0.46 
0.03 

d 

0.53 

0.53 
0.05 

0.54 
0.02 

0.53 
0.03 

B2 

0.30 

0.28 
0.03 

0.34 
0.04 

0.28 
0.03 

B 3 

0.30 

0.29 
0.01 

0.29 
0.03 

0.28 
0.04 

B4 

0.30 

0.31 
0.01 

0.31 
0.02 

0.30 
0.01 

b5 

0.10 

0.10 
0.01 

0.10 
0.01 

0.11 
0.02 

b6 

0.10 

0.11 
0.03 

0.08 
0.02 

0.11 
0.02 

b7 

0.10 

0.08 
0.04 

0.11 
0.06 

0.08 
0.05 

b 9 

0.10 

0.09 
0.03 

0.07 
0.04 

0.07 
0.02 

b10 

0.10 

0.11 
0.04 

0.08 
0.03 

0.12 
0.04 

DISCUSSION 

We set out to assess, by detailed simulation, the utility of a study of 600 MZ and 600 DZ 
twin pairs in which one or both have a disease (breast cancer) and for whom genotypes at 
a putative major locus and measurements for putative environmental risk factors are 
available. In particular, we wished to know the power to detect interactions between 
measured and residual genetic and environmental effects (G , G , E , E ) which might 
influence disease liability. We also wished to know whether there was any value in aug­
menting the twins with a sample of controls for whom environmental risk data might, or 
might not, be available. Further, how might the estimation procedure be influenced 
by differences in the ascertainment of MZ and DZ twins? 
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These questions have been considered under the best and worst case assumptions; 
in the best case we can assign a liability to every individual, in the worst case, no such 
information is available and we only know whether an individual is affected or un­
affected. The power to detect effects when we have an index of liability which is corre­
lated with the true liability to varying degrees must lie in between. 

The pairwise concordance rates are not unlike those obtained for breast (and other) 
cancer, in that the concordances are both small and not very much higher in MZ than 
DZ pairs. The important point is that, in data ascertained through probands, small twin 
concordance and small MZ-DZ differences in concordance can still be compatible with 
large genetic main and interaction effects. To conclude, as some have done, that low MZ 
and DZ concordances belie an important role for genes, is unwarranted. 

We have shown (Table 1) that our study would provide sufficient power to detect 
quite subtle interactions of each kind when liabilities are known as, for example, if the 
disease in question were hypertension and blood pressure were a measure of liability. The 
power to detect a main effect of the measured major gene on liability is remarkable and 
in other simulations we have shown that our proposed study would have 80% power to 
detect the effect of a typed gene accounting for as little as 1 % of the variance in liability. 
Furthermore, main and interaction effects can still be detected with hardly any less 
power and no notable bias if ascertainment is grossly biased in favour of MZ twins (Tables 
4 and 5). 

When we turn to the worst case in which no information on liability is assumed 
beyond what can be inferred from affection status, then we see (Table 2) that our power 
to detect the interaction effects and even the direct effect of the major gene, plummets. 
Even so, all parameters can still be estimated with little evidence of bias (Table 3). Three 
things should be remembered, however. 

First, even interaction effects generated with b5 — b1Q = 0.3 are not large. The 
expected polygenic variance of liability in the dominant phenotype is approximately 3.5 
times that of the recessive and the environmental variance of the dominant about 1.8 
times greater than the recessive. Over all, the variance in liability of the dominant is 
approximately twice that of the recessive. These effects fall far short of the dramatic 
switching on and off of gene action by major environmental or epistatic triggers, of which 
there are now many well documented examples. 

Second, all the required numbers we quote are for 95% power of detecting an effect 
at the 5% level of significance. This is a powerful experiment indeed. In the second part 
of Table 2 we also give the numbers required for (3 = 0.5 and we can see that our pro­
posed study would have approximately a 50% chance of detecting all main interaction 
effects except Gm x Er and Gm x Gr> Given the potential importance of any positive 
finding, one could make a convincing case that an experiment with 50% power is worth 
doing. Remember too that we have set ourselves the demanding task of detecting the 
effect of a major gene accounting for only 10% of the variance in liability. In the Zeit­
geist that currently prevails, many experimenters would begin with the expectation that 
the direct effect of a major gene would account for at least 20% of the variance in liabi­
lity and we would certainly have sufficient power to detect effects of this magnitude. 

Finally, we have only considered the most stringent case in which we have tried to 
detect each interaction effect against the background of the four main effects and the 
other four interaction effects. Complicated as the real world is, one wonders whether it is 
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likely to be this cruel to the experimenter. Nevertheless, the experimenter begins his anal­
ysis from a position of ignorance and must first fit the full model in order to see which 
effects can be eliminated from further consideration. 

As to the value of including controls, with or without measured environmental 
indices, one surprising feature of Tables 1 and 2 is that, in many respects Design 2 appears 
to be the worst, particularly when liabilities are not known (Table 2), and for the de­
tection of G x E throughout. Comparing Design I (with controls) and Design III (no 
controls), the gain in having controls seems very marginal indeed, whether liabilities are 
known or not. It seems that including controls without environmental indices is worse 
than no controls at all, as if the demands made on the twin data to explain liability in 
controls exceed the contribution to total information made by the measured genotypes 
of the controls. 

Our results regarding controls may, however, reflect the way in which we have de­
fined them. Our "controls" are simply a random sample of the population measured for 
genotype at the marker locus, disease status and, possibly, the environmental risk factor. 
However, in many epidemiological studies, controls are selected as being free from the 
disease. How this change in definition would affect our results and conclusions is not 
clear but will be the subject of future simulations. 

It should be remembered that all the required numbers on which the tables are 
based are estimates and therefore subject to stochastic error. Since the number of re­
plicates of each study is only five, it is possible that stochastic error is playing a larger role 
in our results than we would like. However, it is important to realise that these simulations 
are extremely computer intensive. Each row of the tables represents as much as eight 
hours of CPU time on an IBM 3081D machine. Clearly it would have been desirable to 
use a larger number of replicates for each condition and to extend the study to a wider 
range of conditions and parameter values. It is not easy to predict the extent to which 
our conclusions, obtained for a set of parameter values which seem reasonable for the 
case of breast cancer, will generalise to parameter values appropriate for other diseases. 
The purpose of our paper has not been to provide definitive guides for the conduct of 
research into breast cancer or any other particular disease, but to show how such projected 
studies can be simulated in some detail in order to assess their potential for elucidating 
complex issues of G x E interaction. 

We have simulated a case in which we have not taken account of ascertainment 
which is grossly biassed. The "true" probability of ascertainment of an affected MZ twin 
(0.2) was four times that of an affected DZ twin (0.05), but we assumed for the purposes 
of estimation that this probability was equal (0.1) in the two groups. Ascertainment 
biases in the real world are unlikely to be more extreme than this. It can be seen that 
main and interaction effects are still detected with hardly any less power (Table 4) than 
when data were generated and models fitted assuming complete ascertainment (n = 1) 
throughout, as was the case in Table 1(a). Neither is there any notable bias in the esti­
mates (Table 5). It was a general finding of our simulations that estimates of genetical 
and environmental parameters are remarkably insensitive to false assumptions about the 
value of n when the true value of n lies in the range 0.001 - 0.50. Since this is the range 
in which true values are almost centain to lie, it seems unlikely that ascertainment bias, 
whether due to age or zygosity, is likely to prove a major obstacle to our aims. It is un­
clear, however, what effect violations of the assumption of independent ascertainment 
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would have on parameter estimation. 
Taking all the above into account it seems that a study of the dimensions proposed 

might have a reasonable chance of finding important main and interaction effects of genes 
influencing liability to breast cancer if they were there. This chance would be improved 
if we had any information on liability. A most important topic for further development 
then is the relationship of liability to age-of-onset and any measures of severity such as 
laterality, aggressiveness and rate of metastasis. Such relationships are likely to be complex 
but given good population data on age-specific incidence, prevalence, survival time and 
ascertainment probability, classified by laterality and other diagnostic data, it seems 
reasonable to suppose that more information could be gleaned about liability than mere 
presence or absence of the disease [15]. 

Use of the design to detect G x E interactions in diseases (eg, hypertension) for 
which continuous indices of liability (blood pressure) are readily available is an attractive 
proposition and only awaits the identification of suitable polymorphic candidate genes. 
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