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BIG IN REVERSE MATHEMATICS: THE UNCOUNTABILITY
OF THE REALS

SAM SANDERS

Abstract. The uncountability ofR is one of its most basic properties, known far outside of mathematics.
Cantor’s 1874 proof of the uncountability of R even appears in the very first paper on set theory, i.e., a
historical milestone. In this paper, we study the uncountability of R in Kohlenbach’s higher-order Reverse
Mathematics (RM for short), in the guise of the following principle:

for a countable set A ⊂ R, there exists y ∈ R \ A.

An important conceptual observation is that the usual definition of countable set—based on injections
or bijections to N—does not seem suitable for the RM-study of mainstream mathematics; we also propose
a suitable (equivalent over strong systems) alternative definition of countable set, namely union over N

of finite sets; the latter is known from the literature and closer to how countable sets occur ‘in the wild’.
We identify a considerable number of theorems that are equivalent to the centred theorem based on our
alternative definition. Perhaps surprisingly, our equivalent theorems involve most basic properties of the
Riemann integral, regulated or bounded variation functions, Blumberg’s theorem, and Volterra’s early
work circa 1881. Our equivalences are also robust, promoting the uncountability of R to the status of ‘big’
system in RM.

§1. Introduction.

1.1. Summary. Like Hilbert [34], we believe the infinite to be a central object of
study in mathematics. That the infinite comes in ‘different sizes’ is a relatively new
insight, due to Cantor around 1874 [19], in the guise of the uncountability of R, also
known simply as Cantor’s theorem. We have previously studied the uncountability
of R in the guise of the following third-order1 principles.

• NIN: there is no injection from [0, 1] to N.
• NBI: there is no bijection from [0, 1] to N.
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1By definition, the uncountability of R is formulated in terms of arbitrary (third-order) mappings

from R to N. For this reason, we think it best to study this principle in a framework that directly includes
such mappings, as opposed to representing them via second-order objects.
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2 SAM SANDERS

In particular, as shown in [69–71], the principles NBI and NIN are hard to prove in
terms of conventional2 comprehension, while the objects claimed to exist are hard
to compute in terms of the other data, in the sense of Kleene’s computability theory
based on S1–S9 [46, 58]. As shown in [79], this hardness remains if we restrict the
mappings in NIN and NBI to well-known function classes, e.g., based on bounded
variation, Borel, upper semi-continuity, and quasi-continuity. Moreover, many basic
third-order theorems implyNIN orNBI, and the same at the computational level (see
[68–71, 77–80]). Finally, NIN and NBI seem to be the weakest natural third-order
principles that boast all the aforementioned properties.

For all these reasons, the study of the uncountability of R in Reverse Mathematics
(RM for short; see Section 1.3.1) seems like a natural enterprise. However, try as
we might we have not managed to obtain elegant equivalences for NIN and NBI,
working in Kohlenbach’s higher-order Reverse Mathematics (see Section 1.3.1).

As argued in detail in Section 2, our main problem is that countable sets that occur
‘in the wild’ do not have injections (let alone bijections) to N that can be defined
in weak logical systems. By contrast, the (equivalent over ZF and weaker systems)
definition of countable set as in Definitions 1.1 and 1.2 is much more suitable for
the development of higher-order RM and is central to this paper.

Definition 1.1. A set A ⊂ R is height countable if there is a height function
H : R → N for A, i.e., for all n ∈ N, An := {x ∈ A : H (x) < n} is finite.

Definition 1.2 (Finite set). Any X ⊂ R is finite if there is N ∈ N such that for
any finite sequence (x0, ... , xN ) of distinct reals, there is i ≤ N such that xi �∈ X .

The notion of ‘height function’ can be found in the literature in connection to
countability [40, 49, 59, 75, 97], while ‘height countable’ essentially amounts to union
over N of finite sets. By contrast, we believe Definition 1.2 has not been studied in
the literature. Our move away from injections/bijections towards height functions
and finite sets constitutes a ‘shift of definition’ which has ample historical precedent
in RM and constructive mathematics, as discussed in Remark 2.1. We note that
Kleene’s quantifier (∃2) from Section 1.3.2 is needed to make Definition 1.2 well-
behaved, as discussed in more detail in Remark 3.5.

In more detail, we shall establish a large number of equivalences for the following
principle, which is based on Definition 1.1 and expresses that [0, 1] is uncountable:

• NINalt: the unit interval is not height countable.

In particular, we show in Section 3 that NINalt is equivalent to the following natural
principles, working in Kohlenbach’s higher-order Reverse Mathematics, introduced
in Section 1.3.1. Recall that a regulated function has left and right limits everywhere,
as studied by Bourbaki for Riemann integration (see Section 1.3.3).

(i) For regulatedf : [0, 1] → R, there is a point x ∈ [0, 1] where f is continuous
(or quasi-continuous, or lower semi-continuous, or Darboux).

(ii) For regulated f : [0, 1] → R, the set of continuity points is dense in [0, 1].

2We discuss the notion of ‘conventional’ comprehension in Section 1.3.2 where we introduce
Z�2 : a (conservative) higher-order extension of second-order arithmetic Z2 involving ‘comprehension
functionals’ S2

k
that decide arbitrary Π1

k
-formulas. Since Z�2 cannot prove NIN (see [69]) and both are

essentially third-order in nature, our claim ‘NIN is hard to prove’ seems justified.
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BIG IN REVERSE MATHEMATICS: THE UNCOUNTABILITY OF THE REALS 3

(iii) For regulated f : [0, 1] → [0, 1] with Riemann integral
∫ 1

0 f(x)dx = 0,
there is x ∈ [0, 1] with f(x) = 0 (Bourbaki [10, p. 61, Corollary 1]).

(iv) (Volterra [98]) For regulated f, g : [0, 1] → R, there is x ∈ [0, 1] such that f
and g are both continuous or both discontinuous at x.

(v) (Volterra [98]) For regulated f : [0, 1] → R, there is either q ∈ Q ∩ [0, 1]
where f is discontinuous, or x ∈ [0, 1] \Q where f is continuous.

(vi) For regulated f : [0, 1] → R, there is y ∈ (0, 1) where F (x) :=
�x.

∫ x
0 f(t)dt is differentiable with derivative equal to f(y).

(vii) For regulated f : [0, 1] → R, there are a, b ∈ [0, 1] such that {x ∈ [0, 1] :
f(a) ≤ f(x) ≤ f(b)} is infinite.

(viii) Blumberg’s theorem [8] restricted to regulated functions.

A full list of equivalences may be found in Section 3.3, while we obtain similar
(but also very different) results for functions of bounded variation in Section 3.4.
We introduce all required definitions in Section 1.3. Some of the above theorems,
including items (iv) and (v) in the list, stem from Volterra’s early work (1881) in the
spirit of-but predating-the Baire category theorem, as discussed in Section 1.2.

Now, comparing items (i) and (ii) suggests that our results are robust as follows:

A system is robust if it is equivalent to small perturbations of itself.
[60, p. 432; emphasis in original]

Most of our results shall be seen to exhibit a similar (or stronger) level of robustness.
In this light, we feel that the uncountability of R deserves the moniker ‘big’ system
in the way this notion is used in second-order RM, namely as boasting many
equivalences from various different fields of mathematics.

Next, items (i)–(viii) above imply NIN and are therefore hard to prove in the sense
of Footnote 2. By contrast, we show in Section 3.5 that adding the extra condition
‘Baire 1’, makes these items provable from (essentially) arithmetical comprehension.
While regulated functions are of course Baire 1, say overZF, there is no contradiction
here as the statement a regulated function on the unit interval is Baire 1 already implies
NIN (see [72, Section 2.8]). Other restrictions of items (i)–(viii), e.g., involving semi-
continuity or Baire 2, are still equivalent to NINalt, as shown in Section 3.3.3.

Finally, this paper deals with the RM of the uncountability of R, while stronger
‘completeness’ properties of the reals, namely related to measure and category, are
studied in [83]. In particular, the latter paper develops the higher-order RM of the
Baire category theorem and Tao’s pigeon hole principle for measure spaces [93]. We
do not currently know of a principle weaker than the uncountability of R that yields
(interesting) RM-equivalences.

1.2. Volterra’s early work and related results. We introduce Volterra’s early work
from [98] as it pertains to this paper, as well as related results.

First of all, the Riemann integral was groundbreaking for a number of
reasons, including its ability to integrate functions with infinitely many points of
discontinuity, as shown by Riemann himself [74]. A natural question is then ‘how
discontinuous’ a Riemann integrable function can be. In this context, Thomae
introduced the function T : R → R around 1875 in [95, p. 14, Section 20]:
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4 SAM SANDERS

T (x) :=

{
0, if x ∈ R \Q,
1
q , if x = p

q and p, q are co-prime.
(1.1)

Thomae’s function T is integrable on any interval, but has a dense set of points of
discontinuity, namely Q, and a dense set of points of continuity, namely R \Q.

The perceptive student, upon seeing Thomae’s function as in (1.1), will ask for
a function continuous at each rational point and discontinuous at each irrational
one. Such a function cannot exist, as is generally proved using the Baire category
theorem. However, Volterra in [98] already established this negative result about 20
years before the publication of the Baire category theorem.

Secondly, as to the content of Volterra’s paper [98], we find the following theorem
on the first page, where a function is pointwise discontinuous if it has a dense set of
continuity points.

Theorem 1.3 (Volterra, 1881). There do not exist pointwise discontinuous functions
defined on an interval for which the continuity points of one are the discontinuity points
of the other, and vice versa.

Volterra then states two corollaries, of which the following is perhaps well-known
in ‘popular mathematics’ and constitutes the aforementioned negative result.

Corollary 1.4 (Volterra, 1881). There is no R → R-function that is continuous
on Q and discontinuous on R \Q.

Thirdly, we shall study Volterra’s theorem and corollary restricted to regulated
functions (see Section 1.3.3). The latter kinds of functions are automatically
‘pointwise discontinuous’ in the sense of Volterra.

Fourth, Volterra’s results from [98] are generalised in [30, 86]. The following
theorem is immediate from these generalisations.

Theorem 1.5. For any countable dense setD ⊂ [0, 1] andf : [0, 1] → R, f is either
discontinuous at some point in D or continuous at some point in [0, 1] \D.

Perhaps surprisingly, this generalisation (restricted to bounded variation or
regulated functions) is still equivalent to the uncountability of R. The same holds
for the related Blumberg’s theorem with the same restrictions.

Theorem 1.6 (Blumberg’s theorem [8]). For anyf : R → R, there is a dense subset
D ⊂ R such that the restriction of f to D, usually denoted f�D , is continuous.

To be absolutely clear, the conclusion of Blumberg’s theorem means that

(∀x ∈ D, ε > 0)(∃� > 0)(∀y ∈ D)(|x – y| < � → |f(x) – f(y)| < ε)),

where the underlined quantifier marks the difference with ‘usual’ continuity.

1.3. Preliminaries and definitions. We briefly introduce Reverse Mathematics in
Section 1.3.1. We introduce some essential axioms (Section 1.3.2) and definitions
(Section 1.3.3). A full introduction may be found in, e.g., [69, Section 2].

1.3.1. Reverse Mathematics. Reverse Mathematics (RM hereafter) is a program
in the foundations of mathematics initiated around 1975 by Friedman [28, 29] and
developed extensively by Simpson [89]. The aim of RM is to identify the minimal
axioms needed to prove theorems of ordinary, i.e., non-set theoretical, mathematics.

https://doi.org/10.1017/jsl.2023.42 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.42


BIG IN REVERSE MATHEMATICS: THE UNCOUNTABILITY OF THE REALS 5

We refer to [91] for a basic introduction to RM and to [26, 88, 89] for an overview
of RM. We expect basic familiarity with RM, in particular Kohlenbach’s higher-
order RM [48] essential to this paper, including the base theory RCA�0 . An extensive
introduction can be found in, e.g., [65, 67–69]. All undefined notions may be found
in [68, 69], while we do point out here that we shall sometimes use common notations
from the type theory. For instance, the natural numbers are type 0 objects, denoted
n0 or n ∈ N. Similarly, elements of Baire space are type 1 objects, denoted f ∈ NN

or f1. Mappings from Baire space NN to N are denoted Y : NN → N or Y 2.

1.3.2. Some comprehension functionals. In second-order RM, the logical hard-
ness of a theorem is measured via what fragment of the comprehension axiom is
needed for a proof. For this reason, we introduce some axioms and functionals
related to higher-order comprehension in this section. We are mostly dealing with
conventional comprehension here, i.e., only parameters over N and NN are allowed
in formula classes like Π1

k and Σ1
k .

First of all, the functional ϕ in (∃2) is also Kleene’s quantifier ∃2 and is clearly
discontinuous at f = 11 ... in Cantor space:

(∃ϕ2 ≤2 1)(∀f1)
[
(∃n0)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)

In fact, (∃2) is equivalent to the existence ofF : R → R such thatF (x) = 1 ifx >R 0,
and 0 otherwise (see [48, Proposition 3.12]). Related to (∃2), the functional �2 in
(�2) is called Feferman’s � (see [2]) and may be found—with the same symbol—in
Hilbert-Bernays’ Grundlagen [35, Supplement IV]:

(∃�2)(∀f1)
[
(∃n)(f(n) = 0) → [f(�(f)) = 0 ∧ (∀i < �(f))(f(i) �= 0)] (�2)

∧ [(∀n)(f(n) �= 0) → �(f) = 0]
]
.

We have (∃2) ↔ (�2) over RCA�0 (see [48, Section 3]) and ACA�0 ≡ RCA�0 + (∃2)
proves the same sentences as ACA0 by [38, Theorem 2.5].

Secondly, the functional S2 in (S2) is called the Suslin functional [48]:

(∃S2 ≤2 1)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0) ↔ S(f) = 0

]
. (S2)

The system Π1
1-CA�0 ≡ RCA�0 + (S2) proves the same Π1

3-sentences as Π1
1-CA0 by

[76, Theorem 2.2]. By definition, the Suslin functional S2 can decide whether a
Σ1

1-formula as in the left-hand side of (S2) is true or false. We similarly define the
functional S2

k which decides the truth or falsity of Σ1
k-formulas from L2; we also

define the system Π1
k-CA

�
0 as RCA�0 + (S2

k), where (S2
k) expresses that S2

k exists. We
note that the operators �n from [18, p. 129] are essentially S2

n strengthened to return
a witness (if existent) to the Σ1

n-formula at hand.
Thirdly, full second-order arithmetic Z2 is readily derived from ∪kΠ1

k-CA
�
0 , or

from:

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)(Y (f) = 0) ↔ E(Y ) = 0

]
, (∃3)

and we therefore define ZΩ
2 ≡ RCA�0 + (∃3) and Z�2 ≡ ∪kΠ1

k-CA
�
0 , which are

conservative over Z2 by [38, Corollary 2.6]. Despite this close connection, Z�2 and
ZΩ

2 can behave quite differently, as discussed in, e.g., [65, Section 2.2]. The functional
from (∃3) is also called ‘∃3’, and we use the same convention for other functionals.
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6 SAM SANDERS

1.3.3. Some basic definitions. We introduce some definitions needed in the below,
mostly stemming from mainstream mathematics. We note that subsets ofR are given
by their characteristic functions as in Definition 1.7, well-known from measure and
probability theory.

Zeroth of all, we make use the usual definition of (open) set, where B(x, r) is the
open ball with radius r > 0 centred at x ∈ R.

Definition 1.7 (Sets).

• A subset A ⊂ R is given by its characteristic function FA : R → {0, 1}, i.e., we
write x ∈ A for FA(x) = 1, for any x ∈ R.

• A subset O ⊂ R is open in case x ∈ O implies that there is k ∈ N such that
B(x, 1

2k
) ⊂ O.

• A subset C ⊂ R is closed if the complement R \ C is open.

As discussed in Remark 2.7, the study of functions of bounded variation already
gives rise to open sets that do not come with additional representation beyond
Definition 1.7.

First of all, we shall study the following notions of weak continuity, all of which
hark back to the days of Baire, Darboux, and Volterra [3, 4, 22, 98].

Definition 1.8. For f : [0, 1] → R, we have the following definitions:

• f is upper semi-continuous at x0 ∈ [0, 1] if f(x0) ≥R lim supx→x0
f(x).

• f is lower semi-continuous at x0 ∈ [0, 1] if f(x0) ≤R lim infx→x0 f(x).
• f is quasi-continuous at x0 ∈ [0, 1] if for 	 > 0 and an open neighbourhood U

of x0, there is a non-empty open G ⊂ U with (∀x ∈ G)(|f(x0) – f(x)| < ε).
• f : R → R symmetrically continuous at x ∈ R if

(∀ε > 0)(∃� > 0)(∀z ∈ R)(|z| < � → |f(x + z) – f(x – z)| < ε).
• f is Baire 1 if it is the pointwise limit of a sequence of continuous functions.
• f is Baire 2 if it is the pointwise limit of a sequence of Baire 1 functions.
• f is Baire 1∗ if3 there is a sequence of closed sets (Cn)n∈N such [0, 1] = ∪n∈NCn

and f�Cm is continuous for all m ∈ N.

The first two items are often abbreviated as ‘usco’ and ‘lsco’.

Secondly, we also need the notion of ‘intermediate value property’, also called the
‘Darboux property’ in light of Darboux’s work in [22].

Definition 1.9 (Darboux property). Let f : [0, 1] → R be given.

• A real y ∈ R is a left (resp. right) cluster value of f at x ∈ [0, 1] if there is
(xn)n∈N such that y = limn→∞ f(xn) and x = limn→∞ xn and (∀n ∈ N)(xn ≤
x) (resp. (∀n ∈ N)(xn ≥ x)).

• A point x ∈ [0, 1] is a Darboux point of f : [0, 1] → R if for any � > 0 and any
left (resp. right) cluster value y of f at x and z ∈ R strictly between y andf(x),
there is w ∈ (x – �, x) (resp. w ∈ (x, x + �)) such that f(w) = y.

3The notion of Baire 1∗ goes back to [27] and equivalent definitions may be found in [45]. In particular,
Baire 1∗ is equivalent to the Jayne–Rogers notion of piecewise continuity from [41].
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BIG IN REVERSE MATHEMATICS: THE UNCOUNTABILITY OF THE REALS 7

By definition, a point of continuity is also a Darboux point, but not vice versa.
Thirdly, we introduce the ‘usual’ definitions of countable set (Definitions 1.10

and 1.11).

Definition 1.10 (Enumerable sets of reals). A set A ⊂ R is enumerable if there
exists a sequence (xn)n∈N such that (∀x ∈ R)(x ∈ A→ (∃n ∈ N)(x =R xn)).

This definition reflects the RM-notion of ‘countable set’ from [89, Theorem V.4.2].
We note that given �2 from Section 1.3.2, we may replace the final implication in
Definition 1.10 by an equivalence.

Definition 1.11 (Countable subset of R). A set A ⊂ R is countable if there
exists Y : R → N such that (∀x, y ∈ A)(Y (x) =0 Y (y) → x =R y). The mapping
Y : R → N is called an injection from A to N or injective on A. If Y : R → N is also
surjective, i.e., (∀n ∈ N)(∃x ∈ A)(Y (x) = n), we call A strongly countable.

The first part of Definition 1.11 is from Kunen’s set theory textbook [54, p. 63]
and the second part is taken from Hrbacek–Jech’s set theory textbook [36] (where
the term ‘countable’ is used instead of ‘strongly countable’). For the rest of this
paper, ‘strongly countable’ and ‘countable’ shall exclusively refer to Definition 1.11,
except when explicitly stated otherwise.

Finally, the uncountability of R can be studied in numerous guises in higher-order
RM. For instance, the following are from [68, 69], where it is also shown that many
extremely basic theorems imply these principles, while Z�2 cannot prove them.

• For a countable set A ⊂ [0, 1], there is y ∈ [0, 1] \ A.
• NIN: there is no injection from [0, 1] to N.
• For a strongly countable set A ⊂ [0, 1], there is y ∈ [0, 1] \ A.
• NBI: there is no bijection from [0, 1] to N.

The reader will verify that the first two and last two items are (trivially) equivalent.
Besides these and similar variations in [79], we have not been able to obtain elegant
or natural equivalences involving the uncountability of R try as we might. As
discussed in Section 2, this is because the above items are formulated using the
‘set theoretic’ definition of countability as in Definition 1.11. In Section 3, we obtain
many equivalences involving the uncountability of R, based on the alternative (but
equivalent over ZF) notion of ‘height countable’ introduced in Section 1.1.

1.3.4. Some advanced definitions: bounded variation and around. We formulate
the definitions of bounded variation and regulated functions, and some background.

Firstly, the notion of bounded variation (often abbreviated BV below) was first
explicitly4 introduced by Jordan around 1881 [42] yielding a generalisation of
Dirichlet’s convergence theorems for Fourier series. Indeed, Dirichlet’s convergence
results are restricted to functions that are continuous except at a finite number
of points, while BV -functions can have infinitely many points of discontinuity, as
already studied by Jordan, namely in [42, p. 230]. Nowadays, the total variation of
a function f : [a, b] → R is defined as follows:

V ba (f) := supa≤x0<···<xn≤b
∑n
i=0 |f(xi) – f(xi+1)|. (1.2)

4Lakatos in [56, p. 148] claims that Jordan did not invent or introduce the notion of bounded variation
in [42], but rather discovered it in Dirichlet’s 1829 paper [23].
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8 SAM SANDERS

If this quantity exists and is finite, one says that f has bounded variation on [a, b].
Now, the notion of bounded variation is defined in [64] without mentioning the
supremum in (1.2); this approach can also be found in [11, 12, 53]. Hence, we
shall distinguish between the two notions in Definition 1.12. As it happens, Jordan
seems to use item (a) of Definition 1.12 in [42, pp. 228–229]. This definition suggests
a twofold variation for any result on functions of bounded variation, namely
depending on whether the supremum (1.2) is given, or only an upper bound on
the latter.

Definition 1.12 (Variations on variation).
(a) The function f : [a, b] → R has bounded variation on [a, b] if there is k0 ∈ N

such that k0 ≥
∑n
i=0 |f(xi) – f(xi+1)| for any partition x0 = a < x1 < ··· <

xn–1 < xn = b.
(b) The function f : [a, b] → R has a variation on [a, b] if the supremum in (1.2)

exists and is finite.

Secondly, the fundamental theorem about BV -functions is as follows; this
theorem is proved by Jordan in [42].

Theorem 1.13 (Jordan decomposition theorem [42, p. 229]). A BV -function f :
[0, 1] → R is the difference of two non-decreasing functions g, h : [0, 1] → R.

Theorem 1.13 has been studied via second-order representations in [31, 53, 64,
105]. The same holds for constructive analysis by [11, 12, 33, 73], involving different
(but related) constructive enrichments. Now, ACA0 suffices to derive Theorem 1.13
for various kinds of second-order representations of BV -functions in [53, 64]. By
contrast, our results in [68] imply that the third-order version of Theorem 1.13 is
hard to prove in terms of conventional comprehension.

Thirdly, Jordan proves in [43, Section 105] thatBV -functions are exactly those for
which the notion of ‘length of the graph of the function’ makes sense. In particular,
f ∈ BV if and only if the ‘length of the graph of f ’, defined as follows:

L(f, [0, 1]) := sup0=t0<t1<···<tm=1
∑m–1
i=0

√
(ti – ti+1)2 + (f(ti) – f(ti+1))2 (1.3)

exists and is finite by [1, Theorem 3.28(c)]. In case the supremum in (1.3) exists
(and is finite), f is also called rectifiable. Rectifiable curves predate BV -functions: in
[84, Section 1 and 2], it is claimed that (1.3) is essentially equivalent to Duhamel’s
1866 approach from [25, Chapter VI]. Around 1833, Dirksen, the PhD supervisor
of Jacobi and Heine, already provides a definition of arc length that is (very) similar
to (1.3) (see [24, Section 2, p. 128], but with some conceptual problems as discussed
in [20, Section 3].

Fourth, a function is regulated (called ‘regular’ in [1]) if for everyx0 in the domain,
the ‘left’ and ‘right’ limits f(x0 –) = limx→x0– f(x) and f(x0+) = limx→x0+ f(x)
exist. Scheeffer studies discontinuous regulated functions in [84] (without using the
term ‘regulated’), while Bourbaki develops Riemann integration based on regulated
functions in [9]. We note that BV -functions are regulated, while Weierstrass’
‘monster’ function is a natural example of a regulated function not in BV .

Finally, an interesting observation about regulated functions is as follows.

Remark 1.14 (Continuity and regulatedness). First of all, as discussed in [48,
Section 3], the local equivalence for functions on Baire space between sequential
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and ‘epsilon-delta’ continuity cannot be proved in ZF. By [68, Theorem 3.32], this
equivalence for regulated functions is provable in ZF (and actually just ACA�0 ).

Secondly, �2 readily computes the left and right limits of regulated f : [0, 1] →
R. In this way, the formula ‘f is continuous at x ∈ [0, 1]’ is decidable using �2,
namely equivalent to the formula ‘f(x+) = f(x) = f(x –)’. The usual ‘epsilon-
delta’ definition of continuity involves quantifiers over R, i.e., the previous equality
is much simpler and more elementary.

By the previous remark, the basic notions needed for the study of regulated and
BV -functions make sense in ACA�0 .

§2. Countability by any other name. We show that the ‘standard’ set-theoretic
definitions of countability-from Section 1.3.3 and based on injections and bijections
to N-are not suitable for the RM-study of regulated functions (see Section 2.1) and
BV -functions (Section 2.2). We also formulate an alternative-more suitable for RM-
notion of countability (Definitions 2.3 and 2.6), which amounts to ‘unions over N
of finite sets’ and which can also be found in the mathematical literature. This kind
of ‘shift of definition’ has historical precedent as follows.

Remark 2.1. First of all, the correct choice of definition for a given mathematical
notion is crucial to the development of RM, as can be gleaned from the following
quote from [15, p. 129].

Under the old definition [of real number from [87]], it would
be consistent with RCA0 that there exists a sequence of real
numbers (xn)n∈N such that (xn + 
)n∈N is not a sequence of real
numbers. We thank Ian Richards for pointing out this defect of
the old definition. Our new definition [of real number from [15]],
given above, is adopted in order to remove this defect. All of
the arguments and results of [87] remain correct under the new
definition.

In short, the early definition of ‘real number’ from [87] was not suitable for the
development of RM, highlighting the importance of the ‘right’ choice of definition.

Secondly, we stress that RM is not unique in this regard: the early definition
of ‘continuous function’ in Bishop’s constructive analysis [7] was also deemed
problematic and changed to a new definition to be found in [13]; the (substantial)
problems with both definitions are discussed in some detail in [14, 99], including
elementary properties such as the concatenation of continuous functions and the
continuity of 1

x for x > 0.

In short, the development of mathematics in logical systems with ‘restricted’
resources, like RM or constructive mathematics, seems to hinge on the ‘right’ choice
of definition. In this section, we argue that the ‘right’ definition of countability for
higher-order RM is given by height functions as in Section 1.1. To be absolutely
clear, the background theory for this section is ZFC, i.e., a statement like ‘A ⊂ R is
countable’ means that the latter is provable in the former; most arguments (should)
go through in ZΩ

2 .
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2.1. Regulated functions and countability. As suggested in Section 1.1, the set-
theoretic definition of countable set is not suitable for the RM-study of regulated
functions. We first provide some motivation for this claim in Remark 2.2. Inspired
by the latter, we can then present our alternative notion in Definition 2.3, which
amounts to ‘unions over N of finite sets’.

Remark 2.2 (Countable sets by any other name). First of all, we have previously
investigated the RM of regulated functions in [68]. As part of this study, the following
sets—definable via ∃2—present themselves, where f : [0, 1] → R is regulated:

A :=
{
x ∈ (0, 1) : f(x+) �= f(x) ∨ f(x –) �= f(x)

}
,

An :=
{
x ∈ (0, 1) : |f(x+) – f(x)| > 1

2n ∨ |f(x –) – f(x)| > 1
2n

}
. (2.1)

Clearly, A = ∪n∈NAn collects all points in (0, 1) where f is discontinuous; this set is
central to many proofs involving regulated functions (see, e.g., [1, Theorem 0.36]).
Now, thatAn is finite follows by a standard5 compactness argument. However, while
A is then countable, we are unable to construct an injection from A to N (let alone
a bijection), even working in Z�2 (see Remark 2.7 for details).

In short, one readily finds countable sets ‘in the wild’, namely pertaining to
regulated functions, for which the associated injections to N cannot be constructed
in reasonably weak logical systems.

Secondly, in light of (2.1), regulated functions give rise to countable sets given
only as the union over N of finite sets (i.e., without information about an injection
to N). To see that the ‘reverse’ is also true, consider the following function:

h(x) :=

{
0, x �∈ ∪m∈NXm,

1
2n+1 , x ∈ Xn and n is the least such number,

(2.2)

where (Xn)n∈N is a sequence of finite sets in [0, 1]. One readily shows that h is
regulated using ∃2. For general closed sets, (2.2) is crucial to the study of Baire 1
functions (see [63, p. 238]). Hence, regulated functions yield countable sets given
(only) as unions over N of finite sets, namely via A = ∪n∈NAn from (2.1), and vice
versa, namely via h : [0, 1] → R as in (2.2).

In summary, we observe that the usual definition of countable set (involving
injections/bijections to N) is not suitable for the RM-study of regulated functions.
Luckily, (2.1) and (2.2) suggest an alternative approach via the fundamental
connection between regulated functions on one hand, and countable sets given as

the union over N of finite sets

on the other hand. In conclusion, the RM-study of regulated functions should be
based on the centred notion of countability and not injections/bijections to N.

Motivated by Remark 2.2, we introduce our alternative definition of countability,
which is exactly the same as Definition 1.1 in Section 1.1.

Definition 2.3. A set A ⊂ R is height countable if there is a height function
H : R → N for A, i.e., for all n ∈ N, An := {x ∈ A : H (x) < n} is finite.

5If An were infinite, the Bolzano–Weierstrass theorem implies the existence of a limit point y ∈ [0, 1]
for An . One readily shows that f(y+) or f(y –) does not exist, a contradiction as f is assumed to be
regulated.
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The previous notion of ‘height’ is mentioned in the context of countability in,
e.g., [40, 49, 59, 75, 97]. Definition 2.3 amounts to ‘union over N of finite sets’, as is
readily shown in ACA�0 .

Finally, the observations from Remark 2.2 regarding countable sets also apply
mutatis mutandis to finite sets. Indeed, finite as each An from (2.1) may be, we
are unable to construct an injection to a finite subset of N, even assuming Z�2 (see
Remark 2.7 for details). By contrast, the definition of finite set from Section 1.1 is
more suitable: one readily6 shows that An from (2.1) is finite as in Definition 2.4,
which is exactly the same as Definition 1.2 in Section 1.1.

Definition 2.4 (Finite set). Any X ⊂ R is finite if there is N ∈ N such that for
any finite sequence (x0, ... , xN ) of distinct reals, there is i ≤ N such that xi �∈ X .

The number N from Definition 2.4 is call a size bound for the finite set
X ⊂ R. Analogous to countable sets, the RM-study of regulated functions should
be based on Definition 2.4 and not on the set-theoretic definition based on
injections/bijections to finite subsets of N or similar constructs.

2.2. Bounded variation functions and countability. We discuss the observations
from Section 2.1 for the particular case of functions of bounded variation (which
are regulated by Theorem 3.3). In particular, while the same observations apply,
they have to be refined to yield elegant equivalences.

Remark 2.5 (Countable by another name). First of all, we consider (2.1), but
formulated for a BV -function g : [0, 1] → R, as follows:

B :=
{
x ∈ (0, 1) : g(x+) �= g(x) ∨ g(x –) �= g(x)

}
,

Bn :=
{
x ∈ (0, 1) : |g(x+) – g(x)| > 1

2n ∨ |g(x –) – g(x)| > 1
2n

}
. (2.3)

Similar to A = ∪n∈An as in (2.3), B = ∪n∈NBn collects all points in (0, 1) where
g is discontinuous and this set is central to many proofs involving BV -functions
(see [1]). Similar to A from (2.3), B is countable but we are unable to construct an
injection from B to N (let alone a bijection), even assuming Z�2 (see Remark 2.7).

Secondly, there is a crucial difference between (2.1) and (2.3): we know that the set
Bn is finite and has at most 2nV 1

0 (f) elements; indeed, each element ofBn contributes
at least 1/2n to the total variation V 1

0 (f) as in (1.2). By contrast, we have no extra
information about the size of An from (2.1). However, this extra information is
crucial if we wish to deal with BV -functions (only). Indeed, the function h from
(2.2) is not in BV , e.g., in the trivial case where each Xn has at least 2n+1 elements.
By contrast, consider the following nicer function:

k(x) :=

{
0, x �∈ ∪m∈NYm,

1
2n+1

1
g(n)+1 , x ∈ Yn and n is the least such number,

(2.4)

where g ∈ NN is a width function7 for (Yn)n∈N. One readily verifies that k : [0, 1] → R

is in BV with total variation bounded by 1. Hence, BV -functions yield countable

6The proof of Theorem 3.6 shows that An is finite, working in ACA�0 + QF-AC0,1.
7The function g ∈ NN is a width function for the sequence of sets (Yn)n∈N in R in case Yn has at most

g(n) elements, for all n ∈ N.
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sets given (only) as in the following description:

unions over N of finite sets with a width function,

namely via B = ∪n∈NBn from (2.3), and vice versa, namely via k : [0, 1] → R as in
(2.4). The generalisations of bounded variation from Remark 3.23 have a similar
property, as evidenced by the final part of the proof of Theorem 3.20.

Motivated by Remark 2.5, we introduce our alternative (equivalent over ZF)
definition of countability for the RM-study of BV -functions.

Definition 2.6. A setB ⊂ R is height–width countable if there is a height function
H : R → N and width function g : N → N, i.e., for all n ∈ N, the set Bn := {x ∈ B :
H (x) < n} is finite with size bound g(n).

Finally, the following technical remark makes the claims in Remarks 2.2 and 2.5
more precise in terms of logical systems.

Remark 2.7. As discussed above, the sets An from (2.1) and Bn from (2.3) are
finite, while the unionsA = ∪n∈NAn andB = ∪n∈NBn are countable. Hence, working
in ZF (or even ZΩ

2 from Section 1.3.2), the following objects can be constructed:

• for n ∈ N, an injection Yn from An to some {0, 1, ... , k} with k ∈ N,
• for m ∈ N, an RM-code Cm (see [89, II.5.6]) for the closed sets Am or Bm.

However, it is shown in [81, 82] that neither Yn nor Cn are computable (in the sense
of Kleene S1–S9; see [58]) in terms of any S2

m and the other data. As a result, even
Z�2 cannot prove the general existence of Yn and Cn as in the previous items. By
contrast, the system ACA�0 + QF-AC0,1 (and even fragments) suffice to show that
Definitions 2.3, 2.6, and 2.4 apply to A,An from (2.1) and B,Bn from (2.3).

In conclusion, we have introduced ‘new’—but equivalent over ZF and the weaker
ZΩ

2 —definitions of finite and countable set with the following properties.

• Our ‘new’ definitions capture the notion of finite and countable set as it occurs
‘in the wild’, namely in the study of BV or regulated functions. This holds over
relatively weak systems by Remark 2.7.

• One finds our ‘new’ definitions, in particular the notion of ‘height’, in the
literature (see [40, 49, 59, 75, 97]).

• These ‘new’ definitions shall be seen to yield many equivalences in the RM of
the uncountability of R (Sections 3.3 and 3.4).

We believe that the previous items justify our adoption of our ‘new’ definitions of
finite and countable set. Moreover, Remark 2.1 creates some historical precedent
based on second-order RM and constructive mathematics.

§3. Main results: regulated and BV -functions.

3.1. Introduction. In this section, we establish the equivalences sketched in
Section 1.1 pertaining to the uncountability of R and properties of regulated
functions (Section 3.3) and BV -functions (Section 3.4). In Section 3.2, we establish
some basic properties of BV and regulated functions in weak systems.
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As noted in Section 1.1, we shall show that the uncountability of R as in NINalt is
robust, i.e., equivalent to small perturbations of itself [60, p. 432]. Striking examples
of this claimed robustness may be found in Theorem 3.7, where the perturbations
are given by considering either one point of continuity, a dense set of such points,
or various uncountability criteria for Cf , the set of continuity points.

Finally, the content of Section 3.5 is explained in the following remark.

Remark 3.1 (When more is less). As noted in Section 1.1, NINalt is equivalent to
well-known theorems from analysis restricted to regulated functions, with similar
results for BV -functions. These (restricted) theorems thus imply NIN and are not
provable in Z�2 + QF-AC0,1 as a result (see [69]). We show in Section 3.5 that
adding the extra condition ‘Baire 1’ to these theorems makes them provable from
(essentially) arithmetical comprehension. While regulated and BV -functions are
Baire 1, say over ZF or ZΩ

2 , there is no contradiction here as the statement

a BV -function on the unit interval is Baire 1

already implies NIN by [72, Theorem 2.34]. We stress that ‘Baire 1’ is special in this
regard: other restrictions, e.g., involving semi-continuity or Baire 2, yield theorems
that are still equivalent to NINalt, as shown in Section 3.3.3. We have no explanation
for this phenomenon.

3.2. Preliminary results. We collect some preliminary results pertaining to
regulated and BV -functions, and NINalt from Section 1.1.

First of all, to allow for a smooth treatment of finite sets, we shall adopt the
following principle that collects the most basic properties of finite sets.

Principle 3.2 (FIN).

• Finite union theorem: for a sequence of finite sets (Xn)n∈N and any k ∈ N,
∪n≤kXn is finite.

• For any finite X ⊂ R, there is a finite sequence of reals (x0, ... , xk) that includes
all elements of X.

• Finite Axiom of Choice: forY 2, k0 with (∀n ≤ k)(∃f ∈ 2N)(Y (f, n) = 0), there
is a finite sequence (f0, ... , fk) in 2N with (∀n ≤ k)(Y (fn, n) = 0).

One can readily derive FIN from a sufficiently general fragment of the induction
axiom; the RM of the latter is well-known (see, e.g., [89, X.4.4]) and the RM of
(fragments of) FIN is therefore a matter of future research. We note that in [68], we
could derive (fragments of) FIN from the principles under study, like the fact that
(height) countable sets of reals can be enumerated. Hence, we could mostly avoid
the use of fragments of FIN in the base theory in [68], which does not seem possible
for this paper.

Secondly, we need some some basic properties of BV and regulated functions, all
of which have been established in [68] already.

Theorem 3.3 (ACA�0 ).

• Assuming FIN, any BV -function f : [0, 1] → R is regulated.
• Any monotone function f : [0, 1] → R has bounded variation.
• For any monotone function f : [0, 1] → R, there is a sequence (xn)n∈N that

enumerates all x ∈ [0, 1] such that f is discontinuous at x.
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• For regulated f : [0, 1] → R and x ∈ [0, 1], f is sequentially continuous at x if
and only if f is epsilon-delta continuous at x.

• For finite X ⊂ [0, 1], the function 1X has bounded variation.

Proof. Proofs may be found in [68, Section 3.3]. �
The fourth item of Theorem 3.3 is particularly interesting as the local equivalence

between sequential and epsilon-delta continuity for general R → R-functions is not
provable in ZF, while RCA�0 + QF-AC0,1 suffices, as discussed in Remark 1.14.

Thirdly, we discuss some ‘obvious’ equivalences for NIN and NBI.

Remark 3.4. Now, NIN and NBI are formulated for mappings from [0, 1] to N,
but we can equivalently replace the unit interval by, e.g., R, 2N, and NN, as shown in
[79, Section 2.1]. An important observation in this context, and readily formalised
in ACA�0 , is that the (rescaled) tangent function provides a bijection from any open
interval to R; the inverse of tangent, called arctangent, yields a bijection in the other
direction (also with rescaling). Moreover, using these bijections, one readily shows
that NINalt is equivalent to the following:

• there is no height function from R to N.

Similarly, if we can show that there is no height function from some fixed open
interval to N, then NINalt follows. We will tacitly make use of this fact in the proof
of Theorems 3.6 and 3.7.

Fourth, while we choose to use (at least) the system ACA�0 as our base theory, one
can replace the latter by RCA�0 using the following trick.

Remark 3.5 (Excluded middle trick). The law of excluded middle as in (∃2) ∨
¬(∃2) is quite useful as follows: suppose we are proving T → NINalt over RCA�0 .
Now, in case ¬(∃2), all functions on R are continuous by [48, Proposition 3.12] and
NINalt then trivially8 holds. Hence, what remains is to establishT → NINalt in case we
have (∃2). However, the latter axiom, e.g., implies ACA0 and can uniformly convert
reals to their binary representations. In this way, finding a proof in RCA�0 + (∃2) is
‘much easier’ than finding a proof in RCA�0 . In a nutshell, we may without loss of
generality assume (∃2) when proving theorems that are trivial (or readily proved)
when all functions (on R or NN) are continuous, like NINalt. Moreover, we can
replace 2N by [0, 1] at will, which is convenient sometimes.

While the previous trick is useful, it should be used sparingly: the axiom (∃2)
is required to guarantee that basic sets like the unit interval are sets in our sense
(Definition 1.7) or that finite sets (Definition 1.2) are well-behaved. For this reason,
we only mention Remark 3.5 in passing and shall generally work over ACA�0 .

3.3. Regulated functions and the uncountability ofR. We establish the equivalences
sketched in Section 1.1 pertaining to the uncountability of R and properties of
regulated functions.

8In case H : R → N is continuous on R, the set An := {x ∈ A : H (x) < n} for A = [0, 1] in
Definition 2.3 cannot be finite for any n ∈ N for which it is non-empty.
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3.3.1. Volterra’s early work. In this section, we connect the uncountability of R
to Volterra’s early results from Section 1.2. In particular, we establish the following
theorem where the final two items exhibit some nice robustness properties of NINalt

and Volterra’s results, as promised in Section 1.1.

Theorem 3.6 (ACA�0 + QF-AC0,1 + FIN). The following are equivalent.

(a) The uncountability of R as in NINalt.
(b) Volterra’s theorem for regulated functions: there do not exist two regulated

functions defined on the unit interval for which the continuity points of one are
the discontinuity points of the other, and vice versa.

(c) Volterra’s corollary for regulated functions: there is no regulated function that
is continuous on Q ∩ [0, 1] and discontinuous on [0, 1] \Q.

(d) Generalised Volterra’s corollary (Theorem 1.5) for regulated functions and
height countable D (or: countable D, or: strongly countable D).

(e) For a sequence (Xn)n∈N of finite sets in [0, 1], the set [0, 1] \ ∪n∈NXn is dense
(or: not height countable, or: not countable, or: not strongly countable).

Proof. First of all, Volterra’s theorem implies Volterra’s corollary (both
restricted to regulated functions), as Thomae’s function T from (1.1) is readily
defined using ∃2, while the latter also shows that T is regulated and continuous
exactly on R \Q.

Secondly, we now derive NINalt from Volterra’s corollary as in item (c). To this
end, let (Xn)n∈N be a sequence of finite sets such that [0, 1] = ∪n∈NXn. Now use �2

to define the following function:

g(x) :=

{
0, x ∈ Q,

1
2n+1 , x ∈ R \Q ∧ x ∈ Xn and n is the least such number.

(3.1)

We have 0 = g(0+) = g(0 –) = g(x+) = g(x –) for any x ∈ (0, 1), i.e., g is
regulated. To establish this fact in our base theory, note that ∪k≤nXk is finite for any
n ∈ N and can be enumerated, both thanks to FIN. As a result, g is continuous at any
x ∈ Q ∩ [0, 1] and discontinuous at any y ∈ [0, 1] \Q. This contradicts Volterra’s
corollary (for regulated functions), and NINalt follows.

Thirdly, we derive Volterra’s corollary (for regulated functions) from NINalt,
by contraposition. To this end, let f be regulated, continuous on [0, 1] ∩Q, and
discontinuous on [0, 1] \Q. Now consider the following set

Xn :=
{
x ∈ (0, 1) : |f(x+) – f(x)| > 1

2n ∨ |f(x –) – f(x)| > 1
2n

}
, (3.2)

where we note that, e.g., the right limit f(x+) for x ∈ (0, 1) equals limk→∞ f(x +
1

2k
); the latter limit is arithmetical and hence �2 readily obtains it. Hence, the set

Xn from (3.2) can be defined in ACA�0 . To show that Xn is finite, suppose not
and apply QF-AC0,1 to find a sequence of reals in Xn. By the Bolzano–Weierstrass
theorem from [89, III.2], this sequence has a convergent sub-sequence, say with limit
c ∈ [0, 1]; then either f(c –) or f(c+) does not exist (using the usual epsilon-delta
definition), a contradiction. Hence,Xn is finite and by the assumptions on f, we have
Df = ∪n∈NXn = [0, 1] \Q. Then [0, 1] = Df ∪Q =

(
∪n∈N Xn) ∪Q shows that the

unit interval is a union over N of finite sets, i.e., ¬NINalt follows. One derives item
(b) from NINalt in the same way; indeed: [0, 1] = Df ∪Dg in case item (b) is false
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for regulated f, g : [0, 1] → R, showing that the unit interval is the union over N of
finite sets, yielding ¬NINalt.

Fourth, we only need to show that NINalt implies item (d), as Q is trivially
(height) countable and dense. Hence, let f be regulated, continuous on [0, 1] ∩D, and
discontinuous on [0, 1] \D, where D is height countable and dense. In particular,
assume D = ∪n∈NDn where Dn is finite for n ∈ N. Now consider Xn as in (3.2)
from the above and note that [0, 1] \D = ∪n∈NXn. Hence, [0, 1] = ∪n∈NYn where
Yn = Xn ∪Dn is finite (as the components are), i.e., ¬NINalt follows.

Finally, we only need to show that NINalt implies the final item (e). For the
terms in brackets in the latter, this is trivial as (strongly) countable sets are height
countable. For the density claim, let (Xn)n∈N be a sequence of finite sets and suppose
x0 ∈ [0, 1] andN0 ∈ N are such that B(x0,

1
2N0

) ∩
(
[0, 1] \ ∪n∈NXn

)
is empty. Hence,

B(x0,
1

2N0
) ⊂ ∪n∈NXn and define the finite sets Yn := Xn ∩ B(x0,

1
2N0

) using ∃2.

This implies B(x0,
1

2N0
) = ∪n∈NYn, which contradicts NINalt, modulo the rescaling

discussed in Remark 3.4. �

The final item of the theorem essentially expresses the Baire category theorem
restricted to the complement of finite sets, which are automatically open and dense.

3.3.2. Continuity and Riemann integration. We connect the uncountability of R
to properties of regulated functions like continuity and Riemann integration.

First of all, we shall need the set of (dis)continuity points of regulatedf : [0, 1] →
R, definable via ∃2 as follows:

Cf := {x ∈ (0, 1) : f(x) = f(x+) = f(x –)} and Df = [0, 1] \ Cf.

These sets occupy a central spot in the study of regulated functions. We have the
following theorem, where most items exhibit some kind of robustness.

Theorem 3.7 (ACA�0 + QF-AC0,1 + FIN). The following are equivalent.

(i) The uncountability of R as in NINalt.
(ii) For any regulated f : [0, 1] → R, there is x ∈ [0, 1] where f is continuous (or:

quasi-continuous, or: lower semi-continuous).
(iii) Any regulated f : [0, 1] → R is pointwise discontinuous, i.e., the set Cf is

dense in the unit interval.
(iv) For regulated f : [0, 1] → R, the set Cf is not height countable (or: not

countable, or: not strongly countable, or: not enumerable).
(v) For regulated f : [0, 1] → [0, 1] such that the Riemann integral

∫ 1
0 f(x)dx

exists and is 0, there is x ∈ [0, 1] with f(x) = 0 Bourbaki ([10, p. 61]).
(vi) For regulated f : [0, 1] → [0, 1] such that the Riemann integral

∫ 1
0 f(x)dx

exists and equals 0, the set {x ∈ [0, 1] : f(x) = 0} is dense ([10, p. 61]).
(vii) Blumberg’s theorem [8] restricted to regulated functions on [0, 1].
(viii) Measure theoretic Blumberg’s theorem [16]: for regulated f : [0, 1] → R,

there is a dense and uncountable (or: not strongly countable, or: not height
countable) subset D ⊂ [0, 1] such that f�D is pointwise discontinuous.

(ix) For regulatedf : [0, 1] → (0, 1], there existN ∈ N, x ∈ [0, 1] such that (∀y ∈
B(x, 1

2N
))(f(y) ≥ 1

2N
).
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(x) For regulated f : [0, 1] → (0, 1], there exist a dense set D such that f�D is
locally bounded away from zero9 (on D).

(xi) (FTC) For regulated f : [0, 1] → R such that F (x) := �x.
∫ x

0 f(t)dt exists,
there is x0 ∈ (0, 1) where F (x) is differentiable with derivative f(x0).

(xii) For any regulated f : [0, 1] → R, there is a Darboux point.
(xiii) For any regulated f : [0, 1] → R, its Darboux points are dense.
(xiv) For any regulated f : [0, 1] → R with only removable discontinuities, there is

x ∈ [0, 1] which is not a strict10 local maximum.

Proof. First of all, we prove item (ii) fromNINalt; we may use Volterra’s corollary
as in Theorem 3.6. Fix regulatedf : [0, 1] → R and consider this case distinction:

• If there is q ∈ Q ∩ [0, 1] with f(q+) = f(q –) = f(q), item (ii) follows.
• If there is no such rational, then Volterra’s corollary guarantees there is x ∈

[0, 1] \Q such that f is continuous at x.

In each case, there is a point of continuity for f, i.e., item (ii) follows. To prove that
item (ii) implies NINalt, let X := ∪n∈NXn be the union of finite sets Xn ⊂ [0, 1] and
define h as in (2.2). As for g from (3.1) in Theorem 3.6, h is regulated. Item (ii) then
provides a point of continuity y ∈ [0, 1] of h, which by definition must be such that
y �∈ X . The same holds for quasi- and lower semi-continuity.

The implication (iii)→(ii) is immediate (as the empty set is not dense in [0, 1]).
To prove (i)→(iii), let f be regulated and such that Cf is not dense. To derive
¬NINalt, consider Xn as in (3.2), which is finite for all n ∈ N (as is proved using
QF-AC0,1 and the Bolzano–Weierstrass theorem). Since Cf is not dense in [0, 1],
there is y ∈ [0, 1] and N ∈ N such that B(y, 1

2N
) ∩ Cf = ∅. By definition, the set

Df = ∪n∈NXn collects all points where f is discontinuous. Hence, [0, 1] \ Cf = Df ,
yielding B(y, 1

2N
) ⊂ Df . Now define Yn = Xn ∩ B(y, 1

2N
), which is finite since Xn

is finite. Hence, ∪n∈NYn = B(y, 1
2N

), i.e., an interval can be expressed as the union
over N of finite sets, which readily yields ¬NINalt after rescaling as in Remark 3.4.

Regarding item (iv), it suffices to derive the latter from NINalt, which is immediate
as Df is height countable. Indeed, if Cf is also height countable, then [0, 1] =
Cf ∪Df is height countable, contradicting NINalt. In case A ⊂ [0, 1] is countable,
then any Y : [0, 1] → N injective on A is also a height function, i.e., A is also height
countable. The same holds for strongly countable and enumerable sets.

Regarding items (v) and (vi), the latter immediately follow from items (ii) and
(iii). Indeed, in casef(x) > 0 forx ∈ Cf , then by continuity there are k,N ∈ N such
that f(y) > 1

2k
for y ∈ B(x, 1

2N+1 ), implying
∫ 1

0 f(x)dx > 1
2k2N

> 0. Now assume
item (v), let (Xn)n∈N be a sequence of finite sets, and let h be as in (2.2). The
latter is Riemann integrable with

∫ 1
0 h(x)dx = 0, which one shows via the usual

‘epsilon-delta’ definition and FIN. Any y ∈ [0, 1] such that h(y) = 0, also satisfies
y �∈ ∪n∈NXn, i.e., NINalt follows.

9In symbols: (∀x ∈ D)(∃N ∈ N)(∀y ∈ B(x, 1
2N

) ∩D)(f(y) ≥ 1
2N

), where we stress the underlined

part as it implements the claimed restriction to D.
10A pointx ∈ [0, 1] is a strict local maximum off : [0, 1] → R in case (∃N ∈ N)(∀y ∈ B(x, 1

2N
))(y �=

x → f(y) < f(x)).
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Next, we clearly have (iii)→(vii) and (iv)→(viii) since D = Cf is as required. To
prove (vii)→ NINalt, let (Xn)n∈N be a sequence of finite sets in [0, 1] and consider the
regulated function h from (2.2). Let D be the dense set provided by item (vii) and
consider y ∈ D. In case h(y) �= 0, say h(y) > 1

2k0
, use FIN to enumerate ∪n≤k0+1Xn.

Hence, we can find N ∈ N such that for z ∈ B(x, 1
2N

), h(z) < 1
2k0+1 , i.e., h�D is not

continuous (on D). This contradiction implies that h(y) = 0, meaning y ∈ [0, 1] \
∪n∈NXn, i.e., NINalt follows. A similar proof works for item (viii) by considering a
point from the dense set of continuity points of f�D .

Next, (ii) (resp. (iii)) clearly implies (ix) (resp. (x)). To show that (ix) and (x)
imply NINalt, one proceeds as in the previous paragraphs. Similarly, (ii) (resp. (iii))
implies (xii) (resp. (xiii)), as any continuity point is a Darboux point, by definition.
To show that (xii) implies NINalt, one considers the function h as in (2.2) and notes
that a Darboux point of h is not in ∪n∈NXn.

For item (xi), the usual epsilon-delta proof establishes that F (x) :=
∫ x

0 f(t)dt is
continuous and that F ′(y) = f(y) in case f is continuous at y, i.e., item (ii) implies
item (xi). As noted above, h as in (2.2) satisfies H (x) :=

∫ x
0 h(x)dt = 0 for any

x ∈ [0, 1], i.e., any y ∈ (0, 1) such that H ′(y) = 0 = h(y) is such that y �∈ ∪n∈NXn,
yielding NINalt as required.

Finally, assume item (xiv), let (Xn)n∈N be a sequence of finite sets, and note that h
as in (2.2) is regulated with only removable discontinuities. Now, the setX = ∪n∈NXn
consists of the local strict maxima of h, i.e., item (xiv) yields NINalt. For the reversal,
∃2 computes a functional M such thatM (g, a, b) is a maximum of g ∈ C ([0, 1]) on
[a, b] ⊂ [0, 1] (see [48, Section 3]), i.e., (∀y ∈ [a, b])(g(y) ≤ g(M (g, a, b))). Using
the functional M, one readily shows that ‘x is a strict local maximum of g’ is
decidable11 given ∃2, for g continuous on [0, 1]. Now let f : [0, 1] → R be regulated
and with only removable discontinuities. Use ∃2 to define f̃ : [0, 1] → R as follows:
f̃(x) := f(x+) for x ∈ [0, 1) and f̃(1) = f(1 –). By definition, f̃ is continuous on
[0, 1], and ∃2 computes a (continuous) modulus of continuity, which follows in the
same way as for Baire space (see, e.g., [47, Section 4]). In case f is discontinuous
at x ∈ [0, 1], the latter point is a strict local maximum of f if and only if f(x) >
f(x+) (or f(x) > f(x –) in case x = 1). Note that �2 (together with a modulus
of continuity for f̃) readily yields Nf,x ∈ N such that (∀y ∈ B(x, 1

2
Nf,x

))(f(y) <

f(x)), in case x is a strict local maximum of f. In case f is continuous at x ∈ [0, 1],
we can use ∃2 to decide whether x is a local strict maximum of f̃. By Footnote 11,
�2 again yields Nf,x ∈ N such that (∀y ∈ B(x, 1

2N
))(f̃(y) < f̃(x))), in case x is a

strict local maximum of f̃. Now consider the following set:

An := {x ∈ [0, 1] : x is a strict local maximum of f̃ or f with n ≥ Nf,x}.

11If g ∈ C ([0, 1]), then x ∈ [0, 1] is a strict local maximum iff for some 	 ∈ Q+:

• g(y) < g(x) whenever |x – y] < 	 for any q ∈ [0, 1] ∩Q, and
• supy∈[a,b] g(y) < g(x) whenever x �∈ [a, b], a, b ∈ Q and [a, b] ⊂ [x – 	,
x + 	].

Note that �2 readily yields N ∈ N such that (∀y ∈ B(x, 1
2N

))(g(y) < g(x)).
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Then An is finite as strict local maxima cannot be ‘too close’. Hence, NINalt yields
y ∈ [0, 1] \ ∪n∈NAn, which is not a local maximum of f by definition, i.e., item (xiv)
follows, and we are done. �

We may view item (i) as an extremely basic version of the connectedness of [0, 1],
as defined by Jordan in [43, pp. 24–28]. Similarly, item (xi) is an extremely basic
version of the fundamental theorem of calculus (FTC) and item (ii) is an extremely
basic version of the Lebesgue criterion for Riemann integrability. Moreover, it
seems necessary to formulate items (v), (vi), and (xi) with the extra condition that
the functions at hand be Riemann integrable. As an exercise, the reader should
prove that h : [0, 1] → R as in (2.2) is effectively Riemann integrable, i.e., there is a
functional that outputs the ‘� > 0’ on input the ‘ε > 0’ as in the usual epsilon-delta
definition of Riemann integrability.

Moreover, the notion of ‘left and right limits’ gives rise to the notion of ‘left
and right derivatives’; following item (xi), the left (resp. right) limit of regulated
f : [0, 1] → R equals the left (resp. right) derivative of F at every x0 ∈ (0, 1) via a
completely elementary proof (say in ACA�0 ). We could also formulate item (ii) with
approximate continuity (see, e.g., [17, II.5]) in the conclusion, but this notion seems
to involve a lot of measure theory.

3.3.3. Restrictions of regulated functions. In this section, we show that the above
equivalences for NINalt remain valid if we impose certain natural restrictions.

First of all, the above results show that we have to be careful with intuitive
statements like regulated functions are ‘close to continuous’. Indeed, by Theorem 3.7,
Z�2 + QF-AC0,1 is consistent with the existence of regulated functions that are
discontinuous everywhere. Similarly, NIN follows from the statement a regulated
function is Baire 1 by [72, Theorem 2.34]. Hence, Z�2 + QF-AC0,1 cannot prove
the latter basic fact and the restriction in item (ii) in Theorem 3.8 is therefore
non-trivial. Similar results hold for items items (iii)–(iv) in Theorem 3.8 following
[72, Section 2.8].

Theorem 3.8 (ACA�0 + QF-AC0,1 + FIN). The following are equivalent.

(i) The uncountability of R as in NINalt.
(ii) For any regulated and Baire 2 function f : [0, 1] → R, there is x ∈ [0, 1] where

f is continuous.
(iii) For any regulated and Baire 1∗ functionf : [0, 1] → R, there is x ∈ [0, 1] where

f is continuous.
(iv) For any regulated and usco (or: lsco) functionf : [0, 1] → R, there is x ∈ [0, 1]

where f is continuous.

Proof. In light of Theorem 3.7, we only need to show that items (ii)–(iv) imply
NINalt. The function h : [0, 1] → R from (2.2) is central in the proof of the former
theorem. For item (ii), h is Baire 2 as follows: define hn(x) as h(x) in case x ∈
∪m≤nXn, and 0 otherwise. By definition, h is the pointwise limit of (hn)n∈N and
FIN allows us to enumerate ∪m≤n0Xn for fixed n0 ∈ N. Hence, for fixed n0 ∈ N, hn0

has at most finitely many points of discontinuity. In particular, there is an obvious
sequence of continuous function with pointwise limit hn0 , i.e., the latter is Baire 1.
For item (iv), the function h is also usco as follows: in case h(x0) = 0 for x0 ∈ [0, 1],
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the definition of usco is trivially satisfied. In case h(x0) = 1
2n+1 , then there is N ∈ N

such that (∀y ∈ B(x, 1
2N

))(y �∈ ∪m≤n–1Xm) as in the proof of Theorem 3.7. In this
case, the definition of usco is also satisfied. The function �x.(1 – h(x)) is lsco. For
item (iii), define the closed sets Cn := ∪m≤nXm and note that the restriction of h to
Cn is continuous for each n, i.e., h is also Baire 1∗. �

Secondly, we point out one subtlety in the previous proof: it is only shown that
h : [0, 1] → R from (2.2) is Baire 2. In particular, we cannot12 construct a double
sequence of continuous functions with iterated limit equal to h. As it happens, Baire
himself notes in [3, p. 69] that Baire 2 functions can be represented by such double
sequences. We could generalise item (ii) in Theorem 3.8 to any higher Baire class
and beyond, i.e., the latter theorem constitutes robustness in the flesh.

Moreover, going against our intuitions, we cannot replace ‘Baire 2’ by ‘Baire 1’
in Theorem 3.8 as the latter condition renders items (ii)–(iv) provable in ACA�0 +
QF-AC0,1 by the results in Section 3.5. In particular, while Baire 1∗ and usco are
subclasses of Baire 1, say in ZF or ZΩ

2 , these inclusions do not necessarily hold
in weaker systems. For instance, it is consistent with Z�2 + QF-AC0,1 that there
are totally discontinuous usco and regulated functions (see Theorem 3.7). An
interesting RM-question would be to calibrate the strength of some of the well-
known inclusions, like a regulated function on the unit interval is Baire 1.

Thirdly, the supremum principle for regulated functions implies NIN by [72,
Theorem 2.32] where the former principle states the existence of F : Q2 → R such
that F (p, q) = supx∈[p,q] f(x) for any p, q ⊂ [0, 1] ∩Q. Indeed, using the well-
known interval-halving technique, a supremum functional for h : [0, 1] → N as in
(2.2) would allow us to enumerate the associated union ∪n∈NXn, i.e., NINalt readily
follows. Perhaps surprisingly, the equivalences for NINalt from the previous sections
still go through if we restrict to regulated functions with a supremum functional.
Regarding item (iv), the Heaviside function is regulated but not symmetrically
continuous, where the latter notion goes back to Hausdorff [32].

Theorem 3.9 (ACA�0 + QF-AC0,1 + FIN). The following are equivalent.
(i) The uncountability of R as in NINalt.

(ii) For regulated f : [0, 1] → R with a supremum functional, there is x ∈ [0, 1]
where f is continuous.

(iii) For regulated and lsco f : [0, 1] → R with a supremum functional, there is
x ∈ [0, 1] where f is continuous.

(iv) For regulated and symmetrically continuous f : [0, 1] → R, there is x ∈ [0, 1]
where f is continuous.

Proof. The first item implies the other items by Theorem 3.7. Now assume the
second item and letY : [0, 1] → N be an injection and define e(x) :=

∑Y (x)+1
n=0

xn

n! . By
definition, we have e(x) < ex for x ∈ [0, 1]. Using the second item of FIN, we have
e(x+) = e(x –) = ex for x ∈ (0, 1). Indeed, for small enough neighbourhoods U

12The results in [72, Section 2.6] establish thatACA�0 + ATR0 plus extra induction can prove numerous
theorems aboutBV -functions if we assume the latter are also Baire 1. This can be generalised from ‘BV ’
to ‘regulated’ and from ‘Baire 1’ to ‘Baire 2 given as an iterated limit of a double sequence of continuous
functions’. The technical details are, however, rather involved.
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of x ∈ (0, 1), Y is arbitrarily large on U \ {x}, while ex is uniformly continuous on
[0, 1]. Hence, �x.e(x) is regulated (and lsco) and supx∈[p,q] e(x) = eq also follows.
Since the former function is totally discontinuous, we obtain a contradiction. To
show that �x.e(x) is also symmetrically continuous, note that the second item of FIN
implies that |e(x + h) – e(x – h)| is arbitrarily small for small enough h ∈ R. �

Finally, there are a number of equivalent definitions of ‘Baire 1’ on the reals [4,
52, 57], including the following ones by [52, Theorem 2.3] and [55, Section 34, VII].

Definition 3.10.

• Any f : [0, 1] → R is fragmented if for any ε > 0 and closed C ⊂ [0, 1], there
is non-empty relatively13 open O ⊂ C such that diam(f(O)) < ε.

• Any f : [0, 1] → R is B-measurable of class 1 if for every open Y ⊂ R, the set
f–1(Y ) is F� , i.e., a union over N of closed sets.

The diameter of a set X of reals is defined as usual, namely diam(X ) :=
supx,y∈X |x – y|, where the latter supremum need not exist for Definition 3.10.
We have the following theorem, similar to Theorem 3.8.

Theorem 3.11 (ACA�0 + IND0). The following are equivalent.

(a) The uncountability of R as in NINalt.
(b) For fragmented and regulated f : [0, 1] → R, there is a point x ∈ [0, 1] where f

is continuous.
(c) For B-measurable of class 1 and regulated f : [0, 1] → R, there is x ∈ [0, 1]

where f is continuous.

Proof. In light of Theorem 3.7, it suffices to prove that h from (2.2) is fragmented
and B-measurable of class 1. For the former notion, for fixed k ∈ N, FIN can
enumerate the (finitely many) x ∈ [0, 1] such that h(x) ≥ 1

2k
. Any open set O not

including these points is such that diam(h(O)) < 1
2k

, showing that h is fragmented.
For the B-measurability (of first class), in case (Xn)n∈N is a sequence of finite sets

such that [0, 1] = ∪n∈NXn, note that for any Z ⊂ R, the set h–1(Z) is the union of
those Xn such that 1

2n+1 ∈ Z, i.e., F� by definition. �
We show in Section 3.5 that most of the above statements that are equivalent to

NINalt, become provable in the much weaker system ACA�0 + QF-AC0,1 + FIN if we
additionally require the functions to be Baire 1 as in Definition 1.8.

3.4. Bounded variation and the uncountability of R.

3.4.1. Introduction. In this section, we establish the equivalences sketched in
Section 1.1 pertaining to the uncountability of R and properties of BV -functions.
In particular, we study the following weakening of NINalt involving the notion of
height-width countability from Definition 2.6.

Principle 3.12 (NIN′
alt). The unit interval is not height–width countable.

13For A ⊆ B ⊂ R, we say that A is relatively open (in B) if for any a ∈ A, there is N ∈ N such that
B(x, 1

2N
) ∩ B ⊂ A. Note that B is always relatively open in itself.
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Equivalences for NIN′
alt will involve some (restrictions of) items from Theo-

rems 3.6 and 3.7, but also a number of theorems from analysis that hold for
BV -functions and not for regulated ones. For the latter, we need some additional
definitions, found in Section 3.4.2, while the equivalences are in Section 3.4.3

Finally, we first establish Theorem 3.15, which is interesting because we are
unable to derive NINalt from the items listed therein. The exact definitions of HBU
and WHBU are below, where the former expresses that the uncountable covering
∪x∈[0,1]B(x,Ψ(x)) has a finite sub-covering, i.e., the Heine-Borel theorem or Cousin
lemma [21]. The principle WHBU is the combinatorial essence of the Vitali covering
theorem, as studied in [66].

Principle 3.13 (HBU [65]). For any Ψ : R → R+, there are y0, ... , yk ∈ [0, 1] such
that ∪i≤kB(yi ,Ψ(yi)) covers [0, 1].

Principle 3.14 (WHBU [66]). For any Ψ : R → R+ and ε >R 0, there are
y0, ... , yk ∈ [0, 1] such that ∪i≤kB(yi ,Ψ(yi)) has measure at least 1 – ε.

We note that WHBU can be formulated without using the Lebesgue measure, as
discussed at length in e.g., [66] or [89, X.1]. We conjecture that NINalt is not provable
in ACA�0 + HBU.

Theorem 3.15 (ACA�0 + FIN). The following theorems imply NIN′
alt:

• Jordan decomposition theorem for [0, 1],
• the principle HBU restricted to BV -functions,
• the principle WHBU restricted to BV -functions.

Proof. For the first item, let (Yn)n∈N be a sequence of finite sets with width bound
g ∈ NN. The function k : [0, 1] → R from (2.4) has bounded variation, with upper
bound 1 by definition, for which we need FIN. By [70, Lemma 7], �2 can enumerate
the points of discontinuity of a monotone function, i.e., the Jordan decomposition
theorem provides a sequence (xn)n∈N that enumerates the points of discontinuity of
a BV -function. Using the usual diagonal argument (see, e.g., [89, II.4.9]), we can
find a point not in this sequence, yielding NIN′

alt.
For the remaining items, let (Yn)n∈N again be a sequence of finite sets with

width bound g ∈ NN. Suppose [0, 1] = ∪n∈NYn and define Ψ : [0, 1] → R+ as follows
Ψ(x) := 1

2n+5
1

g(n)+1 where x ∈ Yn and n is the least such number. For x0, ... , xk ∈
[0, 1], the measure of ∪i≤kB(xi ,Ψ(xi)) is at most 1/2 by construction, contradicting
HBU and WHBU. Using FIN, one readily shows that Ψ is in BV . �

The principleHBU is studied in [5, 6] for Ψ represented by, e.g., second-order Borel
codes. This ‘coded’ version is provable in ATR0 extended with some induction. By
contrast and Theorem 3.15, HBU restricted to BV -functions, which are definitely
Borel, implies NIN′

alt, which in turn is not provable in Z�2 . Thus, the use of codes
fundamentally changes the logical strength ofHBU. A similar argument can be made
for the Jordan decomposition theorem, studied for second-order codes in [64].

3.4.2. Definitions. We introduce some extra definitions needed for the RM-study
of BV -functions as in Section 3.4.3.

First of all, we shall study unordered sums, which are a device for bestowing
meaning upon ‘uncountable sums’

∑
x∈I f(x) for any index set I and f : I → R.
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A central result is that if
∑
x∈I f(x) somehow exists, it must be a ‘normal’ series

of the form
∑
i∈N
f(yi), i.e., f(x) = 0 for all but countably many x ∈ [0, 1]; Tao

mentions this theorem in [94, p. xii].
By way of motivation, there is considerable historical and conceptual interest in

this topic: Kelley notes in [44, p. 64] that Moore’s study of unordered sums in [61]
led to the concept of net with his student Smith [62]. Unordered sums can be found
in (self-proclaimed) basic or applied textbooks [39, 90] and can be used to develop
measure theory [44, p. 79]. Moreover, Tukey shows in [96] that topology can be
developed using phalanxes, which are nets with the same index sets as unordered
sums.

Now, unordered sums are just a special kind of net and a : [0, 1] → R is therefore
written (ax)x∈[0,1] in this context to suggest the connection to nets. The associated
notation

∑
x∈[0,1] ax is purely symbolic. We only need the following notions in the

below. Let fin(R) be the set of all finite sequences of reals without repetitions.

Definition 3.16. Let a : [0, 1] → R be any mapping, also denoted (ax)x∈[0,1].

• We say that
∑
x∈[0,1] ax is Cauchy if there is Φ : R → fin(R) such that for ε > 0

and all J ∈ fin(R) with J ∩ Φ(ε) = ∅, we have |
∑
x∈J ax | < ε.

• We say that
∑
x∈[0,1] ax is bounded if there is N0 ∈ N such that for any J ∈

fin(R), N0 > |
∑
x∈J ax |.

Note that in the first item, Φ is called a Cauchy modulus. For simplicity, we focus
on positive unordered sums, i.e., (ax)x∈[0,1] such that ax ≥ 0 for x ∈ [0, 1].

Secondly, there are many spaces between the regulated and BV -functions, as
discussed in Remark 3.23. We shall study one particular construct, called Waterman
variation, defined as follows.

Definition 3.17. A decreasing sequence of positive reals Λ = (�n)n∈N is a
Waterman sequence if limn→∞ �n = 0 and

∑∞
n=0 �n = ∞.

Definition 3.18 (Waterman variation). The functionf : [a, b] → R has bounded
Waterman variation with sequence Λ = (�n)n∈N on [a, b] if there is k0 ∈ N such that
k0 ≥

∑n
i=0 �i |f(xi) – f(xi+1)| for any finite collection of pairwise non-overlapping

intervals (xi , xi+1) ⊂ [a, b].

Note that Definition 3.18 is equivalent to the ‘official’ definition of Waterman
variation by [1, Proposition 2.18]. In case f : [0, 1] → R has bounded Waterman
variation (with sequence Λ as in Definition 3.17), we write ‘f ∈ ΛBV ’.

Thirdly, we make use of the usual definitions of Fourier coefficients and series.

Definition 3.19. The Fourier series S(f)(x) off : [– 
, 
] → R at x ∈ [– 
, 
] is

a0
2 +

∑∞
n=1(ak · cos(nx) + bk · sin(nx)), (3.3)

with Fourier coefficients an := 1



∫ 

–
 f(t) cos(nt)dt and bn := 1




∫ 

–
 f(t) sin(nt)dt.

By the proof of Theorem 3.22, the Fourier coefficients and series of k : [0, 1] → R

as in (2.2) all exist. Our study of the Fourier seriesS(f) as in (3.3) will always assume
(at least) that the Fourier coefficients of f exist. Functions of bounded variation are
of course Riemann integrable and similarly have Fourier coefficients, but only in
sufficiently strong systems that seem to dwarf NIN′

alt.
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3.4.3. Basic equivalences. We establish a number of equivalences for NIN′
alt and

basic properties of BV -functions, some similar to those in Theorems 3.6 and 3.7,
some new. We note that QF-AC0,1 is no longer needed in the base theory.

Theorem 3.20 (ACA�0 + FIN). The following are equivalent.

(i) The uncountability of R as in NIN′
alt.

(ii) For a positive unordered sum
∑
x∈[0,1] ax with upper bound (or Cauchy

modulus; Definition 3.16), there is y ∈ [0, 1] such that ay = 0.
(iii) For a positive unordered sum

∑
x∈[0,1] ax with upper bound (or Cauchy

modulus; Definition 3.16), the set {x ∈ [0, 1] : ax = 0} is dense (or:
not height countable, or: not countable, or: not strongly countable).

(iv)-(xix) Any of items (b)–(d) from Theorem 3.6 or items (ii)–(xiv) from
Theorem 3.7 restricted to BV -functions.

(xx) For a Waterman sequence Λ and f : [0, 1] → R in ΛBV , there is
y ∈ [0, 1] where f is continuous.

(xxi)-(xxxvi) Any of items (b)–(d) from Theorem 3.6 or items (ii)–(xiv) from
Theorem 3.7 restricted to ΛBV for any fixed Waterman sequence Λ.

Proof. The equivalences involving the restrictions from regulated to BV
functions follow from the proofs of Theorems 3.6 and 3.7. Indeed, for f ∈ BV
with variation bounded by 1, the set Xn from (3.2) has size bounded by 2n since
each element of Xn contributes at least 1/2n to the variation. Moreover, rather
than h : [0, 1] → R as in (2.2), we use k : [0, 1] → R as in (2.4) which has variation
bounded by 1 if (Yn)n∈N is a sequence of sets with width function g ∈ NN. The
properties of k : [0, 1] → R are readily proved using FIN; in particular, the width
function g obviates the use of QF-AC0,1 as in the proofs of Theorems 3.6 and 3.7.
Hence, the equivalence between NIN′

alt and items (iv)–(xix) has been established.
The equivalence between items (i) and (ii) is as follows: assume the latter and let

(Xn)n∈N and g : N → N be as in item (i). Define (ax)x∈[0,1] as follows:

ax :=

{
0, x �∈ ∪n∈NXn,
1

2n
1

g(n)+1 , x ∈ Xn and n is the least such natural.

Clearly, this unordered sum is Cauchy and has upper bound 1; if y ∈ [0, 1] is such
that ay = 0, then y �∈ ∪n∈NXn, as required for item (i). Now assume the latter and
let (ax)x∈[0,1] be an unordered sum that is Cauchy. Now consider the following set:

Xn := {x ∈ [0, 1] : ax > 1/2n}. (3.4)

Apply the Cauchy property of (ax)x∈[0,1] for ε = 1, yielding an upper boundN0 ∈ N

for
∑
x∈K ax for any K ∈ fin(R). Hence, the finite set Xn in (3.4) has size at most

2nN0. In this way, we have a width function for (Xn)n∈N; any y ∈ [0, 1] \ ∪n∈NXn is
such that ay = 0, as required for item (ii). Item (iii) now follows in the same way as
for item (e) in the proof of Theorem 3.6.

For item (xx), assume the latter and note that (3.5) establishes that f ∈ BV
implies f ∈ ΛBV for any Waterman sequence Λ = (�n)n∈N:∑n

i=0 �i |f(xi) – f(xi+1)| ≤
∑n
i=0 �1|f(xi) – f(xi+1)| ≤ �1V

1
0 (f), (3.5)
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as Waterman sequences are decreasing by definition. Hence, item (i) readily follows
from item (xx). Now assume item (i) and recall that forBV -functions with variation
bounded by 1, the setXn from (3.2) can have at most 2n elements, as each element of
Xn contributes at least 1

2n to the total variation. Functions with Waterman variation
bounded by 1 similarly come with explicit upper bounds on the set Xn, namely
|Xn| ≤ Kn where Kn is the least k ∈ N such that 2n <

∑k
m=0 �m. Hence, item (xx)

follows and we are done. �
Following the proof of Theorem 3.8, we observe that we may restrict to BV -

function that are Baire 2 or Baire 1∗ in the previous theorem. With the gift of
hindsight we can even obtain the following corollary. We recall that the space of
regulated functions is the union over all Waterman sequences Λ = (�n)n∈N of the
spaces ΛBV , as established in [1, Proposition 2.24].

Corollary 3.21 (Some generalisations).

• We may replace ‘f ∈ ΛBV ’ in items (xx)–(xxxvi) of the theorem by ‘regulated
function f : [0, 1] → R with Λ = (�n)n∈N such that f ∈ ΛBV ’.

• Assuming ACA�0 + QF-AC0,1 + FIN, the higher item implies the lower one.
– For any regulated f : [0, 1] → R, there is a Waterman sequence Λ =

(�n)n∈N such that f ∈ ΛBV .
– The uniform finite union theorem.

Proof. For the first item, the last part of the proof of the theorem provides the
required upper bound function for applying NIN′

alt.
For the second item, let (Xn)n∈N be a sequence of finite sets in [0, 1] and consider

the regulated function h : [0, 1] → R as in (2.2). Suppose h is in ΛBV with Λ =
(�n)n∈N and with upper bound N0 ∈ N on the Waterman variation. Then An+2 as
in (2.1) is ∪i≤nXi for all n ∈ N and |An| ≤ Kn where Kn is the least k ∈ N such that
2nN0 <

∑k
m=0 �m. The uniform finite union theorem thus follows. �

An equivalence is possible in the second item, but the technical details are
considerable. Our above results suggest that the principles equivalent to NIN′

alt also
have a certain robustness since we can replace ‘one point’ properties like item (ii) in
Theorem 3.20, by, e.g., ‘density’ versions like item (iii) in Theorem 3.20. Nonetheless,
we believe we cannot replace ‘density’ by ‘full measure’. In particular, we conjecture
that ‘measure theoretic’ statements like

• a BV -function is continuous (or differentiable) almost14 everywhere,
• a height–width countable set A ⊂ [0, 1] has measure14 zero

are strictly stronger than NIN′
alt. We do not have a proof of this claim.

Finally, the variation function �x.V xa (f) is defined in the obvious way, namely
based on (1.2). This function shares pointwise properties like continuity and
differentiability with f : [a, b] → R. For instance, the following equivalence for any
x ∈ [0, 1) is obtained in [37, Corollary 1.1]:

f is right-continuous at x if and only if �x.V xa (f) is right-continuous at x. (3.6)

14The definition of ‘A ⊂ [0, 1] has measure zero set’ can be written down without using the Lebesgue
measure, just like in second-order RM (see [89, X.1]).
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Here, ‘right-continuous at y ∈ [0, 1)’ means g(y) = g(y+). Now, although the
variation function may not exist for BV -functions, say in RCA�0 , the right-hand
side of (3.6) makes sense using the well-known ‘virtual’ or ‘comparative’ meaning
of suprema from second-order RM (see [89, X.1]). Perhaps surprisingly, working
over ACA�0 + FIN + ¬NIN′

alt, the function k : [0, 1] → R from (2.4) satisfies

the function �x.V x0 (k) is right-continuous for x ∈ [0, 1),

which is to be interpreted in the aforementioned virtual sense. Thus, one readily
proves that the following are equivalent, where E(f, x) is (3.6).

• The uncountability of R as in NIN′
alt.

• For f : [0, 1] → R in BV , there is y ∈ [0, 1] where f is continuous.
• For f : [0, 1] → R in BV , there is y ∈ [0, 1] where E(f, y) holds.
• For f : [0, 1] → R in BV such that �x.V x0 (f) is right-continuous on [0, 1),

there is y ∈ [0, 1] where f is right-continuous.

To be absolutely clear, we think this topic should not be pursued further: mistakes
are (too) easily made when dealing with ‘virtual’ objects like �x.V x0 (f).

3.4.4. Advanced equivalences: Fourier series. We obtain an equivalence forNIN′
alt

and properties of the Fourier series of BV -functions. Since the forward direction
is rather involved, we have reserved a separate section for this result. Moreover,
Theorem 3.22 is not at all straightforward: Jordan proves the convergence of Fourier
series for BV -functions using the Jordan decomposition theorem, and the same for,
e.g., [106, pp. 57–58]. However, the latter theorem seems much stronger15 thanNIN′

alt.

Theorem 3.22 (ACA�0 + FIN). The following are equivalent to NIN′
alt.

• For f : [– 
, 
] → R in BV such that the Fourier coefficients exist, there is
x0 ∈ (– 
, 
) where the Fourier series S(f)(x0) equals f(x0).

• For f : [– 
, 
] → R in BV such that the Fourier coefficients exist, the set of
x ∈ (– 
, 
) where the Fourier series S(f)(x) equals f(x), is dense (or: not
height countable, or: not countable, or: not strongly countable).

Proof. Assume the first item and consider k : [0, 1] → R from (2.4). This
function is Riemann integrable with

∫ 1
0 k(x)dx = 0, which one proves in the same

way as for h : [0, 1] → R from (2.2) in the proof of Theorem 3.7. Similarly (and
with a suitable rescaling), the Fourier coefficients of the Fourier series of k are zero.
Hence, any x0 where the Fourier series of k converges to k(x0) must be such that
k(x0) = 0, as required for NIN′

alt since then x0 �∈ ∪n∈NXn.
Secondly, by items (iv)–(xix) in Theorem 3.20, NIN′

alt implies that for a BV -
function, the set Cf is dense (or: not height countable, or: not countable, or: not
strongly countable). Hence, the second item from Theorem 3.22 is immediate if we
can show that S(f)(x) from Definition 3.19 equals f(x+)–f(x–)

2 for f in BV and
any x in the domain. Waterman provides an elementary and almost self-contained
proof of this convergence fact in [101], avoiding the Jordan decomposition theorem
and only citing [106, Vol. I, p. 55, (7.1)]. The proof of the latter is straightforward

15The system Π1
1-CA�0 plus the Jordan decomposition theorem can prove Π1

2-CA0 [68]. By Theorem
3.15, WHBU implies NIN′

alt, where the former seems weak in light of [66, Section 4].

https://doi.org/10.1017/jsl.2023.42 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.42


BIG IN REVERSE MATHEMATICS: THE UNCOUNTABILITY OF THE REALS 27

trigonometry and Waterman’s argument is readily formalised in ACA�0 . Similarly,
there are ‘textbook’ proofs that S(f)(x) equals f(x+)–f(x–)

2 for f in BV and x in the
domain that avoid the Jordan decomposition theorem. Such proofs generally seem
to proceed as follows (see, e.g., [51, 102, 106]).

• By Fejér’s theorem ([106, p. 89] or [102, p. 170]), Fourier series ofBV -functions
are convergent in the Césaro mean to f(x+)–f(x–)

2 .
• For BV -functions, Fourier coefficients are O( 1

n ) ([102, p. 172], [106, p. 48]).
• By Hardy’s theorem ([106, p. 78] or [102, p. 156]), if a series converges in the

Césaro mean, it also converges in case the terms are O( 1
n ).

• By Césaro’s method of summation (see [102, p. 155]), if a series converges in the
Césaro mean to a limit s and the series also converges, then the series converges
to the limit s.

Each of these results has an elementary (sometimes tedious and lengthy) proof that
readily formalises in ACA�0 . As an example, the proofs of the second item in [102,
p. 172] and [1, p. 288] make use of the Jordan decomposition theorem, while the
proofs in [92] and [106, p. 48] do not and are completely elementary. Finally, the
perhaps ‘most elementary’ proof based on the above items is found in [51]. �

Regarding the conditional nature of the items in Theorem 3.22, the Fourier
coefficients of BV -functions of course exist by the Lebesgue criterion for the
Riemann integral. However, that BV -functions have a point of continuity is already
non-trivial by items (iv)–(xix) in Theorem 3.20. Moreover, the Darboux formulation
of the Riemann integral involves suprema of BV -functions, which are hard to
compute by the second cluster theorem in [71].

Finally, we could generalise the items from Theorems 3.20 and 3.22 to other
notions of ‘generalised’ bounded variation. The latter notions yield (many)
intermediate spaces between BV and regulated as follows.

Remark 3.23 (Between bounded variation and regulated). The following spaces
are intermediate between BV and regulated; all details may be found in [1].

Wiener spaces from mathematical physics [103] are based on p-variation, which
amounts to replacing ‘|f(xi) – f(xi+1)|’ by ‘|f(xi) – f(xi+1)|p’ in the definition of
variation (1.2). Young [104] generalises this to φ-variation which instead involves
φ(|f(xi) – f(xi+1)|) for so-called Young functions φ, yielding the Wiener–Young
spaces. Perhaps a simpler construct is the Waterman variation [100], which involves
�i |f(xi) – f(xi+1)| and where (�n)n∈N is a sequence of reals with nice properties;
in contrast to BV , any continuous function is included in the Waterman space [1,
Proposition 2.23]. Combining ideas from the above, the Schramm variation involves
φi(|f(xi) – f(xi+1)|) for a sequence (φn)n∈N of well-behaved ‘gauge’ functions [85].
As to generality, the union (resp. intersection) of all Schramm spaces yields the
space of regulated (resp. BV ) functions, while all other aforementioned spaces are
Schramm spaces [1, Propositions 2.43 and 2.46]. In contrast to BV and the Jordan
decomposition theorem, these generalised notions of variation have no known ‘nice’
decomposition theorem. The notion of Korenblum variation [50] does have such a
theorem (see [1, Proposition 2.68]) and involves a distortion function acting on the
partition, not on the function values (see [1, Definition 2.60]).
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It is no exaggeration to say that there are many natural spaces between the
regulated and BV -functions, all of which yield equivalences in Theorem 3.20.

3.5. When more is less in Reverse Mathematics. An important-if not central-
aspect of analysis is the relationship between its many function classes. It goes
without saying that these relationships need not hold in weak logical systems. For
instance, the well-known inclusion regulated implies Baire 1 is not provable in Z�2 +
QF-AC0,1 by [72, Theorem 2.34].

In this section, we establish a kind of dual to the previous negative result: we show
that most of the above statements that are equivalent to NINalt or NINalt′ , become
provable in the much weaker system ACA�0 + QF-AC0,1 + FIN if we additionally
require the functions to be Baire 1. To this end, we need the following theorem,
where a jump continuity is any x ∈ (0, 1) such that f(x+) �= f(x –).

Theorem 3.24 (ACA�0 ). If f : [0, 1] → R is regulated, there is a sequence of reals
containing all jump discontinuities of f.

Proof. This is immediate from [72, Theorem 2.16]. �

The following theorem should be contrasted with Theorems 3.8 and 3.20.

Theorem 3.25 (ACA�0 + FIN). For a Baire 1 function f : [0, 1] → R in BV , the
points of continuity of f are dense.

Proof. Let f : [0, 1] → R be Baire 1 and in BV with variation bounded by 1.
This function is regulated by Theorem 3.3. Use Theorem 3.24 to enumerate the jump
discontinuities of f as (yn)n∈N. Let (fn)n∈N be a sequence of continuous functions
with pointwise limit f on [0, 1] and consider the following formula:

ϕ(n0, k, x) ≡ (∀n,m ≥ n0)(∀q ∈ B(x, 1
2m ) ∩Q)(|fn(x) – f(q)| ≥ 1

2k
+ 1

2n0 ).
(3.7)

For fixed k ∈ N, ϕ(n0, k, x) holds for large enough n0 ∈ N in case f has a removable
discontinuity at x ∈ (0, 1) such that |f(x) – f(x+)| > 1

2k
. For fixed n0, k ∈ N, there

can only be 2k many pairwise distinct x ∈ [0, 1] such that ϕ(n0, k, x), as each such
real contributes at least 1

2k
to the total variation of f.

Next, the formula ϕ(n0, k, x) is equivalent to (second-order) Π0
1 as f only occurs

with rational input and fn can be replaced uniformly by a sequence of codes Φn.
Moreover, in case x =R y, then trivially ϕ(n0, k, x) ↔ ϕ(n0, k, y), i.e., we have the
extensionality property required for [89, II.5.7]. By the latter there is an RM-code of
a closed setCn0,k such thatx ∈ Cn0,k ↔ ϕ(n0, k, x) for allx ∈ R and n0, k ∈ N. Since
Cn0,k is finite, On0,k := [0, 1] \

(
Cn0,k ∪ {y0, ... , yk}

)
is open and dense. By the Baire

category theorem for RM-codes [89, II.5.8], the intersection ∩n0,k∈NOn0,k is dense
in [0, 1]. By definition, this intersection does not contain any points of discontinuity
of f, and we are done. �

The following corollary should be contrasted with Theorem 3.22.
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Corollary 3.26 (ACA�0 + FIN).

• For a positive unordered sum
∑
x∈[0,1] ax with upper bound and where (ax)x∈[0,1]

is Baire 1, the set {y ∈ [0, 1] : ay = 0} is dense.
• For Baire 1 function f : [– 
, 
] → R in BV such that the Fourier coefficients

exist, the set {x ∈ (– 
, 
) : S(f)(x) = f(x)}, is dense.

Proof. Let (ax)x∈[0,1] be an unordered sum with upper bound 1. Now consider

Xn := {x ∈ [0, 1] : ax > 1/2n}, (3.8)

which can have at most 2n elements. As in the proof of the theorem, the Baire
1 approximation of (ax)x∈[0,1] allows us to show that ax > 1/2n is (implied by) a
suitable (second-order) Σ0

1-formula. One then uses the (second-order) Baire category
theorem to show that y ∈ [0, 1] such that ay = 0 are dense.

For the second item, following the proof of Theorem 3.22,f(x) = S(f)(x) holds
in case f is continuous at x ∈ [0, 1], where the latter is provided by the theorem. �

Next, the first item in Theorem 3.27 follows from [72, Theorem 2.26], but the
latter is proved using ACA�0 + ATR0.

Theorem 3.27 (ACA�0 + FIN + QF-AC0,1).

• For regulated Baire 1 f : [0, 1] → R, the points of continuity of f are dense.
• Volterra’s corollary: there is no regulated and Baire 1 function that is continuous

on Q ∩ [0, 1] and discontinuous on [0, 1] \Q.
• For a Riemann integrable and regulated f : [0, 1] → [0, 1] in Baire 1 with∫ 1

0 f(x)dx = 0, the set {x ∈ [0, 1] : f(x) = 0} is dense.
• Blumberg’s theorem [8] restricted to regulated Baire 1 functions on [0, 1].

Proof. For the first item, the proof of Theorem 3.25 can be modified follows:
for regulated f and fixed k ∈ N, there can be at most finitely many x ∈ [0, 1] such
that |f(x) – f(x+)| > 1

2k
. One proves this fact by contradiction (as in the proof of

Theorem 3.6), whereQF-AC0,1 provides a sequence (xn)n∈N of reals in [0, 1] such that
|f(xn) – f(xn+)| > 1

2k
for all n ∈ N. This sequence has a convergent sub-sequence,

say with limit y ∈ [0, 1]; one readily verifies that f(y+) or f(y –) does not exist.
The rest of the proof is now identical to that of Theorem 3.25.

For the second item, the proof of Theorem 3.25 is readily adapted as follows:
let (qn)n∈N be an enumeration of the rationals in [0, 1] and define O′

n0,k
as On0,k \

{q0, ... , qk}. Then Theorem 3.25 must yield an irrational point of continuity, a
contradiction.

For the third item, note that f(x) = 0 must hold in case f is continuous at
x ∈ [0, 1], where the (dense set of the) latter is provided by the first item.

For the fourth item, this immediately follows from the first item. �

We could obtain similar results for most items of Theorem 3.7 and related
theorems. We could also replace ‘Baire 1’ by ‘effectively Baire 2’ in Theorem 3.8
where the latter means that the function is given as the pointwise iterated limit of a
double sequence of continuous functions; however, this would require us to go up
to at least ATR0, as suggested by the results in [72, Section 2.6].
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Supérieure 2e série, vol. 4 (1875), pp. 57–112.

https://doi.org/10.1017/jsl.2023.42 Published online by Cambridge University Press

https://arxiv.org/abs/2105.02975
https://doi.org/10.1017/jsl.2023.42


BIG IN REVERSE MATHEMATICS: THE UNCOUNTABILITY OF THE REALS 31
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