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Abstract

We study a periodic Kolmogorov model with m predators and n prey. By means of the
comparison theorem and a Liapunov function, a set of easily verifiable sufficient conditions
that guarantee the existence, uniqueness and global attractivity of the positive periodic
solution is obtained. Finally, some suitable applications are given to illustrate that the
conditions of the main theorem are feasible.

1. Introduction

The Kolmogorov system is a rudimentary model in mathematical ecology and has been
extensively investigated and developed (see [8, 9] and references therein). But most
of the literature requires that the systems be representable as autonomous differential
equations. If we consider the effects of environmental factors, the assumption of
periodicity of the parameters is both realistic and important.

Our main purpose in this paper is to study the asymptotic behaviour of the general
periodic Kolmogorov predator-prey system. Moreover, competition among predator
species and among prey species is simultaneously considered, that is, we will investi-
gate the following nonautonomous Kolmogorov predator-prey system of differential
equations:

lxi(t)=xi(t)Fi(t,xl(t),... ,xn(t),yi(t),... ,ym(t)), i = 1 , . . . ,n,

\ j = 1,... ,m,

where *,(/) denotes the density of species X, at time t and yj (t) denotes the density
of species Yj at time t. To describe system (1.1), we give the following assump-
tions.
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( H I ) Fi : R x Rfm - » • / ? , is continuous and periodic with respect to t, that is,

there exists a positive constant T, such that Ft(t + T, • , . . . , ) = Ft(t, -,...,-);

Gj : R x /?" + m ->• /?, is continuous and periodic with respect to t, that is, for the

a b o v e p o s i t i v e c o n s t a n t T, Gj(t + T, •,...,•) = Gj(t,- •)• Moreover,

F,(t,0, . . . , 0 ) > 0 , Gj(t,0, . . . ,0) < 0 , i = 1 , . . . , n , ; = 1 m.

(H2) F/(r ,JCI, . . . , x n , v i , . . . , y m ) and Gj(t,xu . . . , j c n , y i , . . . , ym) are continu-

ously differentiable with respect to (xx,... ,xn,yx ym) e Rfm. Moreover,

dFt n 3Fi dGj dGj
oxs 3y, 9^, dyi

(i = 1 , . . . , n, j — 1 , . . . , m, s = 1, . . . , n, I = 1 , . . . , m),

for ( x i , . . . ,xn,yXl... , ym) e E, where E is an arbitrary bounded set of R"^m.
(H3) There exist positive constants Bt, i = 1 , . . . , n, such that

F,(t, 0 0, fi,, 0 0,0 0) < 0, i = 1 , . . . . n.

Moreover, for arbitrary bounded positive constants Kx,... , Kn, there exist positive
constants D, = D,(AT!,... , Kn) > 0,j = I,... ,m, such that

Gj(t,Kx,...,Kn,0,...,0,Dj,0,...,0)<0, j = 1, . . . , m .

Wu and Zhao obtained the globally attractive almost periodic solution in the almost
competition Kolmogorov system in [12], Yang and Xu obtained a globally attractive
periodic solution in the periodic Volterra-Lotka predator-prey system in [13]. In this
paper, we will study the periodic Kolmogorov predator-prey system. As an application,
we will consider some ecological systems.

The structure of this paper is as follows: in Section 2, we investigate the persistence
of system (1.1) and derive a persistence result. In Section 3 we obtain sufficient
conditions for the uniqueness and global attractivity of the periodic solution of (1.1).
Finally, in Section 4 we give some suitable applications to illustrate that the conditions
of the main theorem are feasible.

2. Persistence

Throughout this paper,

u(t, MO) = (xi(r, «o) *„(', M0),yi(r, M0) ym(r, H0))r

denotes the solution of (1.1) with initial condition

MO = (*io, . . . . xn0, y10 vm0)r € int(fl"+m).

The following lemmas are required for the derivation of a persistence result, which
follows directly from [12, Theorem 4.2].
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LEMMA 2 . 1 . If for some / 6 { 1 , 2 , . . . , n],

I r
Fi(t,0 O)dt >0, (PI)

Jo

then the equation dxt/dt = *,Fj(r, 0 , . . . , 0, JC,-, 0 , . . . , 0) admits a globally asymp-
totically stable positive T-periodic solution x*(t) in int(/?+).

LEMMA 2.2. If (PI) holds for all i = 1 n, and for some j € {1, 2 , . . . , m],

• T

Gj (t, x*(t),..., x*(t), 0,...,0)dt>0, (P2)

Jo

then the equation dyj /dt = yjGj(t,x*,... , x*, 0 , . . . , 0, y;, 0 , . . . ,0) admits a

globally asymptotically stable positive T-periodic solution yj(t) in int(/?+).

LEMMA 2.3. / / (PI) holds for all i = 1, . . . , n, and (P2) holds for all j =
1 , . . . , m, and for some i € {1, . . . , n),

[ rn(t),yl(t),...,y*m(0)dt>0, (P3)

then the equation dxi/dt = XjFi(t,x* x*_vXi,x*+1,... ,x*,y*,... ,y*m)admits
a globally asymptotically stable positive T-periodic solution x*(t) in int(/?+).

LEMMA 2.4. / / (PI), (P3) hold for all i = 1 , . . . ,n, and (P2) holds for all j =
1, . . . , m, and for some j € { 1 , . . . , m],

f
Jo

t.x^t),... ,x^(t), y^t) >;_, (0,0, ;y;+I(0, • • • , y*J0)dt > 0, (P4)

then the equation dyj /dt = yy- Gj (t,x*, ...,£, ft,.... y * _ v y } , yj+l,... ,y*m) ad-
mits a globally asymptotically stable positive T-periodic solution yj(t) in i n t ( / ? + ) .

We can now obtain our main result of the section.

THEOREM 2.5. / / (H1)-(H3) hold, (PI), (P3) hold for all i = 1, . . . ,n, and (P2),
(P4) hold for all j = 1 , . . . , m, then system (1.1) is persistent, that is, there exist
constants M and r), M > r) > 0, such that for arbitrary

«o = (*io xn0, yio ymo)T € int(Rn
+

+m),

there exists a T(u0) > 0, such that the solution u(t, u0) of (1.1) satisfies

T) < xt(t, u0) < M, r) < yj (r, «0) < M,

for all t > T(u0), i — 1 , . . . , n, j = 1 , . . . , m.
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PROOF. We prove the theorem in two steps.
Step (1). Solutions exist globally on [0, oo).

For any u0 = (x10,... , xM, yro ym0) e int(/?£+m), let /+(u0) = [0, 0(uo)) be
the maximal interval of existence of u(t, UQ). Then xt(t, u0) > 0, yj (t, u0) > 0 for
1 < i < n, 1 < j < m, t € [0, /3(wo))- By the assumption (H2), xt(t, uQ) satisfies

% ^ < x,(t)F,(t, 0 0, * ,(*) . 0 , . . . . 0) .
at

Therefore, by the comparison theorem, 0 < *,(/) < x,-(r), t e I+(u0), where xt(t) is
the unique solution of

^ = xt(t)F,(t, 0 0, x,(t), 0, . . . . 0)

= JC/O- Since^,(r) exists globally on [0, oo),x,(/) exists globally on [0, oo).
Moreover, for arbitrary S > 0, there exists a to > 0, such that 0 < xt(t) < x*(t) + S,
for all t > to-

By the assumption (H2), yj (r) satisfies

t,Ku...,KH,0 O,yj(t),O,--- , 0 ) ,

where AT, = max{sup,e[0oo)[Jc* + S], maKt^^XiO)}. Therefore, by the comparison
theorem, 0 < yj (t) < y; (t),te I+(u0), where yj (r) is the unique solution of

^ p = yj(t)Gj(t, Kx Kn, 0 , . . . , 0, yj(t), 0 , . . . . 0),

with yj(O) = yjo- Since yj(t) exists globally on [0, oo), y}{t) exists globally on
[0, oo). Therefore P(u0) = oo and /+(«0) = [0. oo).
Step (2). Uniform persistence.

By the first step, we know that for arbitrary 8 > 0, there exists a to > 0, such
that 0 < jc,-(f) < x* + S, I < i < n for t > %. Now we prove that yj(t) is
bounded for 1 < j < m. Let vt(t) = x((t + to), v(t) = (vi(t),..., vn(t)), v*(t) =
(x;(t + to) x*n{t + to)) and Zj (t) = yt (t + t0). Then

—— = Zj(t)Gj(t + to, vi(t),..., vn(t), z i (0 , • • • . zm(t))
at

. . . . ,vn(t),O,... , 0 , 2 , ( 0 , 0 , . . . ,0)

- 5 , 0 , . . . , 0 , 2 , ( 0 , 0 0).

Therefore, by the comparison theorem, 0 < 2,(0 < Wj(t), where Wj(t) is the
solution of

dwi (t)
1 = Wj (t)Gj (t + to, x'{t + to) + 8,... , x*(t + to) + 8,

0 0 , u ; , ( 0 , 0 , . . . , 0 ) (2.1)
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with ui;(0) = y>j (to) > 0. Choose SO > 0 small enough so that

I
Jo

,0 0)dt>0

as 0 < 8 < So. Then (2.1) admits a unique globally asymptotically stable positive
periodic solution wj(t) in int(fl+). For arbitrary e > 0, there exists a t[ = t(yj(O)) >
0, such that 0 < wj (t) < wj(t) + e/2 for t > t[.

Considering the system

^ ^ , 0 , . . . ,0, 2,(0,0, .... 0), (2.2)

then \im,^+oo(zj (t) - y*(t + to)) = 0, where Zj (t) is a solution of (2.2) with l} (0) =
y(to) > 0. Since the solution of (2.1) is continuous with respect to parameter S, w*(t)
and y*(t + to) are periodic solutions of (2.1) and (2.2) respectively. Hence, for the
above e, there exists a Su 0 < 8i < <50, such that \y*(t + t0) — wj(t)\ < e/2 for
0 < S < Si. Therefore

0 < Zj(0 < wj(t) < w*(t) + e/2 < y*(t + to) + e, t> t'v S < <5,.

Accordingly, 0 < yj (t) < y*(t) + e, t > h = ?x + to.
Let ut(t) = Xj(t + ti), i = 1 , . . . , n. Then u,(r) satisfies the inequality

- ^ p > u,(t)F,(t + tuxft + U) + 8,... ,Jc;_,(r + r,) + «,«,(O.

Therefore, by the comparison theorem, w,-(0 > i£,(0. t > 0, 1 < i < n, where Uj(t)
is the unique solution of

^ p = u,(t)F,(t + h,x\(t + r,) + « , . . . ,i;_,(r + r,) + 8, «,('),

i;+,(r + ' i ) + «,••• ,xB*(r+ /,) + «,

>T(r+^) + £ j £ ( r + *,) + e) (2.3)

with «((0) = «,(0) = A;,(ri) > 0. Define

F,{t + tu8,e) = F,(t + »,,*,'(/ + /,) + <$ i;_,(r + r,) + 5,0,
JE^,(r + r , ) + « , . . . ,in*(r + r,) + 5,

y\(t + tl) + e,... ,9Xt + ti) + e).
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There exist positive constants et and <52, &2 < ^1. such that /0 F,(£ + t\, 8, s) dt- > 0,
when 0 < 8 < <52, 0 < e < S\, i = 1, . . . , n. Therefore we have

lim(ui(t)-u*(t))=0, (2.4)

where u*(t) is the globally asymptotically stable positive periodic solution of (2.3).
By (2.4), we know that for arbitrary y < inf,6fi+ «J(f)> 1 < i < n, there exists
f2 = t(Xj(0)) > 0, such that «,(/) > u*(t) — y/2, t > tu 1 < i < n. Considering the
equation

dt { + tux\{t + h),... ,i*_,(r + r,), u>,(0,

ic;+1(r+ * , ) , . . . , i ; ( r + r,),y;(r + r,) y*(^ + 'i)), (2.5)

we know that (2.5) admits a unique positive periodic solution x*(t + t\), which is
globally asymptotically stable in int(/?+). This holds since the solution of (2.3) is
continuous with respect to parameters S and e, and u*(t) and x*(t + tt) are positive
periodic solutions of (2.3) and (2.5), respectively. For the above y, there exist constants
£2, Si, 0 < 8$ < <52> 0 < s2 < £], such that

l i ' ( / + r,) - M*(r)| < y/2, 0 < 8 < <53, 0 < e < e2.

Hence, for 0 < 5 < 53, 0 < e < e2 and f > t'2,

uM > «,(0 > «;(0 - y/2 > ij(r + r,) - y.

Therefore, letting f2 = t'2 + t\, we obtain

Xi(t) > jc.*(r) - y, r > *2 > 0, 1 < i < n. (2.6)

Similarly, for arbitrary 0 < v < inf,efl y'(t), there exists f3 > f2, such that

yy (0 > >J(0 - w. ' > 3̂ > 0, 1 < j < m. (2.7)

By the above proof, we know that system (1.1) is persistent, which completes our
proof.

3. Global attractivity

We first give an assumption and then introduce our main theorem.
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(H4) There exist continuously differentiable bounded functions /J,:(0, oo)—>-(0, oo),
or; : (0, oo) -> (0, oo), i = I,... ,n, j = 1 , . . . , m, and a positive T-periodic
function b{t) : / ?+ -> /?+, such that

dXi

< -6(0,

dFt(t,x,y)

dx,

dF,(t,x,y)

s=\

dGs(t,x,y)\

sft

3Gs(t,x,y)\

< -Ht)

for all t e R+ and JC = (*i,.
i = 1 n,j = 1 , . . . ,m.

= (yi ym), *, e [rj, M], y} € [rj, M],

THEOREM 3.1. If (H4) and the conditions of Theorem 2.5 hold, then (1.1) admits a
globally attractive positive T-periodic solution u*(t) e int(/?^.+m), that is, for any UQ €
int(/?"+m), r/ie solution u(t) of (1.1) vv/tfi M(0) = «0 satisfies lim(M(0 - u*(t)) = 0.

"*" /-<-00

PROOF. By Theorem 2.5, we know that system (1.1) is persistent, that is, there exist
M > r\ > 0, for any «0 = (*io, • • • - *no, yw, ••• , ymo)T € int(Rn

+
+m), there exists

To = T(u0) > 0, such that the positive solution u(t, u0) of system (1.1) satisfies

< xi(t, M0) < <y} (t, u0) < M,

for t > To, i = 1 , . . . , n,j = 1 , . . . , m. By [11], we know that system (1.1) admits
a positive T-periodic solution u*(t) = (x^t), ... , x*(t), y^(t),... , y*m(t))T.

Define

V(t) = V(u(t+T0),u*(t+T0))

w ; = 1 lAyC+ro) W

For any u; 6 [rj, M], we have f}j(w)/w > 0 and a ; (io)/iy > 0 . Hence there exist
positive constants D\ and D2, such that

r " A 1
To) - Jc*(r + 7o)| + V \y*(t + To) - y}(t + To)\

U J
I" n m

c*(r + To) - Xi(t +T0)\ + J2 \y*(t + To) - yj (t -

i=l

. 1 = 1 1=1
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Using the notation t+ = t + To and letting r)(x*, xt) = sx*(t+) + (1 - s)xt(t+), we
have

dt ]„„* w
dw

t+, U*(t+)) - Pi(Xi(t+

_ /"' d

Jo ds , - . ' + -

w—
y ; ( t f ) _ yj ( / +

= a; (y*(t+))Gj(r+, ii*(

= / —[
Jo as

+

d(aj(n(yJ,yj))Gj(t+,r,(u\u)))
= (x (

^HaJ{n(yJ,yj))Gj(t+,r,(u\u)))/ tf N ]
y, — 5 w^~y*-^)) d5-

Therefore, calculating the upper right derivative D+ V(t) of V(t) along the solutions
of (1.1), we get

+

+ J2<*j(r>(y;,yj
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'"'^•'"Dlufw-^MiU

\i=l y'=l / 2

Therefore, by the comparison theorem, we get

V(t) < V(u*(T0), u(TQ)) e-fo
Ws+T°)'Di)ds,

since b(t) is a positive periodic function. This implies that lim,_oo V(t) = 0. Ac-
cordingly, we have

lim \Xi(t)-x*(t)\ = 0 , i = l n,

and

lim |v;(r)-v,* ( r ) |=0 , j=l,...,m.

This completes the proof of Theorem 3.1.

4. Applications

In this section, some suitable applications are given to illustrate that the conditions
of Theorem 3.1 are feasible.

We first consider the system

= x,(t) [b,(t) - £?=, a,,{t)x,(t) - E ; = 1 ct,{t)y,(t)],

yj (0 = )-; (0 [-o (0 + E L . rf;, WJC(0 - Er=. ejs(t)ys(t)],

where fe,-(0» o W . ay(0» Cy(f), c?y(r). Cy(0 are positive continuous 7-periodic

functions with respect to t. There exists a positive constant rj0 > 0, such that

min,€S+{fc,(f), a, ,(0. en (r)} > %•
Letting /},•(•) = 1, a ;(-) = 1, i = 1 , . . . , « , y = 1 , . . . ,m in the proof of

Theorem 3.1, we obtain the following theorem.

THEOREM 4.1. If system (4.1) is persistent, and there exists a continuous positive
periodic function b(t),with f0 b(s) ds > 0 such that

] Ht),

b(t),
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for alii = 1, . . . , n,j'• =• 1 , . . . , m, then there exists a unique strictly positive periodic
solution in the system (4.1) which is globally attracting.

In the following, we consider a simple system

=xi(t)(rl - a,,*i(0 - anx2(t))

-annxn(t)),xn(t) = xn(t)(-rn

where r,, ay, 1 < i < n, 1 < j < n, are all positive constants.
Define Dx = n, A, = J~[j=i %-

D,=

au 0

0 -

0 r,
0 - r 2

0 - r 3 , i = 2 n,

0 0 ••• -a,,,_i - r ,

and also define £i = rt — ai2D2/A2, anin+i = 0 and, for / = 2, . . . , n,

- a 2 i

0

0

0
a22

- f l 3 2 ' - •

0 •••

0
0

0

-a,-,,-_i

n -

-n-

- ai2D2/A2

-a23D3/A3

- auDJAi

flw+;Dj+l/Al+I

(4.2)

(43)

(4.4)

We then have the following theorem

THEOREM 4.2. / /D, > 0 and E{ > O.for i = 1, . . . , n, and

flu > a2U am > an.Un, (4.5)

an > a , . , , , + a , + i , , , for i = 2, ... , n - l , (4.6)

r/ie/i the positive steady state of system (4.2) is globally attracting in int(/?").

PROOF. In fact

x* = — > 0, for / = 1, . . . , n,

x* = — > 0, for i = 1, . . . , n - 1.
A,

By Theorem 2.5, we know that system (4.2) is persistent. Finally, by (4.5) and (4.6),
we know that assumption (H4) of Theorem 3.1 holds, which completes the proof.
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In particular, we consider

I x(t) =x(t)(r1 - anx(t) - any(t))
(4.7)

y (0 = yOK-n + a2ix(t) - a22y(t)),

where r,, ay, i,j — 1, 2 are all positive constants.

COROLLARY 4.3 ([9]). Ifaua^—ana^ > 0, then the positive steady state of system
(4.7) is globally attracting.

PROOF. In fact, ria2i — r2a\\ > 0 is a necessary condition for system (4.7) if there

exists a positive steady state in the system since

-• r\ n * (aua22 ana2i)n + anai2r2

x = — > 0, * = 5 > 0,

-, rxa2l - r2au , (aua22 - ana21)(ria2i - r2au)
y = > 0, y* = - 5 - 5 > 0.

" ^ ~ alla22

Hence, by Theorem 2.5, we know that system (4.7) is persistent.
Choose constants c\ and d\ satisfying

a22 d\ a2\
— > — > — .
ai2 C] an

Let a ( ) = c\, /}(•) = di all be constant, then we have

( and] -a21ci > 0

a22cx - andi > 0.

Therefore assumption (H4) of Theorem 3.1 holds. This completes the proof of
Corollary 4.3.

Finally, we consider a Michaelis-Menten type functional response predator-prey
system

(4.8)

where a, d, K and m are all positive constants. We suppose that K < a and d < m.
Letting dx = ad(a + S)dt,x =x{a- K)/K, S = S(a - K)/adK, replace dr,

S and x by dt, S and x, respectively. Then we have

S(t) = 5(/)(r, - S(t) - aiS(t) mix(t)),

(-l + a2S(t)-x(t)S(t)-m2x(t)),
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where rx=l/d, ai=adK/(a - K)2, a2=K{m - d)/(a - K), mx=m(a - K)/adK
and m2 = (a- K)/dK.

Letting S* = 2ri/(l + JAayrx + 1), x* = (a2S* - l)/(m2 + 5*), r2 = r, -mxx\
5* = 2/2/(1 + V4air2 + 1) and x* = (a25* - l)/(m2 + 5*), by Theorems 2.5
and 3.1, we obtain the following theorem.

THEOREM 4.4. /f f/iere « on/)' one positive steady state in system (4.9), 5* > 0,
x* > 0, x_* > 0 and a2m\ < m2, then the positive steady state is globally attracting.

If r\ = 15, a\ = 1/4, a2 = 1/5, m\ = 2 and m2 = 4, by simple computations we
know that the equations

f 15 - S - 52/4 - 2x = 0,

[ - 1 + S / 5 - S * - 4 * = 0

have only one positive solution. Moreover, we obtain

S* = 6' ** = 50' " = 25 + 5x/399 > T ' " > 125"

The conditions of Theorem 4.4 then hold.
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