
BULL. AUSTRAL. MATH. SOC. 11F41 , 11F55, 11F60

VOL. 62 (2000) [29-43]

ON ADELIC AUTOMORPHIC FORMS WITH RESPECT
TO A QUADRATIC EXTENSION

Z E - L I DOU

Let E/F be a totally real quadratic extension of a totally real algebraic number
field. The author has in an earlier paper considered automorphic forms defined
with respect to a quaternion algebra BE over E and a theta lift from such quater-
nionic forms to Hilbert modular forms over F. In this paper we construct adelic
forms in the same setting, and derive explicit formulas concerning the action of
Hecke operators. These formulas give an algebraic foundation for further investi-
gations, in explicit form, of the arithmetic properties of the adelic forms and of the
associated zeta and L-functions.

0. INTRODUCTION

Let E/F be a totally real quadratic extension of a totally real algebraic number
field. In an earlier paper [1], the author has considered automorphic forms defined with
respect to a quaternion algebra BE over E, and a theta lift of such quaternionic forms
to Hilbert modular forms defined over F. The Fourier coefficients of the lifted form are
expressed, in explicit formulas, in terms of certain periods of the original form. In order
to further investigate this theta correspondence, it is necessary to consider the Hecke
operators, and to work in the adelic setting. It is the purpose of this paper to do so,
again in an explicit fashion, so as to prepare adequately for the study of the arithmetic
aspects of such adelic forms and their associated zeta and L-functions.

We give a few words of elaboration. In a series of deep papers mainly appearing in
the 1980's, Shimura investigated several period invariants of automorphic forms, which
manifest themselves in diverse settings such as the Fourier expansion, the cohomology
theory, the zeta and L-functions, et cetera, that are attached to the automorphic forms
in question. Their mutual relations and their behaviour under various liftings are sum-
marised in a sequence of conjectures in [5]. In his important paper [8], Yoshida has
achieved a breakthrough towards proving these conjectures. At the same time, his paper
also reveals a need for more precise knowledge in the setting of a totally real quadratic
extension of a totally real algebraic number field. This is the setting chosen in [1] as
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30 Z.-L. Dou [2]

well as in this paper, and we insist on explicit formulation of everything. From this
broader point of view, this paper provides the algebraic foundation, upon which further
investigations in arithmetic can be developed. In fact, some of the results in this paper
have already been applied, in [2], to establish the precise relation between the actions of
Hecke operators on adelic automorphic forms linked by a theta correspondence, which
generalises naturally the one considered in [1]. The author hopes to present results on
the relations of period invariants of these forms in the near future. See also [3]. It may
be worthwhile to note that such results are not automatically inferred by the machinery
of theta correspondence in the representation theoretic language. The amount of real
work, so to speak, would be about the same regardless of the language chosen. We have
adopted the more direct approach, since the setting of interest for us is a very specific
one.

Many of the results (and even some definitions) in this article are rather technical.
In order to keep the paper as short as possible, detailed proofs of many results have
been suppressed, when such proofs can be obtained by modifying arguments found either
elsewhere in this article, or elsewhere in the literature. Also, unless the statement of
an assertion is fairly long, it is not displayed as a proposition per se. Copious cross
references have been provided, however, to highlight the analogous situations, and also
to compensate for the somewhat terse style of our presentation.

The author thanks Professor Goro Shimura for suggesting the problem to him, and
for his generous help and advice. He also expresses his gratitude to his family, for their
patience and support.

1. HILBERT MODULAR FORMS

In this section we deal with Hilbert modular forms and Hecke operators in the
integral case. Since we eventually need to keep both fields F and E in view, the
material in this section is necessary. We have adopted the approach of Shimura, and
attempt to formulate everything in terms of SL2 whenever possible. In fact, in this
section we are essentially specialising some of the development in [7] to our case of
interest. Consequently we shall mostly state the results without proof. The framework
established here will serve as the model for the next section as well.

Let F be a totally real algebraic number field. We denote the set of archimedean
primes in F by a, the set of finite primes by h, and write G = SL2 {F) and G =
GL2 (F). The adelisation of G (or G) is denoted by a subscript A; its finite and
infinite parts are denoted by subscripts a and h. We further define

Ga+ = { i £ G a | det (x) » 0}, Gx+ = Ga+Gh, and G+ = G n GA+.

Let 0 denote the ring of integers in F. For two fractional ideals r. and n in F
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[3] Adelic automorphic forms 31

such that yt) c 9, define

D[h n] = G a + Y[ Dv[f, t)), Dv[h t)] = o[r, n]*, Vv e h,
ugh

where o[j, n] = {x G M2 (F) | ax G g, 6s G y, cs G n, dz € g } . We further define

D\f, n] = GA n D[f, tj], £\,[r, n] = Gw n A,[r, n],

f [r, n] = G n 5[r, 0], F[?1 n] = G n Z)[r, tj].

If a € GL2 (R) with det (a) > 0 and w G C, then we write as usual aw =
{aaw + ba)/(caw + da) and j(a,w) = det (a)~1/2(caw + da) • For T e GA+ and z G
ffa, where H denotes the upper half complex plane, we define the multi-index notations
TZ = (r,,z«)uea and J"(T,Z) = (j(TWIz«))v€a.

If k G Z a is an integral weight, then for function / : H* -4 C and an element
T G G A + , we define another function /H^r of the same type by the formula

(f\\kr)(z)=j(r,z)-kf(rz), VGiJ*.

For a congruence subgroup F of either G or G+, the vector space of all holomorphic
functions / : Ha -4 C such that /| | fc7 = / for all 7 G F is denoted by Mk(T),
except for the case F — Q, where we also assume the usual condition at the cusps.
The subspace of cusp forms in Mk(^) is denoted by <Sfc(F). Finally we define Mk —

\JMk(T) andSf c=U<Sf c(F) .
r r

If F is a congruence subgroup and two functions / and g on Ha are both invariant
under the operation ||fc7 for all 7 G F, then the Petersson inner product is defined by
(f,g) = volt-D)"1 fD f(z)g(z)lm(z)kdnz whenever the integral is convergent. Here
D = T\Ha, dHz = dH(x + iy) = Y[yZ2dxvdyv, and vol(D) = fDdHz. This is
independent of the choice of F .

We now consider forms of given level and character. Let c be an integral ideal in
F, and let <f> be a character of (o/c)* . We may view cf> as a character of FJfl« by a

v|c
natural extension </>(x) = <j>(a mod c) with a G g satisfying a - xv G cv,Vv \ c. For an
arbitrarily fixed ideal b in F , we denote by Mk(b, c, <t>) the set of all / in Mk such
that /| | fc7 = <j>(ay)f for all 7 G Ffb"1, be].

We then put <Sfc(b, c, <j>) = Sk C\ Mk(b, c, <j>). In order to get non-trivial spaces of

automorphic forms, we shall assume 0 ( - l ) = (—1) > where ||fc|| = JZ K-

There exists A G Ra with ||A|| = 0 such that we have

(1) ^(e) = sgn(e) f c |e | - 2 i \ VeGflx.
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32 Z.-L. Dou [4]

This condition, in turn, is equivalent to the existence of a Hecke character ^ of F such
that the conductor of 9 divides c, that the restriction of W to f |g^ coincides with <j>,

and that "|c

(2) * a ( x ) = s g n ( z a ) f c | x a | 2 < A .

We can now define adelic automorphic forms on GA with level c and character
# . We shall denote by <Sfc(c, * ) the space of all functions f : GA -> C such that the
following three conditions are satisfied:

(i) f(sx) - tf(s)f(x), Vs e FA
X, Vx € GA,

(ii) f(axw) = *((dw)c)f(x), Va € G, Vx € GA, u; € 5 [ 0 - \ cO]

with u>a = 1, and dc = (rf«)«|c for d e FA ,

(iii) For every p € Gh i there is an element fp in 5jt such that

= tf (det (p)) det (t/)iA(/p||fej/)(i), Vff e G
a + .

Here the symbol i stands for (i, i,... , i) € C a .

Next we explain the relation between the adelic automorphic forms defined on
and the automorphic forms defined on Ha. To shorten notations, we write

Dt=D[D~1,cl>], fc = f[O-\cJ>], and fp

where D is the different of F relative to Q and p € G\. We define, for A satisfying

(1).

(3) Sk(rp,4>,\) = {/ € Sk | /||fc7 = ^(a(p-1
7p))det(7)'A/, V7 € f p } .

Note that this A is not uniquely defined. In fact we have the following. Let e be an

element of F£ such that ed = b, and let p = I I. Then 5t(b, c,<j>) is a direct

sum of several <Sfc[rp,$, AjJ , with each Aj satisfying (1).

There exists a finite set Q C Gh such that

GA = U GqDt.

Suppose we are given a character <f> as in (1) and a Hecke character ^ as in (2), such
that the restriction of * to YlSv 1S equal to <j>. Given f G S*(c, * ) , we observe that

the / , defined by condition (iii) of the definition of 5fc(c,$) belongs to Sk\Tq,4>, Aj
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[5] Adelic automorphic forms 33

for every q € Q. In fact, if we let Sfc(c, </>, A) be the space of all f on G\ satisfying (ii)
and (iii) in that definition, then we have an isomorphism

given by f >-> {fq)q&Q • *n particular, we have an embedding

q€Q

and we shall from now on identify f and (fq)qen •

Given f = (fq)qeQ and g = (<?q).6Q in Sk(c, $), we define their Petersson inner

product by (f, g) = £ (/g>5g)- This is of course always convergent. Note also that
9

this definition is independent of the choice of Q. The spaces Mk(c, * ) , Mk(c,<j>,\),

and Mk[^q,<j>, AJ can be discussed in an entirely similar manner.

We therefore proceed to the consideration of Hecke operators. Let Y be the subset
of GA consisting of all elements y such that yv € o[0- 1, cD]w and a(yv) € g£ for every
v | c. Given y0 S Y", we have a coset decomposition

Dcy0Dc = LJ Dcw,

where W is a finite subset of Gu • More precisely, it is a complete set of representatives

of (5tnGh)\(5t»o5cnGh).

Let f = (fq)q€Q e Mk(c,(j>,A). We define

(4)

Here w* is the main involution of w as usual. Then we have f\Dfy0Dt € Mk{c,<p,A).

Therefore, we may write {\D^y0Dc = (f'q) eQ, where fq € .Mfcffg,^, AJ. The fq may

be related back to the fq as follows. Given q € Q, there exists a unique p € Q and

an element ao € G such that gj/o 6 "oP-Dc • Then we may write f q a o r p = |J Tqa for

some finite set A. We then have

v — 1
/ r \ W N "» if I —1 \ ^ Hpt (cy\~^ f II />

Notice that our discussion in the last few paragraphs applies as well to the space
<Sfc(c, ̂ ) , in which we shall also be interested.
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We define the symbols 1V and 6V for every v € h as follows.

1V = DC(1 ) Dc, Vv € h; 6V = DcirvDc, to f c; &v = 0, Vv | c.

Then we have

(i) Mk{c, * ) is stable under all Dey0Dc, y0 € Y;

(ii) Mk(c, $ ) = { f 6 .Mfc(c, <&, A) | f \ev = *(*v)f, Vw | c} .

For the remainder of this section, we turn our attention to G and cusp forms with
respect to G. Roughly speaking, our discussion here corresponds to the case p = 1 in
[7]. Let us simplify notation one step further by writing

r = Gnf( , and D = GAr\Dc.

Then, given / € 5fc(F,<f>,A), we can define a function /A on GA by

(6) U(aw) = </>(aw)-1(f\\kw){i), Va € G, Mw € D.

It is then straightforward that we have

(7) fx(axw) = <j>{aw)-xj{w, i )- f c /A(x), Va e G, Vx € GA, Vw € £>.

In fact, the mapping / >-¥ f\ is an injection of 5fc(F, 0, A) into the space of all functions
g on G\ satisfying the equation (7) with /A replaced by g.

Suppose f e <Sfc(c, \ t ) . Consider the form / i 6 Sfc(r,0, AJ as promised by condi-

tion (iii) of the definition of 5fc(c, \&). Then the restriction of f to G\ coincides with

( / i ) A as defined by (6):

f IOA = ( A ) A -

Let y € GA n F£Y. Then we can find a finite subset W C Gh such that the
decompositions

DcyDc - |_| Dcw, and £>y£) = [ J Dw

w€W w£W

hold simultaneously. Furthermore, there exists an element OCQ and a finite subset / of
G such that

DyD = Da0D = DaQT = \_\ Di, and Taor = ( J TL

hold simultaneously.
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Now let g be a mapping on G\ such that g satisfies (7) with the symbol / A
replaced by g. Then, given y G GA n F£ Y and W as above, we define

(8) (g\DyD)(x)=^2<t>(aw)-1g(xw-1), Vx € GA-
tugW

Because of the simultaneous decompositions shown above, if g is the restriction of some
g € Sk(c, *) to GA, then our definition here is consistent with (4).

Let / € <Sfc(I\0,A). Then, with the a0 and / given above, we define another
element / | r a o r of <Sfc(r,<£,A) by

(9) /|raor =

We then have

(10) (/ |ro0r)A = U\DyD.

Because of this, we shall from now on use the same symbol DyD to denote the double
coset operation on / as well as on / A - That is, we shall write f\DyD for f\TaoT.

2. AUTOMORPHIC FORMS ON Q'K AND QX

In this section we consider (matrix valued) adelic automorphic forms defined with
respect to a quaternion algebra over a totally real quadratic extension E of F. Hecke
operators are also considered in the same setting. Many aspects of our development
here parallel that in the previous section. We use the symbols gE and V>E to denote
the ring of integers and the different of E (over Q) . Let BE be a quaternion algebra
over E, and define B = {x € BE \ XT = X } , where T is an involution of BE but its
restriction to E is not the identity mapping. Then B is a quaternion algebra over F,
and we have BE = B <g>f E.

Denote by Ds the product of all finite primes of F which are ramified in B, and
by Dg the product of all finite primes of E which are ramified in BE • It is not difficult
to check that if v € F is inertial in E, then the factor of v in E is unramified in BE •
Consequently, a prime u of E divides D;§ if and only if it divides DB and splits over
F.

PROPOSITION 2 . 1 . There exists a maximal order o in BE which contains a
maximal order of B, such that we can find, for every v 6 h prime to 0f , an Ev -linear
isomorphism fiv : (BE)V -> M2(EV) with the property nv{ov) = M2 (gf) . Moreover, if
v \T>B, then fiv(x

T) = nv(x)T, where we understand that r acts entry-wise on M 2 (Ev).

PROOF: Let r be a maximal order in B. Then we may take a maximal order o
in BE such that flBr C o. For v € h , v f Qg, there exists /x« : (Bg)v -> M 2 (Ev)
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such that fiv(ov) = M2 (gf) . Moreover, if v f OB , we already have an isomorphism

Xv : Bv -> M2 (Fv) such that Xv(xv) = M2 (fl«). Now {BE)V = Bv ®Fv Ev. Thus Xv

can be extended ^-linearly to fj,v : (BE)V —*• M2 (Ev). Then fiv(x
T) — (J.v(x)T and

A4u((flEt)v) = M2 (gf) . Certainly for those v e h such that u f oj| and v | OB, we

still have isomorphisms with nv(ov) = M2 (g f ) . This completes the proof. D

We shall from now on fix o and fiv as in the above proposition. To define adelic
automorphic forms in this setting, it is necessary to recall some relevant facts from [1].
Let 5 denote the set of primes v € a which are unramified in B, and 6' — a-8 the set of
those ramified in B. The subsets of J(E) consisting of extensions of primes in 5 and 8'

are then denoted by £ and C > respectively. Here J(E) = {archimedean primes of E}.

For each v e a, we fix, once and for all, an extension of u of v in J(E). The collection
of these primes is then written i. Further, we denote by 77 and f?', respectively, the
subsets of L corresponding to 8 and 6'. Throughout this paper, we assume £ ^ 0.

For every m > 0, there is an R-rational irreducible polynomial representation
crm : Mx —t GLm +i (C) of degree m, which is unique up to equivalence. By fixing
suitable isomorphisms for Ba and (BE)^, we may assume that am respects the Q-
structure. If k € If is a weight such that ku > 1 for u € 77 and ku > 2 for u € »?',
then we define a representation on ( 5 ^ ) A by

(11) *(<*) = 0 <Tku-2(au), Va e (B£)A.

The representation space for a will be denoted by X. It may be identified with

To define the factor of automorphy in the definition of automorphic forms, we need
some more notation. Let

• T / € ^_ —̂ fit I __ ^ y ^ ' ^ ^ ^ ' I • • *~ ^ ^ / I HT /-_— \ 1 1

Thus the representation in (11) is a : Q'K —> GL (<Y). For a E S J and w e H^, we put

u -1- o u

and
j(a,w) = ( j(au ,u;u))u € C = (|det ( a , , ) ! " 1 7 2 ^ ))

where au,ftu,cu and du are the entries of a u in the standard order.
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[9] Adelic automorphic forms 37

We now define End (X)-valued holomorphic automorphic forms of weight k + rk

on H*>, where k 6 Z ' as above. Given a mapping / : H^ —>• End (X), we define another

mapping of the same kind, which we denote by f\\k+rkoc, by the following formula:

Let F be a congruence subgroup of Q\, then the space of holomorphic automorphic

forms of weight k + rk with respect to F is the set of all holomorphic mappings / :

H^ —> End (X) such that / | | a = / for all a € F , and also the usual cusp condition in

the case where BE = M2(J5). This space is denoted b y 5fc+Tfc(F). The union of such

spaces over all congruence subgroups is denoted by Sfc+Tfc (•#£;) • Denoting by cftHw the

Haar measure on H^, we define an inner product of two C°° -mappings / and g of

H*> into End (X), such that f\\a = f and g\\a = g for all a G F for some congruence

subgroup F , by the formula

(/, g) = vol (D)-1 J^ Tr (*7Mff(ti/)) Im (

Here D =• Y\H(>, and vol (D) == fD dfHw. This definition is independent of the choice

of F.

We resume the development of the adelic forms. Let m be an integral ideal in E.

We define an order of level m to be the QB-lattice Oi C BE given by

(i) 0iv = sf + moV! iiv\D§;

(ii) oiv = nZl({x G M2 (Ev) | ax £ gf, bx € O^flf, cx G Dm,,,

We further define a subgroup W'm C Q'k by

where ^ + = {̂  e ^4 | N (i) > 0}. When m is understood we sometimes simply write
W. There exists a finite subset Q' C Q'h such that we have a coset decomposition

(12) & =

Finally, let $ be a Hecke character of E such that the conductor of $ , cond($),

is prime to Of, is a divisor of m, and is such that

(13) $a(x)
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where / j g B a = RJ(-^, and ||/x|| = 0.

The space of adelic automorphic forms <Sfc+Tfc(m, $;BE) is now defined to be the
set of all mappings g : Q'A -> End (X) satisfying the following three conditions:

(a) g(sx) = *(«)g(x), VsGi?*, V z G ^ .
(b) g(/3ziu) = $m(dtu)g(x), V/3 e 0', Vu; € W with wa = 1, Vx G <?;.
(c) For every p e 5 ( , , there is an element gp of Sk+Tk(Bs) such that

g(py) = *(N(p)) N ^ r ^ p l U + ^ i / ) ^ , Vy G # + .

As usual, we have here i = (i,i,... ,i) G iJ'»,<l?m — Yl^u, whi le dw G 2?£ is
u|m

defined as follows. The v-component of dw is 1 for all v except when v | N(m) and v
is prime to of, in which case it is denned to be the d-entry of fJ.(w).

Let $ and m be given as above, and choose n such that (13) holds. For each

P e G'h. > w e P u t

We then define the space C(A'p, $ m , fi) for any given p to be the set of all C°° mappings

h: H^ -»• End (X) such that

(14) h\\k+Tkl = $

As in Section 1, the symbol a(p~1'yp) stands for <*/ _i \ , and is defined in the same

way as dw in (b) of the above definition.

The development in this section has so far parallelled that of Section 1. The space

C(Ap,$m,/it) above parallels the space Sfc(rp,0, AJ there. With respect to the coset

decomposition (12) we have here also an embedding

(15) <W*(m, *, BE) -> J | C(A'q, *ra> M ) .

For a given form g G 5fc+Tfc(m, $, BE) , the embedding above is defined by condition (c)
of the definition of the adelic forms, with the p there replaced by the various q G Q'. It
is straightforward to check that gq G C(A'q,&m,fj,) for every q G Q'. We shall identify
from now on the image of g under (15) with g itself, and write g = (<79)96Q/-

If f = (fq)q€Q> and g - (gq)q€Q, are two elements of «Sfc+Tfc(m, $, BE), then their
inner product is defined by

<f,g> H I Q T 1
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Next we consider Hecke operators. We define a subset y of Q'A+ as follows:

y = \y G G'A+ VV € oiv (Vw e h), yu € ot
x

u(u | Of + m),

For j/o € y and g e <Sfc+rfc(m, $, B E ) , we have a coset decomposition

W'yoW = U W'y
y&J

for some finite set J. More precisely, J is a complete set of representatives for the

quotient space (W ng^)\(W'y0W' n ^ h ) - W e t h e n d e f i n e g | ^ ' j / o ^ ' by

If J/o G y and q € Q' are given, there exist an element ao € Q' and a unique
p € Q', such that qyo € aopW. We can then take a coset decomposition

(17)

for some finite set A. This fact can be verified by essentially repeating verbatim the

proof of [6, Lemma 2.2] and so will be omitted here.

Keeping the notation as above, we let g = {gq)qeni € iSfc+Tfc(m, $,BE), and sup-

pose g | Wy0W = (gq)qeQ,. Then

(18) gP--

This follows from a direct computation. Because of this result, given (fq)qeQi 6

n C(A'q, $m,n), we may define

(fq)\W'y0W =

where the fq are determined by the above formula, with g replaced by / .

P R O P O S I T I O N 2 . 2 . Let y0 6 I V n ^ - If N(yo)g
E is prime to m, then

PROOF: This identity may be checked by considering the various cases.
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Let us give one example. Suppose u \ Dg, and uf m. In this case W^ consists
of non-singular matrices whose entries in the usual order belong to fl^D^1,^, and
0^, respectively. Thus we may write W'u = £VM2 (flf)X£^1- From this we easily
deduce that (Wy0W')v = (W'y^W')v. Therefore the assertion holds in this case. The
verification for the other cases is omitted. The condition on N (yo) is needed for the
case u f d§ and u | m. D

We now establish the precise formula regarding Hecke operators.

THEOREM 2 . 3 . Let ( / , ) , e Q , € \[ C(A'q,$m^), and define ( / , ) ; by

(18) with g there replaced by f. Let g = {gg)qeQI € <Sf c + T f c (m,$,Be), and write

g\W'y0W' - (gq)qeQI- Suppose yoty and N(yo)g
E is prime to m. Then

so long as the inner products are convergent.

PROOF: We may assume that yo € G^. Observe that (f\\a,g) = (f,g\\a*). There-
fore we may write

(19) (fP,gP) =

Recall from [7, Lemma 4.3] that the set A'p D L* and vol (A'p\H
<>) are indepen-

dent of p. Thus the quotient spaces A'qa0A'p/A'p and A'q\Aqa0Ap have the same
number of cosets. For this reason, we can find a finite set A such that A'qaoA'p =

A'qa = U aA; . Since W'y0W = W'y^W by Proposition 2.2, we have
A

W'yoW = W'U(yo)yolW' = W'N(y0)p-1ao lqW. Now A'^ 'A^ = |J A'pa~l,
so we have, by (17), aeA

W'p^a^qW = [J W'p-la-lq.

We now set y in the defining equation (16) to be the (N(yo)p~1a~1q)h- That is, we
now have

- 1

Combining this equation with the gp in the definition of the adelic form, we compute,
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for u € g'a+:

= * ' (N (2/o)0

Therefore, we conclude that

(20) gq =
a€A

The equations (19) and (20) together prove our assertion. D

As the final topic of this article, we shall consider automorphic forms with respect
to a subgroup Q of Q' defined by

The significance of so doing is that the vector space V = {x € BE | XT = — x*}, which

is a four-dimensional vector space over F, is stable under the mapping x y-t axa~T for

every a € Q • (V is stable under x M- axa*T for all x 6 5 ' •)

Put

w = wm = w'mr\Qk, and g+ = gng'+.

Then there is a finite set Q C Qh such that we have the following coset decomposition:

(21) Qx =

A theory similar to the one we have developed for W^ exists with respect to Wm

and can be developed following the same outline. Therefore we shall leave most of the
development of this theory to the reader. However, we do wish to point out the precise
connection between the operators W'yW and WyW for y € G\.

Suppose, therefore, that we are given y e G\. Consider a coset decomposition

(22)
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where r runs through a finite subset of Gh- Also, given q € Q, there is (as usual) a
unique p € Q and some a o s 5 such that qy € QopW. Letting

we can take a coset decomposition

(23) Aga0Ap = j j A,a.

We then have the following technical result.

PROPOSITION 2 . 4 . With notation as above, we have

W'yW - W'yW,

and, more generally,

A'qa0Ap = A'va0Ap = \J A'qoc.

PROOF: Observe that we have N (W D yW'y~l) = N (W). Applying [4, Lemma
1.1], we have

W'yW C Wy{w' n {x £ 9' \ N (a;) = l}) C W»W.

This yields the first assertion of the proposition. More generally, we have

qW'q-'zpWp-1 = qW'q-lzAlp,

where we have written Aip = pW'p'1 n { i € 5 ' | N ( i ) = l} . Therefore

A^aoA; c qW'q-la0Aip DQ' = A'qa0Alp.

It follows that A^aoAp = A^a0Ap. The proof is complete. D

In view of this proposition, we have

(K\WyoW)(x) =

with the same r as those in the formula (22). Moreover, again because of the proposi-
tion, we see that the formula (18) is valid in this new setting—that is, with respect to
the A in (23)—as well.
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