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Cover Product and Betti Polynomial of
Graphs

Aurora Llamas and JoséMart́ınez–Bernal

Abstract. _e cover product of disjoint graphs G and H with ûxed vertex covers C(G) and C(H),
is the graph G ⊛ H with vertex set V(G) ∪ V(H) and edge set

E(G) ∪ E(H) ∪ {{i, j} ∶ i ∈ C(G), j ∈ C(H)}.

We describe the graded Betti numbers ofG⊛H in terms of those ofG andH. As applicationswe ob-
tain: (i) For any positive integer k there exists a connected bipartite graph G such that regR/I(G) =
µS(G)+ k, where, I(G) denotes the edge ideal of G, regR/I(G) is the Castelnuovo–Mumford reg-
ularity of R/I(G) and µS(G) is the induced or strong matching number of G; (ii) _e graded Betti
numbers of the complement of a tree depends only upon its number of vertices; (iii) _e h-vector
of R/I(G ⊛ H) is described in terms of the h-vectors of R/I(G) and R/I(H). Furthermore, in a
diòerent direction, we give a recursive formula for the graded Betti numbers of chordal bipartite
graphs.

1 Introduction

Let R ∶= k[x1 , . . . , xn] be the polynomial ring over a ûeld k with deg x i = 1. _e
edge ideal for a (simple) graph G, with vertex set {1, . . . , n}, is the monomial ideal
I(G) = ⟨x ix j ∶ {i , j} is an edge of G⟩. In general, each monomial ideal I ⊆ R has
associated aminimal graded free resolution

0Ð→⊕
j
R(− j)βp j Ð→ ⋯Ð→⊕

j
R(− j)β1 j Ð→ R Ð→ R/I Ð→ 0

where R(− j) denotes the R-module obtained by shi�ing the degrees of R by j, and
the nonnegative integers β i j(R/I) ∶= β i j are called the graded Betti numbers of R/I.
A basic problem in commutative algebra is to describe these numbers aswell as some
homological invariants associated with them. But, even for edge ideals, which are
quadratic and square-free, these problems are wide open. An interpretation of these
invariants in terms of combinatorial information encoded in the graph have been the
focus of much research over the last number of years; see, e.g., [8, 17–20, 24, 32, 34],
or [14, 23] for surveys on these developments. Two such invariants are the projective
dimension and the (Castelnuovo–Mumford) regularity:

pdimR/I ∶= max{i ∶ β i j /= 0} and regR/I ∶= max{ j − i ∶ β i j /= 0}.
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Projective dimension and regularity tell us the length and the width of the minimal
resolution of R/I. So, these two invariants provide an estimate of the complexity of
computing aminimal resolution.
For edge ideals, one can mention some representative results about these invari-

ants:
(i) Let α(G) denote the cardinality of a largest minimal vertex cover of G (deûni-

tions are given below). _en pdimR/I(G) ≥ α(G),with equality ifG is sequen-
tially Cohen–Macaulay (say, chordal graphs [10], or more generally graphs with
no chordless cycles of length other than 3 or 5 [33]).

(ii) For any graph G, it holds that regR/I(G) ≥ µS(G), where µS(G) denotes the
induced or strong matching number of G [19, Lemma 2.2]. If β i j(R/I(G)) /= 0
for a graphG, then i+1 ≤ j ≤ 2i [14,_m. 3.2.3], so pdimR/I(G) ≥ regR/I(G) ≥
µS(G). If a bipartite graphG is unmixed or sequentiallyCohen–Macaulay, then
regR/I(G) = µS(G); see [20] and [30], respectively. _e same is true for chordal
bipartite graphs, or more generally for weakly chordal graphs [34, Prop. 20].

(iii) Let G be a chordal graph and let G denote its complement. If i ≥ 1 and j /=
i + 1, then β i j(R/I(G)) = 0; otherwise, β i j(R/I(G)) = ∑(c(H) − 1), where H
runs over all the induced subgraphs of G with j vertices, and c(H) denotes the
number of connected components of H [8,_m. 3.2] (_eorem 5.6).

To our knowledge, not much is known even for bipartite graphs. A�er comput-
ing many examples, we were led to suspect that for any connected bipartite graph
G, µS(G) ≤ regR/I(G) ≤ µS(G) + 1, but this turned out to be false. In fact, with
this problem in mind we were guided to our main result,_eorem 3.5, and, as one of
its applications we will prove that for any positive integer k there exists a connected
bipartite graph such that regR/I(G) = µS(G) + k. As another application, we will
show that the graded Betti numbers of the complement of a tree depend only upon
its number of vertices.
Deûne the Betti polynomial of R/I as follows:

B(R/I; x , y) =
p
∑
i=0
∑
j
β i jx i y j−i .

Note that the x-degree and the y-degree correspond to the projective dimension and
regularity of R/I. Betti polynomials were introduced in [8, Def. 6.1]; we interchange
the role of the variables x and y used there. Here we study the Betti polynomial
in the case that I is the edge ideal of a graph. To keep our notation simple we will
write B(G; x , y) instead of B(R/I(G); x , y), and similarly for β i j(G), pdim(G) and
reg(G). We remark that if G has no edges, then B(G; x , y) ∶= 1. Betti polynomi-
als provide a compact way of encoding the graded Betti numbers. For instance, in
[17,_m. 5.2.4] it is shown that

β i j(Km ,n) =
⎧⎪⎪⎨⎪⎪⎩

∑r+s=i+1; r ,s≥1 (m
r )(

n
s) if j = i + 1,

0 if j /= i + 1,
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where Km ,n denotes the complete bipartite graph. From this result (Example 3.3), it
follows that

(1.1) B(Km ,n ; x , y) = 1 + x−1 y[(1 + x)m − 1][(1 + x)n − 1] .
Aswewill see in our main result,_eorem 3.5, ûnding Betti polynomials, rather than
describing the Betti numbers explicitly,will provide uswith a tool to describe relation-
ships among graded Betti numbers of diòerent graphs or their induced subgraphs.
A set of vertices of a graph G is said to be independent if no two vertices are joined

by an edge. A vertex cover of G is a set of vertices C ⊆ V(G) such that e ∩ C /= ∅
for any edge e of G, or equivalently if V(G)/C is an independent set of G. We deûne
the cover product of two disjoint graphs G and H, with ûxed vertex covers C(G) and
C(H), respectively, as the graph G ⊛H with vertex set V(G) ∪ V(H) and edge set

E(G) ∪ E(H) ∪ {{i , j} ∶ i ∈ C(G), j ∈ C(H)}.
Our aim is to describe the Betti polynomial ofG⊛H in terms of those ofG andH.

To simplify notation we do not specify in G ⊛H the dependence of the vertex covers
C(G) and C(H). _e cover product of two graphs is a natural generalization of the
join of two graphs, but to our knowledge, it has not been studied yet.

Our main result is the following theorem.

_eorem 3.5 LetG andH be graphswith vertex coversC(G) and C(H), respectively.
Set m = ∣C(G)∣ and n = ∣C(H)∣. _en

B(G ⊛H; x , y) = (1 + x)n B̃(G; x , y) + (1 + x)m B̃(H; x , y) + B(Km ,n ; x , y),

where B̃(G; x , y) = B(G; x , y) − 1 and Km ,n denotes the complete bipartite graph on
m + n vertices.

Since the Betti polynomial of the complete bipartite graph depends only upon the
numbers of vertices m and n, we remark that _eorem 3.5 describes the Betti poly-
nomial of G ⊛H in terms of those of G and H and just the cardinalities of the vertex
covers C(G) and C(H). A combinatorial understanding of this resultwould be help-
ful in the study of graded Betti numbers.

Several applications are given:
● Recall that the induced or strong matching number of G, µS(G) (following the no-

tation in [11]), is the largest k such that the disjoint union of k edges is an induced
subgraph ofG. In the direction of studying reg(G) for bipartite graphs, as suggested
in [30, Question 3.5], we obtain Corollary 3.7: For any positive integer k there exists
a connected bipartite graph G such that µS(G) = 2k and reg(G) = µS(G) + k.

● _e h-vector of R/I(G ⊛H) can be described in terms of the h-vectors of R/I(G)
and R/I(H); see _eorem 4.1. We remark that our main result and _eorem 4.1
generalize the results [24, Cor. 3.4, Cor. 4.11] and [32, Lemma 5.4],where the vertex
covers consist of all the vertices of G and H, respectively.

● A graph is said to be chordal if it contains no induced cycle with four or more
vertices. For a chordal graph G, a description of B(G; x , y), where G denotes the
complement of G, is well known; see _eorem 5.6 below. However, from that de-
scription it is not evident that the Betti polynomial of the complement of a tree only
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depends upon its number of vertices. We observeCorollary 5.3: IfG is a tree on n+1
vertices, then B(G; x , y) = 1 + x−1 y[(n

2)x
2 +⋯ + (n − 1)(n

n)x
n].

Finally, in a diòerent direction, we show (see Proposition 6.7) that there is a recur-
sive formula for the graded Betti numbers of chordal bipartite graphs. A consequence
of this result is that these numbers do not depend on the characteristic of the ûeld.
A collection of interesting open problems related to Betti numbers can be found

in [25]. Inwhat follows,we refer to [2] and [3] for unexplained terminology on graph
theory and algebraic combinatorics, respectively.

2 Some Examples

Since we will describe the Betti polynomial of G ⊛ H in terms of those of G and H,
let us recall the Betti polynomials of some other graphs. Denote by Kn the complete
graph on n vertices and by Cn the cycle on n vertices.

Example 2.1 ([17,_m. 5.1.1])

B(Kn ; x , y) = 1 + xy[ 1 + 2(1 + x) +⋯ + (n − 1)(1 + x)n−2]
= 1 + x−1 y[(n

2)x
2 +⋯ + (n − 1)(n

n)x
n] .

Example 2.2 ([5,6]) For n ≥ 4,

B(Cn ; x , y) = B(Kn−1; x , y) + xy[xn−2 − (1 + x)n−2 + xn−3 y] .

Example 2.3 It is well known that Betti numbers depends upon the characteristic
of the ûeld. Let G be the graph on 11 vertices given in [19], up to relabeling:

G = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {10, 11},
{1, 11}, {1, 6}, {1, 7}, {2, 5}, {2, 9}, {2, 11}, {3, 5}, {3, 7}, {3, 8}, {4, 6},
{4, 10}, {4, 11}, {5, 9}, {6, 9}, {8, 10}} .

In characteristic 0, using CoCoA [1],

B0(G; x , y) = 1 + 25xy + 80x2 y + 25x2 y2 + 95x3 y + 152x3 y2 + 40x4 y

+ 356x4 y2 + 6x5 y + 400x5 y2 + 245x6 y2 + 80x7 y2 + 11x8 y2 ,

while in characteristic 2, B2(G; x , y) = B0(G; x , y) + x8 y3 + x9 y2 .

Note 2.4 In [26], the subgraph polynomial of a graphwas introduced: S(G; x , y) =
∑i , j b i jx i y j , where b i j is the number of subgraphs of G with i edges and j vertices;
we interchange the role of the variables x and y used there. Onemay notice that this
polynomial is similar to the Betti polynomial, but associated with the Taylor reso-
lution of R/I(G) [22, Section 6.1]. Since the Hilbert series Hilb(R/I(G), t) can be
computed from any free resolution of R/I(G) [3, Lemma 4.1.13], it follows that if G is
a graph on n vertices, then (1 − t)n Hilb(R/I(G), t) = S(G;−1, t), which is themain
result in [9] and [26].
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Let I and J bemonomial ideals of a polynomial ring S over a ûeld, with generating
sets over disjoint sets of variables. If F● andG● areminimal graded free resolutions of
S/I and S/J, respectively, then F●⊗G● is aminimal graded free resolution of S/(I+ J)
[18, Lemma 2.1]. So, for the disjoint union G ⊔H of the graphs G and H, we have the
following lemma.

Lemma 2.5 B(G ⊔H; x , y) = B(G; x , y)B(H; x , y).

_e followingwell-known results are immediate fromLemma 2.5 ([17,Prop. 2.2.8],
[34, Lemma 8], [8, Lemma 6.2], [8, Lemma 6.3], respectively)

Corollary 2.6
(i) pdim(G ⊔H) = pdim(G) + pdim(H);
(ii) reg(G ⊔H) = reg(G) + reg(H);
(iii) if v is an isolated vertex, then B(G; x , y) = B(G/{v}; x , y);
(iv) if e = uv is an isolated edge, then B(G; x , y) = (1 + xy)B(G/{u, v}; x , y).

3 Cover Product

For a vertex v of G, deûne N(v) = {w ∈ V(G) ∶ vw ∈ E(G)} and N[v] = N(v) ∪
{v}. For a subset of vertices W of G, denote by G/W the subgraph of G obtained
by deleting the vertices in W . Abusing notation, we write G/v instead of G/{v}. A
useful result is the following lemma.

Lemma 3.1 ([8, Lemma 6.4]) Let G be a graph with a vertex v and a set of vertices
U = {u1 , . . . , uk}, all diòerent from v. If N(v) ⊆ N(u) for all u ∈ U , then

B(G; x , y) = B(G/v; x , y) + (1 + x)k[B(G/U ; x , y) − B(G/(U ∪ {v}); x , y)] .

Example 3.2 Let u be a vertex of the graph G and let Gu be the graph obtained
from G by duplicating the vertex u, i.e.,

V(Gu) = V(G) ∪ {v′} and E(Gu) = E(G) ∪ {u′v′ ∶ u′ ∈ N(u)},
where v′ is a new vertex. (For more about duplicating a vertex, see [21, 27]). By
Lemma 3.1, with U = {u} and v ∶= v′, it follows that

B(Gu ; x , y) = (2 + x)B(G; x , y) − (1 + x)B(G/u; x , y).

Example 3.3 B(Km ,n ; x , y) = 1+ x−1 y[1+ (1+ x)m+n − (1+ x)m − (1+ x)n]. In fact,
B(Km ,n ; x , y) = B(Km ,n−1; x , y) + (1 + x)n−1[B(Km ,1; x , y) − 1]

= 1 + x−1 y[ 1 + (1 + x)m+n−1 − (1 + x)m − (1 + x)n−1]
+ (1 + x)n−1[ 1 + x−1 y[1 + (1 + x)m+1 − (1 + x)m − (1 + x)]]
− (1 + x)n−1

= 1 + x−1 y[ 1 + (1 + x)m+n − (1 + x)m − (1 + x)n] .

Now write B̃(G; x , y) ∶= B(G; x , y) − 1.
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Lemma 3.4 ([24, Cor. 3.4], [32, Lemma 5.4]) LetG andH be two graphswith m and
n vertices, respectively. _en,with the vertex covers C(G) = V(G) and C(H) = V(H),

B(G ⊛H; x , y) = (1 + x)n B̃(G; x , y) + (1 + x)m B̃(H; x , y) + B(Km ,n ; x , y).

_e following theorem is our main result, and is a generalization of Lemma 3.4.

_eorem 3.5 LetG andH be graphswith vertex coversC(G) and C(H), respectively.
Set m = ∣C(G)∣ and n = ∣C(H)∣. _en

(3.1) B(G ⊛H; x , y) = (1 + x)n B̃(G; x , y) + (1 + x)m B̃(H; x , y) + B(Km ,n ; x , y).

Proof We proceed by induction on ∣V(G)∣+ ∣V(H)∣. Suppose ∣V(G)∣ = ∣V(H)∣ = 1.
If one of C(G) or C(H) is the empty set, Km ,n has no edges, and so B(Km ,n ; x , y) = 1.
(Recall that in the introduction, we deûned the Betti polynomial of a graph with no
edges to be identically 1.) In this case both sides of equation (3.1) are equal to 1. In the
case where C(G) = V(G) and C(H) = V(H), both sides of equation (3.1) are equal
to B(K1,1; x , y). So, the initial step is veriûed.

Now let G and H be arbitrary graphs. If C(G) = V(G) and C(H) = V(H), the
result is Lemma 3.4. _us, wemay assume that H has a vertex v ∉ C(H). Since C(H)
is a vertex cover of H, in the graph G ⊛ H it holds that N(v) ⊆ C(H), and hence
N(v) ⊆ N(u) for all u ∈ U ∶= C(G). So, by Lemma 3.1,

B(G ⊛H; x , y) = B((G ⊛H)/v; x , y)
+ (1 + x)m[B((G ⊛H)/U ; x , y) − B((G ⊛H)/(U ∪ {v}); x , y)] .

By induction, taking the vertex covers C(G) for G and C(H) for H/v,

B(G ⊛ (H/v); x , y) = (1 + x)n B̃(G; x , y) + (1 + x)m B̃(H/v; x , y) + B(Km ,n ; x , y).
_en, noticing that B((G ⊛H)/v; x , y) = B(G ⊛ (H/v); x , y),

B(G ⊛H; x , y) = (1 + x)n B̃(G; x , y) + (1 + x)m B̃(H/v; x , y) + B(Km ,n ; x , y)
+ (1 + x)m[B̃(H; x , y) − B̃(H/v; x , y)]

= (1 + x)n B̃(G; x , y) + (1 + x)m B̃(H; x , y) + B(Km ,n ; x , y).

Corollary 3.6 Let G and H be graphs with vertex covers C(G) and C(H), respec-
tively. Set m = ∣C(G)∣ and n = ∣C(H)∣. _en
(i) pdim(G ⊛H) = max{n + pdim(G),m + pdim(H),m + n − 1},
(ii) reg(G ⊛H) = max{reg(G), reg(H)}.

Corollary 3.7 For any positive integer k there exists a connected bipartite graph G
such that µS(G) = 2k and reg(G) = µS(G) + k, where µS(G) is the inducedmatching
number of G.

Proof It is well known [34, Prop. 9] that for the cycle on n vertices, Cn , n ≥ 3, it
holds that reg(Cn) = ⌊(n + 1)/3⌋. In particular, reg(C8) = 3 = µS(C8) + 1. Let H be
the disjoint union of k copies of C8. Take G = H ⊛ v, where v is a new vertex, and
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choose C(H) to be a vertex cover of H with no adjacent vertices. _en µS(G) = 2k
and reg(G) = 3k = µS(G) + k.

_e complete multipartite graph is the graph Kn1 , . . . ,nk (k ≥ 2) in which vertices
are adjacent if and only if they belong to diòerent partite sets; i.e., if V1 , . . . ,Vk are
disjoint sets of vertices, with n i = ∣Vi ∣, i = 1, . . . , k, then Kn1 , . . . ,nk is the graph with
vertices ∪Vi and edges {{i , j} ∶ i ∈ Vp , j ∈ Vq , p /= q}. Set n = ∑ n i .

Corollary 3.8 ([17,_m. 5.3.8])

B(Kn1 , . . . ,nk ; x , y) = 1 + x−1 y[ 1 + (k − 1)(1 + x)n −
k
∑
i=1

(1 + x)n−n i ] .

Proof Proceeding by induction on k, if k = 2, the right-hand side of the equation is
equal to

1 + x−1 y[ 1 + (1 + x)n1+n2 − (1 + x)n1 − (1 + x)n2] ,

which coincides with equation (1.1). So we assume that k > 2.
Let us consider Vnk as a graph with no edges; in particular, B̃(Vnk ; x , y) = 0. By

_eorem 3.5,

B(Kn1 , . . . ,nk ; x , y)
= (1 + x)nk B̃(Kn1 , . . . ,nk−1 ; x , y) + (1 + x)n−nk B̃(Vnk ; x , y) + B(Kn−nk ,nk ; x , y)

= (1 + x)nk [x−1 y[ 1 + (k − 2)(1 + x)n−nk −
k−1
∑
i=1

(1 + x)(n−nk)−n i ]]

+ 1 + x−1 y[ 1 + (1 + x)n − (1 + x)n−nk − (1 + x)nk ]

= 1 + x−1 y[ 1 + (k − 1)(1 + x)n −
k
∑
i=1

(1 + x)n−n i ] .

LetG1 , . . . ,Gk be graphs over disjoint vertex sets. LetC(G i) be a ûxed vertex cover
of G i , i = 1, . . . , k. Deûne the multipartite cover product of the graphs G1 , . . . ,Gk as
the graph ⊛k

i=1G i , with vertices ⋃V(G i) and edges

k
⋃
i=1
E(G i) ∪ {{r, s} ∶ r ∈ C(Gp), s ∈ C(Gq), p /= q} .

Set n i = ∣V(G i)∣, n = ∑ n i , c i = ∣C(G i)∣ and c = ∑ c i . A repeated application of
_eorem 3.5 yields the following theorem.

_eorem 3.9

B(⊛k
i=1G i ; x , y) =

k
∑
i=1

(1 + x)c−c i B̃(G i ; x , y) + B(Kc1 , . . . ,ck ; x , y).
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Sketch of Proof Proceed by induction on k.

B(⊛k
i=1G i ; x , y)

= (1 + x)ck B̃(⊛k−1
i=1 G i ; x , y) + (1 + x)c−ck B̃(Gk ; x , y) + B(Kc−ck ,ck ; x , y)

= (1 + x)ck [
k−1
∑
i=1

(1 + x)c−ck−c i B̃(G i ; x , y) + B(Kc1 , . . . ,ck−1 ; x , y) − 1]

+ (1 + x)c−ck B̃(Gk ; x , y) + B(Kc−ck ,ck ; x , y)

=
k−1
∑
i=1

(1 + x)c−c i B̃(G i ; x , y) + (1 + x)ck B̃(Kc1 , . . . ,ck−1 ; x , y)

+ (1 + x)c−ck B̃(Gk ; x , y) + B(Kc−ck ,ck ; x , y)

=
k
∑
i=1

(1 + x)c−c i B̃(G i ; x , y) + (1 + x)ck B̃(Kc1 , . . . ,ck−1 ; x , y) + B(Kc−ck ,ck ; x , y)

=
k
∑
i=1

(1 + x)c−c i B̃(G i ; x , y) + B(Kc1 , . . . ,ck ; x , y).

4 h-vectors

Let ∆ be a simplicial complex of dimension r−1, so r is the largest cardinality of a face.
Its f -polynomial is f (∆, t) ∶= tr + f1 tr−1 + ⋯ + fr , where f i is the number of faces of
cardinality i, and its h-polynomial is h(∆, t) ∶= f (∆, t − 1). If Hilb(R/I∆ , t) denotes
theHilbert series of the Stanley–Reisner ring R/I∆ and

h(∆, t) = tr + h1 tr−1 +⋯ + hs tr−s ,

with hs /= 0, then

(4.1) (1 − t)r Hilb(R/I∆ , t) = 1 + h1 t +⋯ + hs ts .

_e polynomial in the right-hand side of equation (4.1) is known as the h-vector of
R/I∆ . Let

0Ð→⊕
j
R(− j)βp j Ð→ ⋯Ð→⊕

j
R(− j)β1 j Ð→ R Ð→ R/I∆ Ð→ 0

be a minimal graded free resolution of R/I∆ , where R = k[x1 , . . . , xn], the x i ’s are
indeterminates, and n is the number of vertices of ∆. It can be veriûed [3, Cor. 4.1.14]
that

(4.2)
p
∑
i=0
∑
j
β i j(−1)i t j = (1 − t)n−r(1 + h1 t +⋯ + hs ts).

_e collection of independent sets of a graph G are the faces of a simplicial com-
plex, known as the independence complex of the graph, and which, for simplicity, we
denote by ∆G. _e Stanley–Reisner ring associatedwith ∆G is the ring R/I∆G , where
I∆G is the ideal generated by thenon-faces of ∆G. Since the edges ofG are theminimal
non-independent sets of the graph, it holds that I∆G = I(G); i.e., R/I(G) is precisely
the Stanley–Reisner ring associated with the independence complex ∆G.

Let h⃗(G , t) ∶= 1+h1 t+⋯+hs ts be the h-vector of R/I(G) = R/I∆G . LetG1 , . . . ,Gk
be graphs over disjoint sets of vertices. Set n i = ∣V(G i)∣ and n = ∑ n i . Let C(G i) be
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a ûxed vertex cover of G i , i = 1, . . . , k. Set c i = ∣C(G i)∣ and c = ∑ c i . Furthermore,
r i = dim∆G i + 1 and r = dim∆(⊛k

i=1G i) + 1.

_eorem 4.1

(1 − t)n−r h⃗(⊛k
i=1G i , t) =

k
∑
i=1

(1 − t)n i−r i+c−c i h⃗(G i , t) − (k − 1)(1 − t)c .

Proof

(1 − t)n−r h⃗(⊛G i , t) = B(⊛G i ;−t, t), (equation (4.2))

=
k
∑
i=1

(1 − t)c−c i B̃(G i ;−t, t) + B(Kc1 , . . . ,cr ;−t, t), (_eorem 3.9)

=
k
∑
i=1

(1 − t)n i−r i+c−c i h⃗(G i , t) −∑(1 − t)c−c i + B(Kc1 , . . . ,ck ;−t, t)

=
k
∑
i=1

(1 − t)n i−r i+c−c i h⃗(G i , t) − (k − 1)(1 − t)c , (Corollary 3.8).

5 Complements of Trees

Deûne T1(x) = T2(x) = 0, and, for n ≥ 3,

Tn(x) = (xy)−1[B(Kn−1; x , y) − 1] = 1 + 2(1 + x) +⋯ + (n − 2)(1 + x)n−3 .

Lemma 5.1 For 1 ≤ k ≤ n it holds that

B(Kn ; x , y) = (1 + x)B̃(Kn−1; x , y) + B(K1,n−k ; x , y)
+ xy(1 + x)n−k[Tk+1(x) − (1 + x)Tk(x)] .

We recall some more deûnitions. A clique of a graph is a set of pairwise adjacent
vertices. A vertex v is said to be simplicial if N(v) is a clique. It is well known that
chordal graphs always have a simplicial vertex [7]. Actually, a graph is chordal if and
only if one can repeatedly ûnd a simplicial vertex and delete it from the graph until
no vertex is le� [12].

Corollary 5.2 LetG be a connected chordal graph such that any two maximal cliques
intersect in atmost two vertices. IfG has n vertices and nk maximal cliques of cardinality
k, then

B(G; x , y) = B(Kn−1; x , y) − xy ∑
k≥3

nk(1 + x)n−kTk(x).

Proof Proceed by induction on n. If n = 1 or 2, both sides of the equation are equal
to 1. Assume n ≥ 3. Let v be a simplicial vertex of G and set i = ∣N(v)∣. We have
E(G) = E(G/v) ∪ {uv ∶ u ∈ V(G)/N(v)}. Let G′ = G/v and H′ be the graph
consisting only of the vertex v. Fix C(G′) = V(G)/N[v] and C(H′) = {v}. Note that
G = G′ ⊛H′ and G/v is connected.
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Let mk be the number ofmaximal cliques of cardinality k inG/v. _en m i = n i+1,
m i+1 = n i+1 − 1, and mk = nk for k /= i , i + 1.

B(G; x , y) = B(G′ ⊛H′; x , y)
= (1 + x)B̃(G/v; x , y) + B(K1,n−i−1; x , y), (_eorem 3.5)

= (1 + x)[B̃(Kn−2; x , y) − xy ∑
k≥3

mk(1 + x)n−1−kTk(x)] + B(K1,n−i−1; x , y)

= (1 + x)B̃(Kn−2; x , y) − xy ∑
k≥3

mk(1 + x)n−kTk(x) + B(K1,n−i−1; x , y)

= (1 + x)B̃(Kn−2; x , y) − xy ∑
k≥3

nk(1 + x)n−kTk(x) + B(K1,n−i−1; x , y)

+ xy(1 + x)n−(i+1)Ti+1(x) − xy(1 + x)n−iTi(x)
= B(Kn−1; x , y) − xy ∑

k≥3
nk(1 + x)n−kTk(x), (Lemma 5.1).

Corollary 5.3 If G is a tree with n + 1 vertices, then

B(G; x , y) = B(Kn , x , y) = 1 + x−1 y[(n
2)x

2 +⋯ + (n − 1)(n
n)x

n] .

Proof Apply Corollary 5.2, with nk = 0 for all k ≥ 3.

Corollary 5.4 Let G be a connected chordal graph with n vertices. _ere are integers
m3 ,m4 , . . . ,mℓ , such that

B(G; x , y) = B(Kn−1; x , y) − xy ∑
k≥3

mk(1 + x)n−kTk(x).

Proof Proceed by induction on n, cases n = 1, 2 being clear. We illustrate onemore
case. For n = 3, if G is a path on three vertices, take 0 = m3 = m4 = ⋯. If G is a
triangle, take m3 = 1, 0 = m4 = m5 = ⋯. Let v be a simplicial vertex of G and set
j = ∣N(v)∣. We proceed similarly as in the proof of Corollary 5.2.

B(G; x , y) = (1 + x)B̃(G/v; x , y) + B(K1,n− j−1; x , y), (_eorem 3.5)

= (1 + x)B̃(Kn−2; x , y) − xy ∑
k≥3

m′
k(1 + x)n−kTk(x) + B(K1,n− j−1; x , y)

= (1 + x)B̃(Kn−2; x , y) − xy ∑
k≥3

m′
k(1 + x)n−kTk(x) + B(K1,n− j−1; x , y)

± xy(1 + x)n−( j+1)Tj+1(x) ± xy(1 + x)n− jTj(x), (Adding and subtracting)

= B(Kn−1; x , y) − xy ∑
k≥3

mk(1 + x)n−kTk(x), (Lemma 5.1).

Question 5.5 Can the mk ’s of Corollary 5.4 be described in terms of the combina-
torics of the graph?

An explicit description of B(G; x , y) is given in [8].

_eorem 5.6 ([8,_m. 3.2]) Let G be a chordal graph. _en

B(G; x , y) = 1 + x−1 y∑
H
(c(H) − 1)x ∣H∣ ,
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where H runs over all the induced subgraphs of G, and c(H) denotes the number of
connected components of H.

6 Recursive Formulae

Following [13], an edge e = uv is called a splitting edge if N(u) ⊆ N[v] or N(v) ⊆
N[u]. To simplify notation, for an edge e = uv we deûne N[e] = N(u) ∪ N(v),
and write G/e to mean the graph obtained from G by deleting the edge e, but not its
vertices. Another useful result is the following theorem.

_eorem 6.1 ([13,_m. 3.7]) Let e be a splitting edge of G and k = ∣N[e]∣ − 2. _en

B(G; x , y) = B(G/e; x , y) + xy(1 + x)kB(G/N[e]; x , y).

Example 6.2 Return to Example 3.2. Let Gu be the graph obtained from Gu by
adding the edge e = uv′. _is edge e is a splitting edge of Gu , so, by _eorem 6.1,

B(Gu ; x , y) = (2+x)B(G; x , y)−(1+x)B(G/u; x , y)+xy(1+x)∣N(u)∣B(G/N[u]; x , y).

Recall that a graph is chordal if and only if one can repeatedly ûnd a simplicial
vertex and delete it from the graph until no vertex is le� [12]. Since any edge incident
to a simplicial vertex is a splitting edge,_eorem 6.1 gives a recursiveway to compute
the Betti polynomial of a chordal graph.

Corollary 6.3 Let v be a simplicial vertex of G. Let e1 , . . . , er be all the edges con-
taining v and k i = ∣N[e i]∣ − 2. _en

B(G; x , y) = B(G/v; x , y) + xy
r
∑
i=1

(1 + x)k iB(G/N[e i]; x , y).

Proof Apply _eorem 6.1 to the graphs G, G/e1, (G/e1)/e2 , . . . .

Corollary 6.3 may be rewritten as follows.

Corollary 6.4 Let v be a simplicial vertex of G. Let v1 , . . . , vr be all the vertices
adjacent to v and k i = ∣N[v i]∣ − 2. _en

B(G; x , y) = B(G/v; x , y) + xy
r
∑
i=1

(1 + x)k iB(G/N[v i]; x , y) .

Example 6.5 Let Pn denote the chordless path graph on n vertices. It follows from
Corollary 6.4 that, for n ≥ 3,

B(Pn ; x , y) = B(Pn−1; x , y) + xy(1 + x)B(Pn−3; x , y).

Note 6.6 Similar recurrences, which seem to be new, are satisûed by B(Cn ; x , y).
_eymay be veriûed using [17,_ms. 7.6.28, 7.7.34]. Let λn(x , y) = x2k yn−2k−2(x+ y)
if n = 3k + 2, and zero otherwise. _en, for n ≥ 5,

B(Cn ; x , y) = B(Cn−1; x , y) + xy(1 + x)B(Cn−3; x , y) − λn(x , y).
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Also, for n ≥ 5,
B(Cn ; x , y) = B(Pn−1; x , y) + 2xy(1 + x)B(Pn−4; x , y) + x2 yB(Cn−3; x , y).

A graph G is called weakly chordal if neither G nor its complement contains an
induced cycle with ûve or more vertices. By deûnition, non-adjacent vertices u and
v form a two-pair of G if any chordless path joining them has exactly two edges; or
equivalently, if the removal of their common neighbors in G leaves them in diòerent
connected components. An edge e = uv of G is called a co-pair edge if u and v form
a two-pair in the complement of G. It is well known that a graph is weakly chordal
if and only if each induced subgraph either is a clique or contains a two-pair of the
subgraph [15].

Proposition 6.7 Let G be a weakly chordal graph, e = uv a co-pair edge of G and
k = ∣N[e]∣ − 2. If N(u) ∩ N(v) = ∅, then

B(G; x , y) = B(G/e; x , y) + xy(1 + x)kB(G/N[e]; x , y).

Proof Since u and v form a two-pair ofG, it holds that e isnot themiddle edge of any
induced chordless path on four vertices in G. _is, together with N(u) ∩ N(v) = ∅,
implies that N(u) ⊆ N(v i) for all v i ∈ N(v)/u. In fact, letw ∈ N(u). _e pathwuvv i
may not be chordless. Since N(u) ∩ N(v) = ∅ implies that w ∉ N(v) and v i ∉ N(u),
it must hold that w ∈ N(v i). _en, by Lemma 3.1,

B(G; x , y) = B(G/u; x , y) + (1 + x)k(v)[B(G/(N(v)/u); x , y) − B(G/N(v); x , y)] ,
where k(v) = ∣N(v)/u∣. By a similar argument for the graph G/e, and taking into
account Corollary 2.6(iii),

B(G/e; x , y) = B(G/u; x , y)+ (1+ x)k(v)[B(G/(N[v]/u); x , y)−B(G/N[v]; x , y)] .
Now observe that in the graph G/(N(v)/u) the vertex v has degree 1, so, by Corol-
lary 6.4,

B(G/(N(v)/u); x , y) = B(G/(N[v]/u); x , y) + xy(1 + x)k(u)B(G/N[e]; x , y),
where k(u) = ∣N(u)/v∣. Putting everything together, and using Corollary 2.6(iii)
again, we obtain

B(G; x , y) = B(G/e; x , y) + xy(1 + x)k(u)+k(v)B(G/N[e]; x , y).

A graph that is both weakly chordal and bipartite is called chordal bipartite. Since
the family of weakly chordal graphs is closed under the operation of deleting co-pair
edges [28], it follows that the family of chordal bipartite graphs is closed under the
same operation. _erefore, we have the following corollary from Proposition 6.7.

Corollary 6.8 Betti numbers of chordal bipartite graphs can be computed recursively,
and they do not depend on the characteristic of the ûeld.

Proof LetG be a chordal bipartite graph, and let e = uv be a co-pair edge ofG. Since
G is bipartite, the condition N(u)∩N(v) = ∅ is trivially veriûed. So, Proposition 6.7
can be applied.
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Question 6.9 Can the Betti numbers ofweakly chordal graphs be computed recur-
sively? Do they depend on the characteristic of the ûeld?
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