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Abstract

Suppose that n identical particles evolve according to the same marginal Markov chain. In
this setting we study chains such as the Ehrenfest chain that move a prescribed number of
randomly chosen particles at each epoch. The product chain constructed by this device
inherits its eigenstructure from the marginal chain. There is a further chain derived
from the product chain called the composition chain that ignores particle labels and
tracks the numbers of particles in the various states. The composition chain in turn
inherits its eigenstructure and various properties such as reversibility from the product
chain. The equilibrium distribution of the composition chain is multinomial. The current
paper proves these facts in the well-known framework of state lumping and identifies
the column eigenvectors of the composition chain with the multivariate Krawtchouk
polynomials of Griffiths. The advantages of knowing the full spectral decomposition
of the composition chain include (a) detailed estimates of the rate of convergence to
equilibrium, (b) construction of martingales that allow calculation of the moments of the
particle counts, and (c) explicit expressions for mean coalescence times in multi-person
random walks. These possibilities are illustrated by applications to Ehrenfest chains, the
Hoare and Rahman chain, Kimura’s continuous-time chain for DNA evolution, a light
bulb chain, and random walks on some specific graphs.
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1. Introduction

Many classical Markov chains are special cases of what we prefer to call composition
chains. A composition chain follows the fate of n particles. If each particle can occupy one of
d states then the composition chain records the number of particles n1, . . . , nd in each of the
d states. In number theory a composition of a positive integer n into d parts is a representation
n = n1+· · ·+nd , where the order of the nonnegative summands is important. The composition
chain has

(
n+d−1
d−1

)
states. In this paper we relate the upper product chain with n distinguishable

particles and dn states to the lower composition chain. Our primary goal is to transfer the
eigenstructure of the upper product chain to the composition chain. The natural assumption in
many applications is that all particles evolve independently according to a common transition
probability matrix (kernel) M , which, inspired by applications from genetics, we term the
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mutation kernel. In some applications it is more convenient to move a random subset of the
particles at each step while leaving the remaining particles fixed. If s is an integer between 1
and n, the simplest version of this strategy moves s randomly selected particles at each step.
The case in which s = n corresponds to moving all particles. Regardless of the choice of s, the
equilibrium distribution of the lower chain is multinomial.

The count map from the upper chain to the lower chain implements a special case of state
lumping previously described in the literature [1], [19]. With adequate symmetry, the lumped
states function as new states of the lower chain. We briefly review lumping and demonstrate its
relevance in transferring eigenvalues and eigenvectors, calculating powers of the kernel of the
lumped chain, and generating martingales. In pursuing these goals, we clarify the mysterious
nature of the multivariate Krawtchouk polynomials of Griffiths [9]. Our applications include
the Ehrenfest chain and its generalizations, Gibbs sampling [20], the recent Hoare and Rahman
chain [12], the light bulb model of Rao et al. [24], and the coalescence problem of Tian and
Liu [25]. Further exploitation of the lumping paradigm may be possible; we mention some
relevant open problems in the discussion.

The reader should keep in mind three key threads in our exposition. First, the equilibrium
distribution of the composition chain is multinomial with cell probabilities determined by the
equilibrium distribution of the mutation kernel M . Second, much of the theory carries over
to continuous-time chains. As we go, we will indicate the necessary amendments. Third,
Kronecker (tensor) products and matrix commutativity play important roles in simplifying
calculations.

2. Background on lumped Markov chains

Consider two Markov chains with state spaces C and C∗. The second (lower) chain is
embedded in the first (upper) chain by a map f : C → C∗. This map partitions the states in C

into equivalence classes under the equivalence relation i ∼ j when f (i) = f (j). If T = (tij )

denotes the kernel of the upper chain then it is natural to define the kernel of the lower chain to
have entries

t∗f (i)f (j) =
∑
k∼j

tik.

For the lumping to be probabilistically consistent, it is necessary and sufficient that∑
k∼j

tik =
∑
k∼j

tlk for all l ∼ i.

This condition is satisfied only by chains with a special structure which include the product
chains studied in Section 3. It is often helpful to restate this criterion as

∑
k∼j

tik = 1

qf (i)

∑
l∼i

∑
k∼j

tlk, (1)

where qf (i) is the number of states equivalent to i. The set of kernels that satisfy the consistency
condition is clearly a convex compact set. A distribution u on the upper chain induces a
distribution u∗ on the lumped chain according to

u∗
f (i) =

∑
j∼i

uj . (2)
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Mindful of these conventions, we state several facts. The reader can easily supply their proofs
or consult the references [3], [19], or [23] for proofs.

Fact 1. Suppose that λ is an eigenvalue of the upper chain with row eigenvector u. Then λ

is an eigenvalue of the lower chain with row eigenvector u∗ whose components are displayed
in (2).

Fact 2. The lower chain is irreducible if the upper chain is irreducible. It is aperiodic if the
upper chain is aperiodic.

Fact 3. If the upper chain is reversible with stationary distribution π then the lower chain is
reversible with induced stationary distribution π∗.

Fact 4. The map u �→ u∗ on probability distributions satisfies the contraction inequality ‖u∗ −
v∗‖TV ≤ ‖u − v‖TV for the total variation norms on the upper and lower state spaces.

Some of these concepts can be rephrased using simple ideas from linear algebra [3], [19].
Let P = (pij ) be the projection matrix taking a row vector indexed by the entries of C to a row
vector indexed by the entries of C∗. Here pij = 1 if f (i) = j and 0 otherwise. The averaging
matrix L = (lij ) reverses projection and lifts a row vector indexed by the entries of C∗ to a row
vector indexed by the entries of C; thus, lij = q−1

i if f (j) = i and 0 otherwise. The pair of
matrices P and L satisfies the equation LP = I , where I is the identity matrix. We can show
that L = (P �P)−1P � by noting that P has orthogonal columns and hence full column rank.
An easy calculation then shows that (P �P) is diagonal with diagonal entry qi corresponding
to state i ∈ C∗. The remaining steps proving that L = (P �P)−1P � are straightforward. The
matrix product PL equals the orthogonal projection P(P �P)−1P �.

Fact 5. The kernel of the lower chain is T ∗ = LT P . From left to right, this product reads lift,
transition, and project. The corresponding r-step kernel is T ∗r = LT rP .

Fact 6. The consistency condition (1) is a disguised form of the identity PLT P = T P .

Fact 7. All eigenvalues of the lower chain are realized by projecting row eigenvectors from the
upper chain to the lower chain.

Fact 8. We can lift column eigenvectors from the lower chain to the upper chain. If T ∗u∗ = λu∗
then setting u = Pu∗ yields T u = λu.

Many lumpings are generated by group actions [2], [3]. Let the group G act on the state
space C of a Markov chain with kernel T . The permutation group on {1, . . . , m} is often the
relevant group.

Fact 9. Suppose that tij = tgi,gj for all g ∈ G and that i ∼ l if and only if gi = l for some g.
Then the orbit space C∗ under G forms a lumped chain from the chain C with kernel T .

In practice, many chains are reversible. If a chain has kernel T and equilibrium distribution π ,
then detailed balance is equivalent to the symmetry of the matrix DT D−1, where D is the
diagonal matrix diag(

√
π). Taking the spectral decomposition DT D−1 = U��U yields

a matrix V = UD whose rows are the row eigenvectors of T . These rows vi satisfy the
orthogonality relations

〈vi, vj 〉1/π = viD−2(vj )� = ui(uj )� = 1{i=j}
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and constitute a basis of the Hilbert space �2
1/π . Here 1{·} is the indicator function. The column

eigenvectors are the columns of the matrix

W = D−1U� = D−1D−1V � = diag(π−1)V �.

Thus, a trivial rescaling allows us to pass from row eigenvectors to column eigenvectors, or
vice versa. The column eigenvectors satisfy the orthogonality condition

〈wi, wj 〉π = (wi)�D2wj = viD−2D2D−2(vj )� = viD−2(vj )� = 1{i=j}.

It is a short step from these observations to show that the row and column eigenvectors are
biorthogonal and that the kernel can be written as the sum T = ∑

i γiw
ivi , where γi is the ith

diagonal entry of �. In general, T k = ∑
i γ k

i wivi .
The eigenvalues and eigenvectors of a reversible ergodic chain determine how fast it con-

verges to equilibrium starting from an initial distribution µ [4].

Fact 10. The distance from equilibrium in �2
1/π bounds the total variation distance from

equilibrium in the sense that

‖µ − π‖TV ≤ 1
2‖µ − π‖1/π .

Fact 11. If the eigenvalues are arranged so that the sequence |γi | is decreasing then we have
the chi-square bound

‖µT k − π‖2
1/π =

∑
j≥2

γ 2k
j 〈µ − π, vj 〉2

1/π

=
∑
j≥2

γ 2k
j [(µ − π)wj ]2

≤ γ 2k
2 ‖µ − π‖2

1/π .

For obvious reasons, ‖µT k − π‖2
1/π is called the χ2 distance from equilibrium.

Our final fact gives a sufficient condition for the preservation of orthogonality. The condition
suggests that we should look for eigenvectors that respect the equivalence relation induced by
lumping.

Fact 12. A row vector v on the upper chain is invariant on equivalence classes if and only
if vPL = v. If the equilibrium distribution π and two row vectors v and w are constant on
equivalence classes, then

〈v, w〉1/π = 〈v∗, w∗〉1/π∗ .

For the most part, the same facts hold for continuous-time Markov chains if we substitute
infinitesimal generators for transition probability kernels. The validity of the consistency
condition (1) for the off-diagonal entries of the infinitesimal generator is equivalent to its validity
for the full infinitesimal generator, since all row sums of the infinitesimal generator are 0. The
part of Fact 2 dealing with aperiodicity is no longer pertinent. Fact 5 reads et�∗ = Let�P ,
where � and �∗ are the upper and lower infinitesimal generators. Fact 11 reads

‖µet� − π‖2
1/π =

∑
j≥2

exp{2γj t}〈µ − π, vj 〉2
1/π

=
∑
j≥2

exp{2γj t}[(µ − π)wj ]2

≤ exp{2γ2t}‖µ − π‖2
1/π ,
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where γ2 < 0 is the second largest eigenvalue of a reversible chain with equilibrium distribu-
tion π . The biorthogonal representation � = ∑

i γiw
ivi leads to the compact formula

et� =
∑

i

exp{γit}wivi =
∑

i

exp{γit}wi(wi)� diag(π) (3)

for the finite-time transition probability matrix.

3. Lumping of product Markov chains

In dealing with the upper Markov chain generating a composition Markov chain, it is
convenient to list the Cartesian product states in the upper chain in dictionary order. When
the particles move independently and simultaneously (s = n), this choice allows us to write
the product kernel as the tensor product M ⊗· · ·⊗M . If π is the equilibrium distribution for a
single particle then π ⊗ · · · ⊗ π is the equilibrium distribution for the upper chain. The tensor
product multiplication rule

(π ⊗ · · · ⊗ π)(M ⊗ · · · ⊗ M) = (πM) ⊗ · · · ⊗ (πM) = π ⊗ · · · ⊗ π

shows how these conventions meld perfectly. If we take s < n then the kernel Ms of the upper
chain can be represented as a convex combination of Kronecker products. Let MS be the tensor
product matrix with M inserted in the slots corresponding to the elements of the set S and the
identity matrix I inserted in the remaining slots. For example, with n = 3 and S = {1, 3},
MS = M ⊗ I ⊗ M . In this notation we have

Ms =
(

n

s

)−1 ∑
|S|=s

MS. (4)

Lumping can be approached from two directions. A permutation σ on {1, . . . , n} takes a
vector u1 ⊗ · · · ⊗ un into the vector uσ(1) ⊗ · · · ⊗ uσ(n). This group action is compatible with
lumping and satisfies the consistency condition (1) because Ms is defined symmetrically over
all subsets S of size s. The same conclusion can be reached without invoking group actions
by observing that consistency is obvious for s = n. If s < n, consider a subset S of size s.
Since the counts contributed by the particles outside S do not change on application of MS , for
all intents the proof of lumpability of MS reduces to the case in which s = n. Finally, since
the set of lumpable kernels is convex, lumpability holds for Ms as well. We stress that more
complicated kernels also lead to lumpability.

According to Fact 2, the composition chain is ergodic (irreducible and aperiodic) whenever
Ms is ergodic. In general, a chain with kernel K is ergodic if and only if some power Kr has
all entries positive. Suppose that the mutation matrix M is ergodic with positivity exponent r .
By considering successive subsets S = {ms + 1, . . . , (m + 1)s}, we can demonstrate that, for
sufficiently large k, Mk

s exceeds a positive multiple of Mk1 ⊗ · · · ⊗ Mkn , where each ki ≥ r .
Thus, Ms is ergodic whenever M is ergodic.

Because (π ⊗ · · · ⊗ π)Ms = (π ⊗ · · · ⊗ π), the upper chain has the product equilibrium
distribution regardless of the value of s. Equation (2) shows that the product equilibrium
distribution translates into the multinomial equilibrium distribution on the composition chain.
It turns out that reversibility of the upper chain is both a necessary and sufficient condition for
reversibility of the lower chain. Necessity is proved by considering two states of the composition
chain. In the first composition, all particles occupy state i; in the second composition, n − s
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particles occupy state i and s particles occupy state j . If detailed balance holds in the
composition chain then

πn
i ms

ij =
(

n

s

)
πn−s

i πs
j

(
n

s

)−1

ms
ji .

Simple algebra now yields the detailed balance condition πimij = πjmji relevant to the
mutation matrix and, hence, to the product chain.

These conclusions are summarized in the next proposition.

Proposition 1. Under the kernel Ms , the composition chain is ergodic whenever M is ergodic.
If the mutation matrix M has equilibrium distribution π then the composition chain has as its
equilibrium distribution the multinomial distribution with n trials and success probability πi

for state i. The composition chain is reversible if and only if the mutation kernel M is reversible.

We now consider the more interesting problem of determining the eigenstructure of the
composition chain. To ease the notational burden, we will use multi-index notation to indicate
count vectors. Thus, a tilded letter, e.g. m̃, stands for a vector of counts (m1, . . . , md) and its
absolute value |m̃| stands for the sum of the counts m1 + · · · + md . If p is a vector with d

components then pm̃ = ∏d
i=1 p

mi

i .
If M = V −1�V diagonalizes M then

Ms = (V −1 ⊗ · · · ⊗ V −1)

((
n

s

)−1 ∑
|S|=s

�S

)
(V ⊗ · · · ⊗ V ) (5)

diagonalizes Ms , where �S is derived from � in the same manner as MS is derived from M .
Diagonalization (5) provides us with the row eigenvectors of Ms . To construct one, take a
tensor product vi1 ⊗ · · · ⊗ vin , where vi is the ith row of V . The corresponding eigenvalue
appears in the equation

vi1 ⊗ · · · ⊗ vinMs =
((

n

s

)−1 ∑
|S|=s

∏
j∈S

γij

)
vi1 ⊗ · · · ⊗ vin .

The eigenvalues for two vectors vi1 ⊗ · · · ⊗ vin and vj1 ⊗ · · · ⊗ vjn coincide if the index
vectors (i1, . . . , in) and (j1, . . . , jn) generate the same count vector ñ. In this case the common
eigenvalue is

βñ =
(

n

s

)−1 ∑
|S|=s

∏
j∈S

γij =
(

n

s

)−1 ∑
k̃

d∏
l=1

(
nl

kl

)
γ

kl

l , (6)

where k̃ ranges over all multi-indices with |k̃| = s.
Given lumpability, Fact 1 implies that a row eigenvector vi1 ⊗· · ·⊗ vin of the product chain

maps to a row eigenvector (vi1 ⊗ · · · ⊗ vin)P of the composition chain with the eigenvalue βñ

displayed in (6). To calculate the projected eigenvector, let ui be the standard unit basis vector
of R

d . Multilinearity implies that

[(vi1 ⊗ · · · ⊗ vin)P ]m̃ =
∑
j1

· · ·
∑
jn

v
i1
j1

· · · vin
jn

[(uj1 ⊗ · · · ⊗ ujn)P ]m̃

=
∑
(kij )

d∏
i=1

(
ni

ki1 · · · kid

) d∏
j=1

(vi
j )

kij ,
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where (kij ) indicates a d × d table of nonnegative integers satisfying the row and column sum
constraints

∑
j kij = ni and

∑
i kij = mj .

This discussion omits all mention of orthogonality and norms. In the presence of reversibility,
these come into play. On a tensor product space with identical factors, the induced inner product
satisfies the identity 〈x1⊗· · ·⊗xn, y1⊗· · ·⊗yn〉 = 〈x1, y1〉 · · · 〈xn, yn〉. This partial definition
extends by bilinearity to the full tensor product space. In view of our discussion of reversible
chains, the most pertinent inner product for each particle is 〈·, ·〉1/π . The inner product induced
on the tensor product by this choice is the inner product 〈·, ·〉1/ν corresponding to the product
equilibrium distribution π ⊗ · · · ⊗ π = ν. To construct an orthonormal basis of the tensor
product space, we take the spectral decomposition V −1�V of the mutation matrix M and
assemble all possible vectors vi1 ⊗ · · · ⊗ vin from the rows of V .

If ν∗ is the multinomial distribution generated by ν then we need to relate the two inner
products 〈x, y〉1/ν and 〈x∗, y∗〉1/ν∗ . The key is to symmetrize and invoke Fact 12. We
symmetrize a basis element vi1 ⊗ · · · ⊗ vin of the product chain by taking

u = 1

n!
∑
σ

viσ1 ⊗ · · · ⊗ viσn , (7)

where the sum extends of all permutations σ of {1, . . . , n}. Symmetry dictates that u is constant
on equivalence classes and projects to the same vector as the original vector. If (i1, . . . , in)

generates the count vector ñ then

〈u, u〉1/ν = n!
(n!)2 n1! · · · nd ! =

(
n

ñ

)−1

.

It follows that x =
√(

n
ñ

)
u has unit norm in �2

1/ν . According to Fact 12, its projection x∗ also

has unit norm �2
ν∗ . When we construct another symmetrized vector y that maps to y∗ �= x∗,

then x and y are orthogonal and x∗ and y∗ are orthogonal as well.
In the presence of reversibility, it is straightforward to recover the column eigenvectors of the

composition chain. To the row eigenvector vi for a single particle there corresponds the column
eigenvector wi = diag(π−1)(vi)�. The column eigenvector corresponding to the symmetrized
vector u in (7) has entries

zm̃ = 1

πm̃

(
n

m̃

)−1 ∑
(kij )

d∏
i=1

(
ni

ki1 · · · kid

) d∏
j=1

(vi
j )

kij

= 1

πm̃

(
n

ñ

)−1 ∑
(kij )

d∏
j=1

(
mj

k1j · · · kdj

) d∏
i=1

(vi
j )

kij

=
(

n

ñ

)−1 ∑
(kij )

d∏
j=1

(
mj

k1j · · · kdj

) d∏
i=1

(
vi
j

πj

)kij

=
(

n

ñ

)−1 ∑
(kij )

d∏
j=1

(
mj

k1j · · · kdj

) d∏
i=1

(wi
j )

kij

=
(

n

ñ

)−1

Kñ(m̃).
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The function Kñ(m̃) is a multivariate Krawtchouk polynomial; we will say more about these in
a moment. If instead of starting with u we start with the normalized vector x, then z is a unit
vector. In other words, the scaled Krawtchouk polynomial

K0
ñ (m̃) =

(
n

ñ

)−1/2

Kñ(m̃)

has unit norm in �2
ν∗ . Furthermore, these polynomials constitute an orthonormal basis of column

vectors.
Our second proposition summarizes these findings.

Proposition 2. The row eigenvectors of the product chain Ms project to row eigenvectors of
the composition chain with the shared eigenvalue βñ displayed in (6). If the mutation matrix
is reversible then the symmetrized and scaled eigenvectors of the product chain project to an
orthonormal basis of the composition chain. These in turn map to a dual orthonormal basis of
scaled Krawtchouk polynomials K0

ñ
(m̃) of the composition chain with the same eigenvalues.

4. The role of Krawtchouk polynomials

Griffiths [9] defined the multivariate Krawtchouk polynomials Kñ(m̃) via their generating
function

G(m̃, y) =
∑
|ñ|=n

Kñ(m̃)yñ =
d∏

i=1

( d∑
j=1

yjw
j
i

)mi

,

under the restrictions y1 = 1 and w1 = 1. Equating coefficients of yñ shows that

Kñ(m̃) =
∑
(kij )

d∏
j=1

(
mj

k1j · · · kdj

) d∏
i=1

(wi
j )

kij .

Of course, this is exactly how we defined Kñ(m̃) earlier. For the case in which d = 2, the
generating function reduces to

G(m̃, y) = (1 + y2w
2
1)m1(1 + y2w

2
2)m2 =

(
1 − y2

√
π2

π1

)m1
(

1 + y2

√
π1

π2

)m2

with m1 + m2 = n. Extracting the coefficient of y
n2
2 yields

Kn1,n2(m1, m2) =
∑

l1+l2=n2

(
m1

l1

)(
m2

l2

)(
−

√
π2

π1

)l1
(√

π1

π2

)l2

=
(

n

n2

)(√
π1

π2

)n2 ∑
l1+l2=n2

(
m1

l1

)(
m2

l2

)(
n

n2

)−1(
−π2

π1

)l1

,

K0
n1,n2

(m1, m2) =
√(

n

n2

)(
π1

π2

)n2 ∑
l1+l2=n2

(
m1

l1

)(
m2

l2

)(
n

n2

)−1(
−π2

π1

)l1

.

These expressions can be simplified by bringing in the hypergeometric function

2F1(a, b; c; u) =
∞∑
l=0

a(l)b(l)

c(l)

ul

l!
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and writing

∑
l1+l2=n2

(
m1

l1

)(
m2

l2

)(
n

n2

)−1

(−u)l1 = (m2)[n2]
n[n2]

2F1(−n2, −m1; m2 − n2 + 1; −u)

= 2F1(−n2, −m1; −n; 1 + u).

Here we have applied the standard transformation formula [8],

2F1(a, b; c; z) = (b − c)[−a]
(−c)[−a]

2F1(a, b; 1 + a + b − c; 1 − z),

and used the abbreviations a[l] = a(a − 1) · · · (a − l + 1) and a(l) = a(a + 1) · · · (a + l − 1)

to signify falling and rising factorials. The final result,

K0
n1,n2

(m1, m2) =
√(

n

n2

)(
π1

π2

)n2

2F1

(
−n2, −m1; −n; 1 + π2

π1

)

=
√(

n

n2

)(
π1

π2

)n2

2F1

(
−n2, −m1; −n; 1

π1

)
,

can also be recovered from the classical definition

n∑
k=0

(
n

k

)
2F1

(
−k, −x; −n; 1

π1

)
tk =

(
1 − π2

π1
t

)x

(1 + t)n−x

of the univariate Krawtchouk polynomials by taking t = y2
√

π1/π2. Ismail [13, p. 184]
summarized the properties of the univariate Krawtchouk polynomials.

Although the multivariate Krawtchouk polynomials are complicated, a few simple cases are
noteworthy. Let ej be the standard unit vector with entry j equal to 1 and the remaining d − 1
entries equal to 0. The values

Kñ(nej ) =
(

n

ñ

) d∏
i=1

(wi
j )

ni

and K0
ñ (nej ) =

√(
n

ñ

) d∏
i=1

(wi
j )

ni

are easy to deduce. It is also clear that Kne1(m̃) = K0
ne1

(m̃) = 1.
Our approach to the multivariate Krawtchouk polynomials gives a natural proof of their

orthogonality under the multinomial distribution and clarifies their role in Markov chain
dynamics. Our next proposition showcases the value of the Krawtchouk polynomials in
computing the χ2 distance of a composition chain from equilibrium.

Proposition 3. When the composition process starts from state m̃, the chi-square distance to
stationarity after l steps is

χ2
m̃(l) =

∑
ñ�=ne1

β2l
ñ K0

ñ (m̃)2. (8)

Proof. This is a direct application of Fact 11.
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In applying (8) it is helpful to know specific values of the βñ. When d = 2, we can express

βñ =
(

n

s

)−1 s∑
k=0

(
n1

s − k

)(
n2

k

)
γ k

2 = 2F1(−n2, −s; −n; 1 − γ2). (9)

The case in which s = n gives

βñ =
d∏

i=1

γ
ni

i .

Thus, the second largest eigenvalue in magnitude of the single-particle chain and the com-
position chain coincide. Furthermore, Proposition 2 shows that the chi-square distance from
equilibrium after l steps starting from state nej is

χ2
nej

(l) =
∑

ñ�=ne1

(
n

ñ

) d∏
i=1

(γ l
i w

i
j )

2ni .

Finally, the case in which s = 1 yields the convex combination

βñ =
d∑

i=1

ni

n
γi .

If the γi are arranged in decreasing order then the reader can check that the second largest
eigenvalue in magnitude of the composition chain is either (n−1)/n+(1/n)γ2 or γd , whichever
is larger in magnitude.

Equation (6) also has some qualitative implications. For instance, it is well known that the
number of irreducible classes of a Markov chain equals the multiplicity of the eigenvalue 1 of its
kernel [18]. Thus, if the mutation matrix M has r irreducible classes then γ1 = · · · = γr = 1,
and every count vector of the form ñ = (n1, . . . , nr , 0, . . . , 0) gives rise to βñ = 1. Hence, the
composition chain has at least

(
n+r−1

n

)
irreducible classes. We can similarly employ the fact

that an irreducible chain has period r if and only if all roots of unity of order r are eigenvalues of
its kernel [18]. For instance, if the mutation matrix M is reversible and periodic, then γd = −1.
Equation (6) now shows that βne1 = 1 and βned

= (−1)s . When s is odd, we deduce that
the composition chain is periodic, and when s is even, we deduce that the composition chain
has at least two irreducible classes. These conclusions can be drawn from more elementary
arguments, but it is pleasing that they fall out so easily from a clear understanding of how
eigenvalues transfer.

If the full eigenstructure of the single-particle chain is unknown then Fact 4 can be invoked
to bound the rate of convergence of the composition chain. For example, suppose that the
single-particle chain is close to the stationary distribution π after T steps. Once each particle
has been moved at least T times, then both the product chain and the composition chain should
be close to equilibrium as well. In many interesting models a strong stationary time T can be
constructed.

5. Continuous-time chains

Propositions 1 and 2 continue to hold for continuous-time Markov chains provided that the
n identical particles move independently. In this setting we replace the mutation matrix M by a
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mutation rate matrix Q. The finite-time transition matrix for a single particle equals the matrix
exponential etQ. If we retain the dictionary ordering of states then the finite-time transition
matrix for the product chain equals the tensor product etQ ⊗ · · · ⊗ etQ. The derivative of this
matrix at time t = 0 equals the infinitesimal rate matrix of the product chain. Because the
matrix exponential satisfies the law of exponents for commuting arguments, the product rule
of differentiation gives

d

dt
etQ ⊗ · · · ⊗ etQ | t=0 = d

dt

[ n∏
k=1

I ⊗ · · · ⊗ I ⊗ etQ ⊗ I ⊗ · · · ⊗ I

]
t=0

=
n∑

k=1

I ⊗ · · · ⊗ I ⊗ Q ⊗ I ⊗ · · · ⊗ I.

Except for a missing factor of n−1 and the replacement of M by Q, the infinitesimal rate matrix
is identical to the product kernel (4) with s = 1. Instead of the eigenvalue in (6) for s = 1, we
now have the eigenvalue

βñ =
d∑

i=1

niγi . (10)

If the eigenvalues γi of Q are arranged to have decreasing real parts then γ1 = 0 and γ2 is the
eigenvalue with the second largest real part simultaneously for the single-particle chains, the
product chain, and the composition chain.

6. Applications

Many contemporary and classical Markov chains fit into our framework.

6.1. Ehrenfest chains

In the classical Ehrenfest model [7], [15], n balls are shuttled between d = 2 urns. At each
step a ball (s = 1) is randomly chosen and shifted to the other urn. The composition (Ehrenfest)
chain tracks the number of balls in each urn. In this case the mutation matrix

M =
(

0 1
1 0

)
(11)

has period 2, eigenvalues γ1 = 1 and γ2 = −1, and equilibrium distribution π = ( 1
2 , 1

2 ). The
product chain is a random walk on the hypercube Zn

2 [4]. The composition chain is reversible
with period 2. Its equilibrium distribution is binomial with n trials and success probability 1

2 .
Its eigenvalues are βn1,n2 = 1 − 2n2/n and its column eigenvectors are univariate Krawtchouk
polynomials.

Karlin and McGregor [16] generalized the Ehrenfest urn model to d > 2 urns. The discrete
analog of their continuous-time Markov chain randomly chooses a single ball (s = 1) and
redistributes it to another urn according to the probability distribution π = (π1, . . . , πd). The
composition (Ehrenfest) chain counts the number of balls in each urn. In this setting the
mutation matrix M has all rows equal to π , which is obviously the equilibrium distribution.
The eigenvalues are γ1 = 1 and γ2 = · · · = γd = 0. Owing to the multiplicity of the eigenvalue
0, any orthonormal basis w1, . . . , wd of �2

π with w1 = 1 diagonalizes M .
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The composition chain has the eigenvalue βñ = n1/n with multiplicity
(
d−2+n−n1

n−n1

)
. The

multivariate Krawtchouk polynomials enter when we make the explicit choice

wi = 1√
(1/πi−1)(

∑d
j=i πj )2 + ∑d

j=i πj

(
0, . . . , 0, − 1

πi−1

d∑
j=i

πj , 1, . . . , 1

)�

for 2 ≤ i ≤ d , in diagonalizing the composition chain. These results unify the algebraic
perspective of Griffiths [9] with the specific version of the multivariate Krawtchouk polynomials
given by Iliev and Xu [14, Theorem 6.2] and implicit in the earlier work of Karlin and
McGregor [16].

Finally, we can generalize even further by selecting s > 1 balls at each step and redistributing
each according to the probability vector π . Diaconis et al. [5] considered the univariate case,
d = 2, in studying convergence rates of various Gibbs samplers. Khare and Zhou [20]
obtained the explicit diagonalization in the multivariate case. The mutation matrix M and
composition chain eigenvectors obviously remain the same. The composition chain eigenvalue
βñ = (

n1
s

)
/
(
n
s

)
has multiplicity

(
d−2+n−n1

n−n1

)
, where 0 ≤ n1 ≤ n.

6.2. Hoare and Rahman chain

In this example we consider a general urn model combining features of the Hoare–Rahman
[12] model and the Karlin–McGregor model. Suppose that there are n balls and d urns. All
balls (s = n) are moved independently at each step according to the following mechanism. If a
ball is in urn i then with probability αi it remains there; with probability 1−αi it is redistributed
to another urn according to the probability vector θ = (θ1, . . . , θd)�. Note that a ball can be
redistributed to its current urn. Hoare and Rahman [12] considered the special case in which
d = 3 and αd = 0. Griffiths [10] commented on the role of the multivariate Krawtchouk
polynomials in the restricted Hoare–Rahman model. In the general version of the model, the
mutation matrix is reversible with entries

mij =
{

(1 − αi)θj , i �= j,

αi + (1 − αi)θi, i = j,

and equilibrium distribution

π = 1∑d
i=1 θi/(1 − αi)

(
θ1

1 − α1
, . . . ,

θd

1 − αd

)
.

If we view α = (α1, . . . , αd)� and θ as column vectors, then M can be written as the sum of
the diagonal matrix diag(α) plus the outer product matrix (1 − α)θ�.

We can calculate the characteristic polynomial p(γ ) of M by Woodbury’s formula [22] for
the determinant of a low rank perturbation of a square matrix. The result is

p(γ ) = det[γ I − diag(α) − (1 − α)θ�]
= det[γ I − diag(α)]{1 − θ�[γ I − diag(α)]−1(1 − α)}

=
d∏

i=1

(γ − αi) −
d∑

i=1

θi(1 − αi)
∏
j �=i

(γ − αj ).
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If k of the αi coincide then their common value is a root of p(γ ) of multiplicity k − 1. For
instance, if αd = 0 and α1 = · · · = αd−1 = α, then

p(γ ) = (γ − 1)(γ − α)d−2(γ − αθd),

and M has eigenvalues γ1 = 1, γ2 = · · · = γd−1 = α, and γd = αθd . To generate
corresponding column eigenvectors, we take w1 = 1 and d − 2 unit vectors w2, . . . , wd−1

of the form w = (u�, 0)� orthogonal to w1 in �2
π . Prior to normalization, the last eigenvector

wd has its first d − 1 entries equal to 1 and its last entry equal to (1 − θd)/θd(α − 1). The
reader can check that these choices produce an eigenbasis of �2

π . Proposition 1 implies that
the composition chain is reversible with respect to the multinomial distribution (n, π), and
Proposition 2 shows that the eigenvalues of the composition chain reduce to βñ = αn−n1θ

nd

d .
The appropriate multivariate Krawtchouk polynomials serve as eigenvectors.

6.3. Evolution of DNA compositions

Evolutionary biologists are keenly interested in models of base-pair substitution in DNA.
Recall that DNA is a double helix constructed from four nucleotides abbreviated A, G, C, and T.
Two of these, A and G, are purines, and two, C and T, are pyrimidines. There is a long tradition
of modeling the mutational changes at a single site as a continuous-time Markov chain. For
example, Kimura’s [21] two-parameter model specifies the infinitesimal generator

Q =

⎛
⎜⎜⎝

−(α + 2ω) α ω ω

α −(α + 2ω) ω ω

ω ω −(α + 2ω) α

ω ω α −(α + 2ω)

⎞
⎟⎟⎠ .

This reversible chain has the uniform equilibrium distribution π = ( 1
4 , 1

4 , 1
4 , 1

4 ). The chain
offers a simple but lovely example of lumping if we take A and G to be equivalent and C
and T to be equivalent. From the purine-pyrimidine chain we can immediately deduce the
eigenvalues γ1 = 0 and γ2 = −4ω corresponding to the column eigenvectors w1 = 1 and w2 =
(1, 1, −1, −1)�. The remaining double eigenvalue γ3 = γ4 = −2(α + ω) has eigenvectors
w3 = (

√
2, −√

2, 0, 0)� and w4 = (0, 0, −√
2,

√
2)�.

As a first approximation, most biologists are willing to assume that different sites evolve
independently. Under independence and Kimura’s model, the composition chain counting the
number of bases of the various types at n sites approaches a multinomial distribution with
parameters (n, π). Equations (3) and (10) imply that

Pr(X̃t = ỹ | X̃0 = x̃) =
(

n

ỹ

)
1

4n

∑
ñ

exp

{
t
∑

i

niγi

}
K0

ñ (x̃)K0
ñ (ỹ),

where the K0
ñ

are the normalized Krawtchouk polynomials defined from the wi .

6.4. The light bulb problem

This problem of Rao et al. [24] served as the impetus for the current paper. They were
motivated by a certain pharmaceutical experiment. For our purposes, it is clearer to adopt their
alternative formulation involving light bulbs. There are n light bulbs, and each bulb is either
on or off. At epoch t we randomly select st light bulbs. If a selected bulb is on then we switch
it off, and if it is off then we switch it on. The composition chain follows the number of on
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bulbs. We will temporarily limit our attention to the homogeneous case, st = s. The reversible
mutation matrix

M =
(

0 1
1 0

)
has the uniform distribution π = ( 1

2 , 1
2 ) as its equilibrium. The eigenvalues of M are γ1 = 1

and γ2 = −1 with corresponding column eigenvectors w1 = (1, 1)� and w2 = (−1, 1)�. The
discussion at the end of Section 4 indicates that the composition chain has period 2 when s is
odd and two irreducible classes when s is even. In the former case, the chain alternates between
having an odd and an even number of bulbs on. In the latter case, the even and odd parity states
do not communicate. According to Proposition 1, the composition chain is reversible with the
binomial distribution (n, 1

2 ) as its equilibrium. Proposition 2 determines the eigenvalues as

βn1,n2 = 2F1(−n2, −s; −n; 2)

and the eigenvectors as univariate Krawtchouk polynomials.
The commutativity of the kernels Ms is the key to understanding the inhomogeneous version

of the light bulb problem. Commutativity implies that the product chains share a common
basis of row eigenvectors; this basis projects to a common basis of row eigenvectors for
the composition chains and from there to a common basis of column eigenvectors for the
composition chains. It is well known that we can construct a martingale Yt relative to a
Markov chain Xt by taking a column eigenvector w with eigenvalue λ and setting Yt = λ−twXt

[17, p. 242]. For a time-inhomogeneous chain Xt with a shared eigenvector w but differing
eigenvalues λr at each epoch r , the standard argument demonstrates that Yt = (

∏t
r=1 λr)

−1wXt

is a martingale. The basic property E(Yt ) = E(Y0) gives us E(Yt ) for free whenever Y0 is
constant.

The martingale construction makes it possible to calculate the moments of the number of on
bulbs Xt = m2 at epoch t . We will rest content with the first two moments. For the mean of
the composition chain, the relevant eigenvalue and eigenvector are

βn−1,1 = 1 − 2s

n
, Kn−1,1(m1, m2) = 2m2 − n.

For the second moment of the composition chain, these become

βn−2,2 = 1 − 4s

n
+ 4s(s − 1)

n(n − 1)
, Kn−2,2(m1, m2) = n(n − 1)

2
+ 2m2(m2 − n).

With these ideas in mind, we state and prove a proposition generalizing various results of Rao et
al. [24].

Proposition 4. Suppose that s1, s2, . . . is a switching pattern in the light bulb problem with n

total bulbs. If Xt is the number of on bulbs after t steps then

E(Xt | X0) = n

2

(
1 −

(
1 − 2X0

n

) t∏
r=1

(
1 − 2sr

n

))
,

E(X2
t | X0) = n(n − 1)

4

{(
1 − 4X0(n − X0)

n(n − 1)

) t∏
r=1

(
1 − 4sr (n − sr )

n(n − 1)

)
− 1

}

+ n E(Xt | X0).
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The distribution of Xt given X0 can be expressed as

Pr(Xt = y | X0 = x)

= 2−n

(
n

y

) n∑
k=0

( t∏
r=1

2F1(−k, −sr ; −n; 2)

)
K0

n−k,k(n − x, x)K0
n−k,k(n − y, y).

Proof. Given our identification of the appropriate martingales, the displayed formulae for
the first two moments are straightforward to derive. The identity for the discrete density is a
consequence of the following general considerations. Let Tr be the kernel of an inhomogeneous
Markov chain at step r . Suppose that the Tr are reversible and possess a common basis {vi}
of row eigenvectors and a corresponding basis of column eigenvectors {wi}. The biorthogonal
decomposition Tr = ∑

i γriw
ivi then leads to the t-step kernel

t∏
r=1

(∑
i

γriw
ivi

)
=

∑
i

( t∏
r=1

γri

)
wivi

=
∑

i

( t∏
r=1

γri

)
wi(wi)� diag(π),

where π is the common equilibrium distribution and the γri are the eigenvalues. To apply this
result to our specific chain, we merely collect the eigenvalues from (9) and equate π to the
binomial distribution (n, 1

2 ).

6.5. Coalescence times for a multi-person random walk on a graph

It is well known that any reversible Markov chain can be interpreted as a random walk on
a graph. This fact suggests rephrasing our process as a multi-person random walk. Thus,
we envision n people distributed on the vertices of a graph whose arcs are assigned weights
according to the entries of the mutation kernel M . At each step, we randomly choose s people
and move them independently to neighboring vertices. The composition chain records the
number of people located at each vertex at each epoch.

Coalescent times are among the most interesting random variables arising in a composition
chain. By a coalescent time we mean the number of steps until all n people meet at a given
vertex. Recently, Tian and Liu [25] have attacked the problem of calculating mean coalescent
times for continuous-time walks using the machinery of tensor products. Their exact results are
limited to unweighted regular graphs. We now tackle the same problem for discrete-time walks
on weighted graphs for general s. Our strategy is to derive the probability generating functions
of the coalescent times and extract from them their moments and approximate probabilities.

We begin with a general Markov chain Xm with kernel K . For two states x and y, we define
the first hitting time Txy = inf{j ≥ 1 : Xj = y, X0 = x}. When x = y, Txx is the first return
time to x. To Txy and K we associate the generating functions

GTxy (z) =
∞∑

j=1

Pr(Txy = j)zj , GKxy (z) =
∞∑

j=0

(Kj )xyz
j .

It is well known that GTxy (z) and GKxy(z) are intimately related [4], [7]. Indeed, the two
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convolution relations

(Kj )xx = 1{j=0} +
j∑

i=1

Pr(Txx = i)(Kj−i )xx,

(Kj )xy =
j∑

i=1

Pr(Txy = i)(Kj−i )yy, x �= y,

immediately translate into the identities

GKxx (z) = 1 + GTxx (z)GKxx (z), GKxy (z) = GTxy (z)GKyy (z), x �= y.

These in turn entail

GTxx (z) = 1 − 1

GKxx (z)
, GTxy (z) = GKxy (z)

GKyy (z)
, x �= y.

If K is reversible, we can exploit its biorthogonal decomposition K = ∑
i γiw

ivi to calculate
GKxy (z) and hence GTxy (z). Viewing GKxy (z) as an entry of a matrix, GK(z) easily leads to
the representation

GK(z) =
∞∑

j=0

∑
i

γ
j
i zjwivi =

∑
i

1

1 − γiz
wivi .

Here w1 = 1, γ1 = 1, and (vj )� = diag(π)wj for all j , where π is the equilibrium distribution.
To calculate the mean E(Txx), we impose ergodicity and take the limit of

1 − GTxx (z)

1 − z
= 1

(1 − z)GKxx (z)
= 1∑

i (1 − z)wi
xv

i
x/(1 − γiz)

as z tends to 1 from the left. In the limit, E(Txx) = π−1
x , one of the most basic identities of

Markov chain theory. For the case in which x �= y, the difference quotient defining E(Txy)

amounts to

1 − GTxy (z)

1 − z
= 1 − GKxy (z)/GKyy (z)

1 − z
=

∑
i (w

i
yv

i
y − wi

xv
i
y)/(1 − γiz)∑

i (1 − z)wi
yv

i
y/(1 − γiz)

.

Because w1
yv

1
y = w1

xv
1
y , the limit of the difference quotient reduces to

E(Txy) =
∑

i>1(w
i
yv

i
y − wi

xv
i
y)/(1 − γi)

w1
yv

1
y

=
∑
i>1

1

1 − γi

(wi
yw

i
y − wi

xw
i
y).

The next proposition summarizes our conclusions about hitting times for composition chains.
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Proposition 5. For a reversible composition chain, the generating functions of the hitting times
Tx̃x̃ and Tx̃ỹ are

GTx̃x̃
(z) = 1 −

[(
n

x̃

)
πx̃

∑
ñ

K0
ñ
(x̃)K0

ñ
(x̃)

1 − βñz

]−1

,

GTx̃ỹ
(z) =

∑
ñ K0

ñ
(x̃)K0

ñ
(ỹ)/(1 − βñz)∑

ñ K0
ñ
(ỹ)K0

ñ
(ỹ)/(1 − βñz)

, x̃ �= ỹ,

where the eigenvalues βñ are defined by (6) and the column eigenvectors K0
ñ
(x̃) are the

normalized multivariate Krawtchouk polynomials. If the mutation kernel M is ergodic in
addition to being reversible, then the hitting times are finite with probability 1 and have means

E(Tx̃x̃ ) =
((

n

x̃

)
πx̃

)−1

,

E(Tx̃ỹ ) =
∑

ñ�=ne1

K0
ñ
(ỹ)[K0

ñ
(ỹ) − K0

ñ
(x̃)]

1 − βñ

, x̃ �= ỹ.

When x̃ = nei and ỹ = nej , the hitting times are examples of coalescent times, and we have
the simpler formulae:

GTnei ,nei
(z) = 1 −

(
πn

i

∑
ñ

(
n

ñ

)∏d
k=1(w

k
i )

2nk

1 − βñz

)−1

,

GTnei ,nej
(z) =

∑
ñ

(
n

ñ

)∏d
k=1(w

k
i w

k
j )

nk

1 − βñz

/ ∑
ñ

(
n

ñ

)∏d
k=1(w

k
j )

2nk

1 − βñz
, i �= j,

and

E(Tnei ,nei
) = 1

πn
i

,

E(Tnei ,nej
) =

∑
ñ�=ne1

(
n

ñ

)∏d
k=1(w

k
j )

2nk − ∏d
k=1(w

k
i w

k
j )

nk

1 − βñ

, i �= j.

Example 1. (Multi-person random walk on a circle.) Tian and Liu [25] considered a symmetric
random walk on the vertices of a regular polygon. At each step the person executing the
chain moves clockwise or counterclockwise one vertex. The chain is clearly reversible with
the uniform distribution as its equilibrium distribution. Because the mutation matrix M for
arbitrary d is a circulant matrix, its eigenvalues and eigenvectors can be easily extracted via
the finite Fourier transform. The eigenvalue λ1 = 1 corresponds to the column eigenvector
w1 = 1. When d is even, −1 is an eigenvalue with the eigenvector wd/2+1 having entries
w

d/2+1
j = (−1)j−1. The remaining eigenvalues have multiplicity 2. For each k between 2 and

�(d + 1)/2�, we have the shared eigenvalue and paired eigenvectors

λk = λd−k+2 = cos

[
2π(k − 1)

d

]
,

wk
j = √

2 cos

[
2π(j − 1)(k − 1)

d

]
, wd−k+2

j = √
2 sin

[
2π(j − 1)(k − 1)

d

]
.
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For comparison with the results of Tian and Liu [25], we consider the two cases characterized
by n = d = 3 and n = d = 4. If all n people start at different vertices, and we move one
person at a time (s = 1), then application of Proposition 5 shows that it takes on average 31
steps for three people to meet at a specific vertex of a triangle and 305.371 steps for four people
to meet at a specific vertex of a square.

Since we have at our disposal the generating functions of the coalescent times, we can say
more [11], [22]. Any probability generating function

P(s) =
∞∑

k=0

pks
k

can be extended to the boundary of the unit circle in the complex plane via the equation

P(e2π
√−1t ) =

∞∑
k=0

pke2π
√−1tk.

This creates a periodic function in t whose kth Fourier coefficient pk can be recovered via the
finite Riemann sum

pk ≈ 1

m

m−1∑
j=0

P(e2π
√−1j/n)e−2π

√−1kj/m.

In practice, we evaluate this finite Fourier transform via the fast Fourier transform algorithm for
some large power m of 2. For sufficiently large m, all of the coefficients p0, . . . , pm−1 can be
computed accurately. Accuracy can be checked by comparing the numerically computed mean
of P(s) with its theoretical mean. Figures 1 and 2 display the discrete densities computed by
the Fourier method for the two coalescent times.
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Figure 1: Distribution of the coalescent time for a three-person random walk on a triangle. All people
start from distinct vertices.
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Figure 2: Distribution of the coalescent time for a four-person random walk on a square. All people start
from distinct vertices.

Example 2. (Multi-person random walk on the flower graph Fm3.) Consider the flower graph
Fmn with m petals and n vertices per petal. All edges have weight 1. Each petal communicates
to other petals through a shared hub vertex. Erdős et al. [6] considered the special case Fm3.
A single-person random walk on Fmn is reversible with equilibrium distribution putting mass
1/n on the hub vertex and mass 1/mn on all other vertices. Boyd et al. [2] described in detail
the spectral decomposition of the kernel of this random walk. As a second illustration of mean
coalescent times, we consider a three-person random walk on the flower graph F33 depicted
in Figure 3. Table 1 lists the mean coalescent times E(Tnei ,nej

) for i, j = 1, 2, 3, 7. It is
interesting that these means decrease as the number s of walkers moved per epoch increases.
This phenomenon is not universal.

4

3

21

7

6
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Figure 3: Random walk on the flower graph F33.
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Table 1: Mean coalescent times for a three-person random walk on the flower graph F33. The number
of vertices d is 7, the number of walkers moved per epoch is s, and the starting and ending states are nei

for i = 1, 2, 3, 7. See Figure 3 for the labels of the seven vertices.

s = 1

729.0000 811.0286 880.5214 870.8571
811.0286 729.0000 880.5214 870.8571
880.5214 880.5214 729.0000 870.8571

33.0000 33.0000 33.0000 27.0000

s = 2

729.0000 749.2154 772.5758 768.2703
749.2154 729.0000 772.5758 768.2703
772.5758 772.5758 729.0000 768.2703

28.2000 28.2000 28.2000 27.0000

s = 3

729.0000 660.1714 758.7429 754.0000
660.1714 729.0000 758.7429 754.0000
758.7429 758.7429 729.0000 754.0000

26.0000 26.0000 26.0000 27.0000

7. Discussion

Symmetry is one of the central themes of mathematics. In the current paper we have
exploited symmetry in the guise of state lumping and reversibility. This perspective clarifies the
mysterious nature of Griffiths’ multivariate Krawtchouk polynomials. The emergence of these
polynomials as eigenfunctions emphasizes their practical importance and opens a window of
understanding on the convergence rate of several classical and modern Markov chains. Equally
important are the applications of the Krawtchouk polynomials in forming martingales and
calculating mean coalescence times.

In our examples the permutation group drives symmetry. We can imagine other groups
playing the same role. In conversation with us, Persi Diaconis suggested a novel variant of the
light bulb chain that he calls the potato chain. A chef bakes a circle of n potatoes. Each potato
has two sides. At each step, the chef randomly forks a span of s potatoes and flips them. In our
tensor product notation, the product chain has the kernel

Ms = 1

n

n∑
k=1

I ⊗ · · · ⊗ I ⊗ M ⊗ · · · ⊗ M ⊗ I ⊗ · · · ⊗ I.

Here M is the mutation matrix (11), and the kth summand has M inserted into slots k, . . . , k +
s − 1 of the tensor product. When k + s − 1 > n, we wrap the extra kernels on the left of the
tensor product. Although the product chain is reducible, it can be diagonalized by our previous
arguments. In this case, the permutation group must be replaced by the group generated by
addition modulo n. With this proviso, the group action of entry shifting is consistent with
lumping. Now, however, we must lump by orbits rather than by counts, and the multinomial
distribution no longer prevails. For instance, if n is even and s = 2, the two nonequivalent
states (0, 1, 0, 1, . . . , 0, 1) and (1, 0, 0, 1, . . . , 0, 1) have the same counts.
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In some cases, the eigenstructure of the lower lumped chain is known, but the eigenstructure
of the upper chain is unknown. Fact 8 allows us to lift eigenvectors from the lower chain to
the upper chain. For reversible chains, the analog of Fact 12 says that lifting preserves norms
and orthogonality. These results pose the challenge of filling in the missing eigenvalues and
eigenvectors of the upper chain. We know of no systematic way of achieving this, but it is
possible in special circumstances. The purine-pyrimidine lumping in Kimura’s chain is a case
in point.

Another class of open problems is to extend our results to interacting particles. Finding the
complete eigenstructure of the Moran process in population genetics is a good place to start.
Here the particles are identical, and the count process is well defined, but the replacement of
one particle is tied to the state of another particle. Although resolution of this and similar open
problems is intrinsically more difficult than the simpler problems faced here, we believe that
our analysis offers helpful clues.
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