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STABLE CONJUGACY: DEFINITIONS AND LEMMAS 

R. P. LANGLANDS 

The purpose of the present note is to introduce some notions useful for 
applications of the trace formula to the study of the principle of functoriality, 
including base change, and to the study of zeta-functions of Shimura varieties. 
In order to avoid disconcerting technical digressions I shall work with reductive 
groups over fields of characteristic zero, but the second assumption is only a 
matter of convenience, for the problems caused by inseparability are not 
serious. 

The difficulties with which the trace formula confronts us are manifold. 
Most of them arise from the non-compactness of the quotient and will not 
concern us here. Others are primarily arithmetic and occur even when the 
quotient is compact. To see how they arise, we consider a typical problem. 

Suppose G is a quasi-split group over a global field F and G is a group 
obtained from G by an inner twisting. Thus there is an isomorphism \p : G —> G 
defined over a finite Galois extension K of F which is such that a(\p)\p~l is inner 
for all cr £ Gd\(K/F). Apart from the contributions from the cusps, the trace 
formula for G, in so far as it is available, expresses the trace as a sum over 
semi-simple elliptic conjugacy classes, and the trace formula for G' expresses 
the trace as a sum over the semi-simple elliptic conjugacy classes of G(F). 
The traces of which we speak are those of r(f) or of r' (/') where / and / ' are 
suitable functions on G(A(F)) or G'(A(F)) and r and r' are representations of 
G(A(F)) and G'(A{F)) on suitable spaces of automorphic forms, which it will 
be safer not to attempt to define precisely. 

In its naive form the principle of functoriality suggests, and even affirms, 
that there is an injection of the set of automorphic representations of G {A(F)) 
into the set of automorphic representations of G(A(F)). This is not so, and if 
we attempt to prove it by following the standard paradigm ([6], § 16), we will 
discover why. We must show that the traces of r(J) and r(f) are equal for 
suitable test functions. The best procedure is to consider first the contributions 
from the elliptic conjugacy classes, and then, confidence gained, to pass to the 
cuspidal terms or, our misapprehensions revealed, to modify our expectations. 

To compare the two traces one considers the two trace formulae and com­
pares them term-by-term. If y' is a semi-simple element in G (F) then the con­
jugacy class of \p(y') is defined over F because cr(\f/(y')) = o-(\f/)\[/~1(\l/(y/)) and 
vbP)^1 is inner. A theorem of Steinberg [11] then assures us that the con-
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STABLE CONJUGACY 701 

jugacy class of ^ ( 7 ' ) in G(F) contains an element 7 in G(F). If conjugacy 
within G(F), called stable conjugacy, is the same as conjugacy within G(F), 
and if conjugacy within G'(F) is the same as conjugacy within G(F) then we 
obtain an injection of the elliptic conjugacy classes of G'(F) into the elliptic 
conjugacy classes of G(F) and can hope, by means of a supplementary s tudy of 
the local harmonic analysis, to show tha t the terms corresponding to associated 
classes {7} and {7/} are equal, and that , for the functions being tested, the 
term of the trace formula corresponding to a class {7} not associated to a 
conjugacy class in G(F) is zero. This is the method used for GL(2) [6] and 
GL(3) [4], and one expects t ha t it will eventually deal with GL(n). 

For other groups stable conjugacy will be different than conjugacy, but a t 
first glance this appears to be no serious obstacle. One should simply group 
together those terms corresponding to the conjugacy classes lying within a 
stable conjugacy class, obtaining thereby sums over stable conjugacy classes 
which can then be compared term-by-term. But the comparison of terms has 
to be carried out by an analysis of local orbital integrals to which the sum over 
a global stable conjugacy classes is not directly amenable. Indeed the two 
terms to be compared are unlikely to be equal. A further adelic stabilization 
is necessary, bu t this can only be done by adding terms not present in the trace 
formula, and so they must be again subtracted, as an error term. The fully 
stabilized trace formulae will probably be amenable to comparison by a local 
s tudy of orbital integrals, but a supplementary analysis of the error term is 
now necessary. 

I t may be possible to effect this by a procedure which may strike the more 
prosaic of our readers as extravagant . Regarding the stabilized trace formula 
as a basic, we t ry to express the error term as a sum of stabilized trace formulae 
for lower-dimensional groups H, whose representation theory is related to t h a t 
of G by the principle of functoriality. 

All this will take time, and the efforts of more than one. My purpose here is 
simply to give the definitions of the groups H which intervene in the error 
term, together with their elementary properties. The definitions emerged from 
a close examination of a special case, SL(2), for which the procedure outlined 
has been carried out in detail ([7], [14]). 

The groups i / c a n also be introduced locally, where their purpose is to reduce 
the harmonic analysis of invariant distributions to the analysis of stably in­
var ian t distr ibutions, and the local problems must be solved previously to, or 
simultaneously with, the global problems. For SL(2) they are either easy or 
had already been treated. For other groups this is not so, and even over the 
field of real numbers they are novel and difficult, bu t are yielding to the efforts 
of Shelstad ([12], [13]), whose work does much to dispel our doubts about the 
value of the definitions below. 

At first F can be any field of characteristic 0 and G a reductive group over it. 
Let T = TG be a Car tan subgroup of G Let %(T) or 31 (7 \ F) be the set of all g 
in G(F) for which T' = g~lTg and the morphism t —> tr = g~ltg are both defined 
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over F and let 

2)(r , F) = S)(r) = T(F)\%(T)/G(F). 

An element g in G(^) lies in 31(7") if and only if aa = <r(g)g~1 lies in T(F) for 
all a £ Gal(^/F) . The collection {aff|o- £ Gal (/yF)} defines a cohomology class 
in Hl(F, T) and the map g —-> {a,,} yields an injection 

j ) ( r ) <^Hl(F, T). 

The image is the kernel of 

ff1^, T)-^H1(F,G) 

and is not always a group. If T' = g~lTg with g Ç 31 (T) then T and T' are 
said to be stably conjugate. The set 3)(T) parametrizes the conjugacy classes 
within the stable conjugacy class of T. 

If Gsc is the simply-connected covering group of the derived group of G and 
r s c the inverse image of T in G8C then 

®(rsc)->®(:r) 

is surjective. We define @(T) or @(T, F) to be the image of Hl(F, T8C) in 
Hl(F, T). It is a group and &(T) is a subset of it. If F is local and non-archi-
medean then Hl(F, G8C) = {1} and ® ( r ) = g ( r ) . 

Let X*(T) and X*(TBC) be the lattices of co-weights of T and r s c . X*(TBC) 
may be identified with the sublattice of X*(T) generated by the co-roots. If E 
is a local field and K a large but finite Galois extension then, by the Tate-
Nakayama theory, &(T) is canonically isomorphic to the quotient of 

{X € X*(Tsc)\Zo*HK/FrT/G^\ = 0} 
by 

{x e x*(rsc)|x = T,GzHKIFfT/G^^-^\nW) e x,(T)}. 
Here ooT/G(a) is the natural action of a on X*(T). If F is any field we let K be 
a homomorphism of X% (TBC) into C x which is 1 on the second of these modules. 

I am now going to associate to the pair (T, K) = (TG, K) a quasi-split group 
77 over F, and a family {(TH, <p)} where FH is a Cartan subgroup of 77, and 
(p : TG —» r ^ is an isomorphism over F. If (7\H , <̂ i) and (7Y*, ^2) are two 
pairs in the family then there is an h in 3l(7\H) for which 

F2
H = h-'T^h 

and 
^2(0 = h-l<pi{t)h. 

To define 77 one needs the associate group of [10], which following Borel [1] 
I denote LG. Its connected component LG° is furnished with a distinguished 
Borel subgroup LB° and a distinguished Cartan subgroup LT°. The group 
LF° is contained in LB°. To define LG° concretely we need to choose an iso­
morphism \p of G with a quasi-split Gi. G\ is defined over F, but i/' is only 
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defined over F. We also need to choose a Borel subgroup BGl and a Cartan 
subgroup TGl lying in BGl, both groups being defined over F. Choose g\ in 
Gi(F) so that 

$' = ad gi o \[/ 

takes TG to TGl. Then gi is determined up to left multiplication with an ele­
ment of Norm (TG'). 

\p' also yields an isomorphism 

V :X*(TG)^X*(TG>) 

and by the construction of LG 

X*(TGi) = X*(LT°) 

if X*(L r°) is the lattice of weights of LT°. Define *' by 

K ' « / ( A ) ) = .(X) 

and let LH° be the connected subgroup of LG° generated by LT° and the one-
parameter root groups Ua

v associated to av with 

K'(OLV) = 0. 

LH° is furnished with a distinguished Cartan subgroup, namely LT°, and a 
distinguished Borel subgroup 

LH° r\ LB°. 

We transfer the operators œT/G(a) to X*(LT°) and write 

where u2(a) is given by an element of the Weyl group of LT° in LH° and wl(a) 
leaves the set of positive roots of LT° in LH° invariant. If for each simple root 
Xa

v we choose the Xa* ^ 0 in the Lie algebra of Ua
v used in the definition of LG 

we may associate to wl(<r) a unique automorphism of LH°, again denoted by 
cc1 (a), with the following properties: 

If we choose the Galois extension K oî F sufficiently large, then a —> w1^) is 
a homomorphism of Gal(i£/F) into the group of automorphisms of LH°. By 
means of WK/F —» G&\(K/F) we let the Weil group act and form the semi-
direct product 

LH = LHQ X WKIF. 

As in [10] we associate to LH°, LH° C\ LB\ LT°, {Xa>}, and {w1^)} 
a quasi-split group H, furnished with a Cartan subgroup T0

H, and a Borel 
subgroup BH, all defined over F, so that 

X*(T0
H) = X*(LT«) 
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and 

The concatenation of 

X*(T°)-> X*(T°i) = X*(LT») = X*(ToH) 

yields an isomorphism 

<p' '.X+(T°)^>X+(T*H) 

and hence an isomorphism 

(f . 1 —> 1 o • 

However <p' is not defined over F. By a theorem of Steinberg [11] there is a t 

least one Car tan subgroup TH of H over F given by 

T* = h~lT0
Hh h e H(F) 

so tha t the composition 

rr.G V ^H a d A H 
<p : 1 > 1 o > 1 

is defined over F. The pairs (TH, <p) obtained in this way form the family I 
mentioned. I forego for now a close examination of the manner in which H and 

the family {(TH, <p)\ depend on the choices required for their construction, 
merely stressing t ha t once \p is fixed one must still choose gi; hence H = 
H(T, K, gi). T h e triple (T2, K2, g2) will be called a companion to ( 7 \ , /ci, g\) if 
the associated homomorphisms K / , K2' of X*(TBC°l) to C x and the associated 
operators ^^(a), co2

l(a) on X*(LT°) are equal. Then H(Ti, KI, gi) and H(T2j 

K'2, g2) are canonically isomorphic. 

By its construction we have an imbedding £ : Li7° Q» LG°. In order to bring 
the principle of functoriality in the dual group into play we need to extend it 
to an imbedding £ : LH ^ LG which commutes with the projections on WK/F. 

This is not always possible, bu t it is possible in sufficiently many cases t ha t the 
groups H can be used for the purpose for which they were intended, the s tudy 
of L-indistinguishability. 

PROPOSITION 1. Suppose F is a global or a local field and the centre of LG° is 
connected. Then the imbedding £ : LH° ^ LG° extends to an imbedding £ : LH £-> 
LG which commutes with the projections on WK/F. 

I shall argue by induction on the dimension of LG°. T h e s ta tement is certainly 
clear if the dimension is zero. T h e centre of LG° is connected if and only if the 
lattice X#(T8C

Gi) is primitive in X#(TGl), t h a t is, if any rational linear combi­
nation of the coroots which is a coweight is in fact an integral linear combina­
tion. 

There is an integer m so t ha t the image of X*(Tac
Gl) under X —» K'(\)m is 

https://doi.org/10.4153/CJM-1979-069-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-069-2


STABLE CONJUGACY 705 

torsion free. Choose independent homomorphisms 771, . . . , rysof X#(TBC
Gl) into 

Z and complex numbers f 1, . . . , f s so tha t 

K ' ( X ) » = ir«-ifi"<x). 

Let ï be the set of roots av for which the first non-zero rji(av) is positive and 
36o ^ 36 the set of roots av for which all 77 * (a") are zero. The group ^ P 0 generated 
by ^ P 0 and the one-parameter root groups Ua

v for which av (E X is a parabolic 
subgroup of LG° and a Levi factor L i f ° is generated by LT° and the Ua

v with 
a" £ 36o- Since £ is invariant under coT/Gr(o-), a- £ ®(F/F), the normalizer L P 
of ^ P 0 in LG is a parabolic subgroup of LG in the sense of [10]. The normalizer 
LMoi LM° in LG is itself an P-group. Certainly LH° Ç L7kf°. Hence if 

d im( L M°) < dim(LG°) 

and the centre of LM° is connected we may apply induction. However, the 
centre is connected because it is defined by 

a"(t) = 0 

for each simple root av of LT° in LM°. These simple roots generate a primitive 
lattice in X * ( L P ° ) = Xm(TG^). 

The upshot of the preceding analysis is tha t we need only consider K! t ha t 
are of finite order. Some preparation is necessary. 

LEMMA 2. Suppose R is an indecomposable, reduced root system and D a subset 
of R with the following two properties: 

(i) If av, /3V lie in D then av — fiv is not a root. 
(ii) Every root of R is an integral linear combination of the elements of D. Then 

D is either a base of R or a base together with the negative of the corresponding 
highest root. 

This lemma is implicit in [3]. As one expects a proof can also be extracted 
from the thesaurus of Bourbaki [2]. If av ^ fiv both lie in D then certainly 
(av, /3") ^ 0. One defines a Coxeter matrix ( w a » / ) , av, fiv in D} by taking 

7T 

7T 

mavtpv 

to be the angle between av, fiv. Let {ea») be the s tandard basis of 

E = ®a^D R 

and define an inner product B{ • , • ) on E by 

B{eav, e^v) = cos I T - - 1 = y-v—v^my^r-^rm 
\ mav$v] (a , a ) {p , p ) 

Since 

the inner product is positive semi-definite. 
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Suppose the form is definite or, wha t amounts to the same thing, t ha t the 
roots «i", . . . , ai of D are linearly independent . If 1 ^ k ^ / let Rk be the set 
of the roots in the real linear span Vk of {aiv, . . . , ak

v}. Rk is a root system and 
every element of Rk is an integral linear combination of aiv, . . . , ak

y. We show 
by induction tha t aiv, . . . , ak

v is a base of Rk or, more precisely, t ha t if we 
define an order on Vk by 

if and only if the last non-zero at is positive then a\\ . . . , ak
v are the minimal 

elements of Rk with respect to this order. This is clear for k = 1. 
The induction assumption will be t ha t the assertion is t rue for a given k 

regardless of the initial numerat ion of the roots in D. If k < I it is clear t ha t 
the minimal elements in Rk+i are then aiv, . . . , ak

v together with some 0V. 
Moreover 

a*+i" = ^lai1' + . . . + a***/ + a/3v 

with ai, . . . , & £ and a integral and non-negative. Solving for fiv we see t ha t 
a = 1 ; so we write 

a*+i" = Y + 0" 

with 

7" = aiai" + . . . + a*a*". 

We suppose t ha t yv 9e 0 and derive a contradict ion. Since c^+i" — a / , 

1 ^ j ^ ^, is not a root, 7" = ak+iv — $v is. This implies t h a t k > 1, for if k 

were 1 then a\ would be 1 and a2
v — aiv = (3V would be a root. We observe t ha t 

If (ak+iv, ak+1
v) were equal to (/3V, /3V) we would conclude from this inequali ty 

t ha t ak+iv = /3". However, this cannot be so for 7" is supposed not to be zero. 
We infer therefore from the above inequality combined with the Schwarz 
inequality tha t 

fe+l',«Hl') < (£", 0"). 

Since the rank of R is greater than 2 and i? is irreducible we must have 

2(ak+1»,ak+1>) = (0", 0"). 

The geometrical si tuation is: 

>«yfc+l" 

7" 

https://doi.org/10.4153/CJM-1979-069-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-069-2


STABLE CONJUGACY 707 

Hence 

(ak+i\ ak+iv) = (ak+i\ Pv). 

Consequently 

ai(otk+1
v, <xt

v) = 0 

for 1 ^ i ^ k and 

at(y\at
v) = -ai(fi\ai

v) ^ 0. 

However, our initial assumption tha t our assertion is valid a t the &th stage 
regardless of the initial numerat ion implies tha t each a* > 0. Moreover, since 
7" ^ 0 there is one root at

v with (0% a/) < 0. Then 

( r , « / ) = -(a/, a/) 

if a / is short, and 

(0", a/) = -Ha/, at
v) 

if a? is long. However, yv is short. Therefore, 

regardless of the length of at
v. We conclude tha t at

v is long and tha t 

0 < (ak+1\ 0") ^ atictS, 0 ') + (0", 0 0 = (1 - a7-/2)(0', £>)• 

I t follows tha t at = 1. 
There is another root a / , 1 S j S k, with ( a / , a / ) < 0. Since the Dynkin 

diagram of Rk+i contains no cycles, ( a / , 0") = 0 and 

0 = (ak+1\a/) S aj(ai
v
iai

v) + at(a/, at
v) + ( a / , 0") 

= dj(cLi\ Gif) +%(0Lt\ at
v). 

Since 

( a / , a / ) = —è(«*% <*/) 

no mat te r whether a / is long or short we conclude tha t a3-, = 1. 
Suppose we have a path leading out from 0" in the Dynkin diagram with 

a t least three vertices besides 0" in it. Suppose moreover tha t we have shown 
t h a t the coefficient am of am

v is 1 for all vertices of the pa th except perhaps the 
last and tha t all vertices except perhaps for the last two are long. Let the last 
vertices be au

v, a/, aw
v. Then 

0 = (ak+1
v,av

v) ^ aw(aw
v,av

v) + ( a / , ex/) + (au\av
v). 

If a / were short then 

( a / , a / ) + (tV, a / ) = 0 
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and the contradict ion 

0 ^ («„', a/) < 0 

results. T h u s a/ is long and 

0 ^ aw{aw\av
v) + | ( a / , a / ) . 

We conclude tha t aw = 1. By induction all the coefficients are 1. Then if am
v 

is an extreme point of the Dynkin diagram we infer from Cor. 3 to Prop. 19 of 
Chap. VI of [2] t ha t ak+\v — am

v is a root. This a a contradict ion. 
We must still prove the lemma when the form B{ • , • ) is degenerate. In 

general the collection D may be part i t ioned into subsets Diy . . . , Dr cor­
responding to the connected components of the graph of the Coxeter matr ix 
we have introduced. If Vt is the space over R spanned by Dt then Vif . . . , Vr 

are mutual ly orthogonal and any root in Vt is a linear combination of elements 
of D and hence of Dt. Let Rt = R H Vt. 

Suppose next t h a t the graph of our Coxeter matr ix is connected bu t t h a t 
the form B{ • , • ) is degenerate. I t is a consequence of Th . 4 of Chap . VI of 
[2] t ha t the Coxeter matr ix {ma

v#v) is defined by the Weyl group of a completed 
Dynkin diagram. Hence there is only one relation between the roots aiv, . . . , 
OLIV of D and with a suitable numerat ion it is 

(Df1 a**,') + a , ' = 0. 

We may remove at
v from D wi thout destroying either of the two properties 

demanded of it. Since aiv, . . . , ai_iv are linearly independent , the previous 
discussion implies t ha t they form a base of R. 

Returning to the general case we see t h a t we can select from any of the Dt 

a base for the corresponding Rt. Pu t t ing these bases toegether we find a collec­
tion t h a t satisfies (i) and (ii) of the lemma and is in addit ion linearly inde­
pendent . We conclude from the first pa r t of the proof t ha t it is a base. Since 
R is indecomposable, we infer t ha t r = 1. The lemma is now proved. 

We return to the proof of Proposition 1, supposing now t h a t nf is of finite 
order m. Let 

y — p2iri/m 

Define $)k for 0 ^ k < m by 

% = {«V(a0 = f*}. 

Let ïo be the set of simple roots of LT° in LH° with respect to LHQC\ LB°. Uav, (3V 

lie in g)fc write av < (3V if (3V — av is an integral linear combinat ion of roots of $o 
with non-negative coefficients. Let &k consist of those elements of $)k which 
are not integral linear combinations of elements in 

ur1 D, 
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and let HLk, k ^ 1 consist of the minimal elements in £>k. Clearly $o, 3Ei, . . . , 
Hm-\ are disjoint and span X*(Tsc

Gl) over Z. Moreover, each of these sets is 
invariant under œ^a), a 6 ®(F/F). If a" G ï*, 0" G X,- and j ^ k then 
a" — /3" is not a root. Suppose otherwise. If 0 < j < k then a" — 0" £ §)*-;, 
and so av is not in 3k. Hj = k then av — fiv is a root of ^ i / 0 and either av < 0" 
or j8" < av. If 7 = 0 then av — fiv Ç $* and a:" is not minimal. Lemma 2 may 
be applied to 

D = U r 1 * ; 

when LG° is simple, and yields an impor tant tool for the s tudy of LH°. The 
Dynkin diagram of D together with the action ool(a) of ®(F/F) on it will be 
called the diagram of (T, K) or of (T, K, gi). Each vertex is labelled with an 
integer k, 0 ^ k < m. 

Choose an Xa^ for each av in ï 0 . We denote a typical element of W^/*- by w 
and its image in Cal (K/F) by o\ For each w we may choose £'(w) in ^G so tha t 
¥ (w) projects to w in WK/F and so tha t 

? {w)Xa*Ç (w)-* = Xa\.)a>. 

%(w) is not uniquely determined, bu t we may modify it only by left multipli­
cation with elements from Z, the centre of LH°. Thus 

ê'(wi)£'(w2) = a10ltU)^
,(w1W2) 

with aWltU,2 G Z. Clearly {aWlW2} defines a 2-cocycle of WK/F with values in Z. 
Since, as a first try, we can even take £' (w) to depend only on a it is continuous. 
Our problem is to show tha t it is trivial, t ha t 

(iwltw2 = b(wi)o)1(ai)(b(w2))b~1(wiW2) 

with w-^b(w) G Z(K) continuous. 
The first step is to show tha t if we take £' (w) to depend only on a so t ha t 

Wwl,w2\
 = {a<rlt(r2} is a cocycle of G a l ( i £ / / 0 with values in Z(K) then it is 

trivial modulo Z°(K)y Z° being the connected component of the identi ty in Z. 
Since the centre of LG° is connected, we may divide by it and assume tha t 
LG° is adjoint. Then an application of Shapiro's lemma allows us to assume 
tha t LG° is simple. 

If the diagram of (T, K) is ordinary and not extended then the roots in 36o 
generate a primitive lattice in 

**(r 8 C <") 
and Z is connected. For now we take the diagram to be extended. We write 
the vertices of it as av, a\\ . . . , a iv and the one relation as 

a + Xt '=i aîai = 0-
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Here the at are positive integers. I t is clear t h a t Z will be connected unless 

a" G ï 0 and 

g.c.d.{(ii\aiv # ïo} > 1. 

We shall examine the possible diagrams individually. Given LG°, LB°, 
LT{) and {Xa^\av simple} we forget their origins in G bu t take the group A (LG°, 
LB°, LT°, \Xav} ) as on p. 4 of [10] and build the semi-direct product 

LG' = LG° X A(LG°, LB°, LT°, {Xa*}). 

Recall t ha t A(LG°, LB°, LT°, {Xa>}) is the group of automorphisms of LG° 
which leave LB° and LT° invar iant and permute the Xa

v amongst themselves. 
In addit ion we consider an extended Dynkin diagram of LT° in LG° with 
vertices D = {av, a\v, . . . , a f} where aiv, . . . , a t

v are the simple positive roots 
with respect to another ordering of the roots than t ha t defining LB° and a 
subset ï 0 of D whose elements are positive with respect to the original order. 
We suppose tha t av £ ïo and tha t 

g.c.d.{a,|cV g 3£o} > 1. 

We let A be the subgroup of Norm L G , (LT°)/LT° formed by those co which 
leave D and 36o invariant . We assign to each co a representat ive e(co) in 
NormLG,(LT°) so t ha t 

6(co)/e(co)-1 = co(/) t e LT° 

e(u)Xave(œ)-1 = Xwav av Ç ï 0 . 

Then 

e(coi)e(co2) = ttwi>£02e (coiO>2). 

{̂ coi,w2} is a cocycle of 4̂ with coefficients in 

Z = {* Ç LTQ\a*(t) = 1 for a» £ ïo} . 

We shall show tha t this cocycle is trivial modulo Z°. I t is enough to show tha t 
its restriction to a Sylow subgroup Av of A is trivial for each p. 

We now check this by examining the possible diagrams one-by-one, excluding 
those for which A = {1} or Z is connected because the assertion is then trivial. 
Diagrams of type A z do not appear because all the at are then 1, and for 
diagrams of type E8, FA, Gi the group A is {1}. 

l)Bh I ^ 3. 

^ o ••• • \ » 

a" 

a" + onv + 2a2" + . . . + 2ax
v = 0 
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Here av and a\v must belong to $o and A = {1, oo\ where co interchanges a" and 
«i" and fixes a2

v, . . . , at
v. Wi th the s tandard representation of the root system 

of type Bi 

&iv = Xi — x2, a2
v = x2 — xh . . . , at-i

v = xz_i — xh 

af = xh av = —Xi — x2. 

Thus co is the reflection with respect to pv = X\. If p is the corresponding root 
then p = 2xx and (p, \v) is even for all A' £ Z * ( L r ° ) . If w is the map of 
SL(2) into LG° given in the usual way once Xp is chosen, we may take 

then 

e(co)Xr„e(co)_1 = Xy* yv G ïo lv ^ «", «i" 

and for a suitable choice of x 

e(co)Xai"e(co)_1 = Xa". 

Since 

\'(e(co)2) = ( - 1 ) < ^ > = 1 

we conclude tha t e(co)2 = 1 and tha t 

6(co)Za"e(co)~1 = Xai>>. 

The cocycle therefore splits. 

2) C„ I ^ 2. 

n j n O • • • n \ n 

a' + 2ai' + . . . + 2«,_,' + a / = 0 

Here av and «i" must belong to ïo and 4̂ = {1, co} where co reflects the diagram 
in its centre. We realize LG° as usual as the symplectic group in 2/ variables 
modulo its centre. Wi th the usual representation of the roots av = — 2xi, 
aiv = Xi — x2, . . . , «z_i" = xz_i — xh ax

v = 2xx. 
Suppose first t ha t / = 2k is even. Then co fixes the roots 

X\ X2ki X2 X2k—i, . . . , Xjc Xfc+i. 

The only roots orthogonal to all of these are 

Pi" — ^ 1 + X2]CJ PlV — X2 + X2fc—li • • • > Xjc ~\- Xjc+i 
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and if 

• M - n i . . , „ . ( ( _ ; J)) 

then 5(co) is a representat ive of co. T h e only root of D fixed by co is o^" and 

A d^/((_? J)) : *«*'-*«*' J** 
A d *v ( \ _ i 0/ / : Xak' ~^ ~XakV' 

T h u s 

Ad 5(co) :Xakv-> -Xak*. 

Moreover 

X'(5(co)2) = ( - 1 ) < S ^ > . 

Since 

(LPt,K) = V + . . . + X,', 

if Xi", . . . , \t
v are the coordinates of X", it is always even and <5(co)2 = 1. T h u s 

if 0V 7^ co/3v lies in D and 

Ad<5(co) : Xpy-^c(Pv)Xapy 

then 

Adô(co) iX^-icm-iXf,*. 

Define tin LT° by 

RV(ts = (l P" e D, (3V d ïo 

These demands are consistent and we may take e(co) = <5(co)/. Then 

e(co)2 = 1. 

If / = 2k + 1 is odd we take 

Piv = X! + x2 ï+i, / V = x2 + x2h . . . , (3k
v = xk + xk+2 

and argue as before with 

«->-nw((_? J)) 
Since co fixes no root of ïo or even of 1} the a rgument is easier. 
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* \ & — • 

a" + aj" + 2a" + . . . + 2a,_2" + a ^ i " + ax
v 

ïo must contain a", ai", az_i% and aj". If / > 4 then 4̂ is a t most of order 8; 
if / = 4 then A2 is again a t most of order 8 while A$ is {1} or Z3 . Since Z/Z® 
is of order two we need in any case only consider the cocycle on A2. Wi th the 
usual representation of the roots 

av = —X\ — %2, OL\V = X\ — X2, Ct2V = #2 — # 3 , . . . , 

OLi-iv = X i-i X i, OLx — X / _ i + X i. 

HI = 2k then the roots 

X2 X i— i , X3 X1—2, • • • , ^fc # * + l 

are fixed by all the elements of A2. The roots orthogonal to this set are 

Pv = xi — xh (3^ = Xi + xh /32
v = X2 + Xi_i, . . . , Pk

v = xk + xk+i. 

The group ^ 2 is generated by coi, co2, co3 where coi interchanges ai" and av bu t 
fixes the other roots of D, while co2 interchanges a.i-\v and a / and fixes the 
other roots. Finally co3 interchanges a" with c^", ax

v with a M " , 0:2" with 
OLI-2V, and so on, and fixes ak

v. T h e defining relations are 

COi 2 = C02 2 = CO32 = 1 

CO1W2 = W 2 W 1 

C03CO1 = CO2W3. 

By its construction there is in LG' an element <52 normalizing L P , rep­
resenting w2, and satisfying 

Ô2Xai
vÔ2~1 = Xat

v 1 ^ i S I ~ 2 

Ô2Xal»Ô2~1 = X * ^ / -

In addition 

Ô22 = 1. 

We recall a fact which is verified in [10]. 

LEMMA 3. Suppose e £ A(LG°, LB\ LT\ {Xa»}) and fi" is a root fixed by e. 

< 
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Let @v = J2 ci(a)av be its expression as a sum of simple roots and let a be the sum 
over the pairs {av, eav\ with av ^ eav and (av, eav) 9e 0 of a (a) = a(ea). Then 

e(x^) = i-iyx^. 
I t follows t ha t 

Ô2(Xa
v) = Xa». 

We take e2 = <52. The lemma also implies t ha t 

Set 

- n - ~ , „ . ( ( _ ? ; ) ) . 
Because LG° is an adjoint group 

A 3̂2) = (-iy2^> = 1 x* e x*(Lr°) 
and <53

2 = 1. Let 

ôsXyJr1 = c(y")XUty, Y 6 ïo. 

Certainly 

c(co37") = c<avYx 

and because ak = 2 we may define /3 by 

7(/3) = Wr 1 /eïo. 
Then we take es = <53/3. Finally we take 61 = e3e2e3

_1 = 636263. To show tha t 
the cocycle splits it is enough to show tha t 

6 l 6 2 = 6 2 € i . 

T h e left side is 

63626362 

and the right 

62636263. 

Now 

626362 = V ( ( _ 1 0 / / n t 2 ^ / ( ( _ 1 0j)cO2(/3). 

Since any two of the roots /3", /V , . . . , /?*" are strongly orthogonal we are 
reduced to verifying the equali ty 

/3co3o;2(/3) = co2(/3)w2co3co2(/3) 
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c ( 7 ' ) £ (ONCOST") = c(w2yv)c(a)2<jûz(jû2yv) 

for all Y G ï0- This is clear if yv £ {a2% . . • , «z-V} for then w2 may be removed 
without affecting either side. If 7" G {a1', ai") then 

7 " = CO27" 

and the equation is trivially valid. If 7" G {at-i
v
} at

v} then 

C02C0371' = Ct)37r ùÛ2003<j02yV = 0)^0) 2jV 

and both sides are equal to 1. 
If / = 2k + 1 we s tar t with 

pv = X\ X1, piv = X\ -4~ X1, . . . , p * / = X/c + Xjc+2j 

but the argument is otherwise the same. 

4) £ 6 . 

Ô«2" 

-o-
«r a:i

v 
a4 

- O — 
« 6 

av + ax
v + 2a2" + 2a3" + 3a4" + 2<*5" + cx6" - 0 

3Eo must contain a", ai" and a6". The group ^42 is {1} or Z 2 and the group Az 
is {1} or Z3. If the group ^42 is {1, coj then we may with no loss of generality 
assume tha t w fixes a" and a2

v. By construction there is an e in jLG/ of order two 
so tha t e acts on L P a s w and so tha t 

eXai
ve X„ 1 S i Û 6. 

Lemma 3 again implies tha t 

eX a"e - 1 = Xav. 

The cocycle is therefore trivial on A2. 
We now consider A 3, which we suppose is Z3 . If Z / Z ° has order prime to 3 

the cocycle is certainly trivial. Thus we may assume tha t «2", a^v, a$v belong 
to lo bu t t ha t a±v does not. We are going to realize A 3 in the centralizer of a4, 
regarded as an element of the Lie algebra of LT°. 
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Running through the table of positive roots of £ 6 given in [5], we find t ha t 
the following are orthogonal to o;4: 

0 0 
10000 00001 

1 1 1 
01100 OHIO 00110 

1 0 0 1 
11100 11110 01111 00111 

0 

11111 

1 1 
12210 01221 

1 1 
12211 11221 

2 
12321 

Thus the centralizer is of type Ab. Wi th the s tandard representat ion of the 
root system of type A$ 

1 
xl - x2 <-> 01100 

0 
x2 - x3 <-> 10000 

0 
x3 - x4 <-• 01110 

0 
x4 - xb ^ 00001 

1 
x5 - x 6 ^ 00110 

T h u s a generat ing element of A$ corresponds to the permuta t ion 

l - > 2 - > 4 - » l 3 - > 5 - > 6 - > 3 . 

This we can realize in 5L(6) and therefore certainly in LG° by an element ô 
of order 3. As usual we let 

5Xyv = c{yv)Xwyv Y e ïo 
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and define / by 

7'(0 = i1 \ 
\c(yv) * yv 

G A 7" <Z ïo 

Then e = bt has order 3 and can serve as a representative of co. 

5) £7. 

Qa2
v 

O -O-
CLiv a-i 

-O- -O— 
a 7 

+ 2ai" + 2a2
v + 3a3" + 4a4" + 3a5" + 2a6" + a7" 0 

Xo must contain av and ay". Moreover if A is not trivial then it is Z 2 and [Z : Z°] 
is prime to 2 unless as" and 0:5" also belong to ï 0 . In order to construct a repre­
sentat ive of the generator co of A we work within the centralizer of a2 and a4. 

We work through the list of positive roots given in [5] and find t ha t those 
orthogonal to a2 and a4 are the following: 

0 

000001 

0 

000010 

0 

000011 

0 

100000 

1 
012210 

1 
122100 

1 

012211 
1 

112210 

1 

122110 

1 

012221 

1 

112211 

1 

122111 

1 
112221 

2 

134321 

2 

234321 
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We obtain a system of type A5 and 

1 

X! - x2 <-> 122100 

0 
x2 - x3 -̂> 000010 

0 
x3 - x4 <-> 000001 

1 
x4 - x5<-> 112210 

0 
x5 - x6 <^ 100000 

The image 5 of 

( - , . ' • • ) 
in 5L(6 ) is a representat ive of co. <52 is the image of 

and it is easily checked t h a t this is 1. Since the coefficients «2 and a4 are even 
we can define t and e as usual. 

T h e proof of Proposition 1 will be completed by a rguments which have noth­
ing to do with semi-simple groups bu t rely ra ther on our knowledge of Galois 
cohomology. We now have a cocycle {aa ff } with values in Z° and we wan t 
to show tha t the inflated cocycle {aWl>w } is trivial. 

LEMMA 4. Suppose F is a local or a global field and K a finite Galois extension. 
Let S = H o m ( X , C x ) be a torus over C. Let Gs\(K/F) act on X and hence on S. 
Let the Weil group WK/F act on S through its projection on Gsl(K/F). If { a ^ . a j 
is a 2-cocycle of Gal(K/F) with values in S then there is a continuous function 
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b(w) on WK/F with values in S so that 

aai,a2 = b(wi)w1(b(w2))b(wiW2)-
} 

for all W\W2. 

Variants of this lemma had been drawn to my a t tent ion by both Deligne 
and Hoechsmann, who proved them by means of the dualities of Poitou and 
Ta te . Such methods may well work in general, but it is easier for me to draw 
on a theorem from [8]. 

If K is local let CK be the multiplicative group of K and if K is global let it 
be the group of idèle classes. If Hc

l(WK/Fj S) denotes the group of continuous 
1-cocycles of WK/F in 5 modulo coboundaries then, according to Theorem 1 
of [8], there is a canonical isomorphism of HC

1(WK/F, S) with the group of 
characters of the topological group 

UomGaHK/F)(X
v, CK). 

Here 

Xv = H o m ( X , Z ) . 

The characters are not necessarily of absolute value 1. The isomorphism is 
functorial in 5. 

If we have an exact sequence 

O-ÏXZ-ÏX^X - » 0 

in which Xi, X2 are also Gal (K/F)-modules free over Z, then 

l->HomG a l CK / F ) (X2
V,CK) —> HomGaHK/F) (Xiv, CK) —• Hom G a l ( ^ / F ) (Xv

}CK) 

is also exact. Passing to the group of characters we infer from s tandard facts 
about extensions of characters tha t 

(1) HC'(WKIF,S1)-^HC^WKIF,S2) 

is surjective. 
To deduce the lemma from this we need only choose X\ correctly. We can 

clearly choose it to be free over the group ring Z (Gal (K/F) ). Then Si is also 
induced and hence cohomologically trivial. Consequently in Si 

a<r1)(r2 = c(ai)ai(c(a2))c(a1a2)~
1. 

If C(<T) denotes the image of c(a) in S2 then \c(<r)\ is a 1-cocycle of Ga\ (K/F) 
and thus of WK/F. By the surjectivity of (1) there is a continuous 1-cocycle 
d(w) of WK/F with values in Si so tha t 

d(w) = c(o-)â_1o-(â) 

if w —> a. Here â is a fixed element of S2. Since Si —» S2 is surjective, a is the 
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image of some a £ Si. We may replace c(a) by c(a)a~la(a) and suppose t ha t 

d(w) = c(a). 

Then w —>b(w) = d~1(w)c(a) is a continuous 1-cochain with values in S whose 

boundary is the inflation of {aait<,2}. 

With the proof of Proposition 1 the principal purpose of this note is achieved, 

bu t there are some supplementary remarks to be made. Firs t a comment on 

the role of gi. T h e influence of gi on the groups LH° and LH is through \p'. 

Suppose we replace gi by g\ = wgi and \p' by \p' = adw o i//, with w in the 

normalizer of TG* in Gi. If co is the element of S2(7\, Gi) ^ 12(Lr°, LG°) repre­

sented by w then o)T/G(a) is replaced by 

and K' by ic' = co(Y). Let ^iJ0 be replaced by LH°. W e write co = coico2 where co2 

lies in the Weyl group of LH° and coi takes positive roots of LT° in LH° to 
positive roots of LT° in LH°. Then 

The expression within the second parentheses lies in the Weyl group of LT° 
in LH°, and the expression within the first parentheses takes positive roots of 
LT° in LH° to positive roots. T h u s 

C O 1 ^ ) = C0iC01((j)c0i_1. 

In order to interpret LH° or LH° as the connected components of associate 
groups we need to choose in addit ion root vectors Xa

p and Xâv corresponding 
to the simple roots. Let u be a representat ive of coi in LG° so t h a t 

Ad « O X » = X5> 

if 5" = coia". T h e isomorphism f : h —•» uhu~l of ^Tf0 with ^i? 0 may then be 
extended in a natura l fashion to 

Ç : LH-+ LH. 

We extend the imbedding ? : LH° -> LG° to ? : LH -> GL by sett ing 

T h e conclusion is t ha t g\ has no real influence. T o each choice Proposition 1 
assigns a set of £. I t is not the individual £ which ma t t e r bu t only the orbits 
under conjugation by elements of LG°, and the preceding discussion yields a 
canonical bijection between the collections of orbits arising from two different 
choices. 

In order to apply Proposition 1 and the hypothet ical principle of functoriality 
in the associate group effectively, we shall need a way of reducing the s tudy of 
irreducible representat ions or of au tomorphic forms to groups G for which 
LG° has a connected centre. 
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We start from a given G and set 

p = x,(r»)/*.(r.c°0. 
The difficulty arises when P is not torsion-free. We represent the Ga\(K/F)-
module P as a quotient 

0 - > M ' - > ( ? ' - > P - > 0 

with Q' torsion-free. We then introduce an imbedding 

0 -> AT -^ M* 

with M* induced and M#/M' torsion free. Set 

Q = M* 0 Q7{0?("O fm)}. 

Q is again torsion free and we clearly have an exact sequence 

O - > M * - > < 2 - ^ P - + O . 

If ei is the homomorphism X*(TGl) —» P set 

x* = {(x, M) e x * ( r ^ ) e Q | € I ( \ ) = €2(/x)} 
and set 

X* = Hom(X*,Z). 

We certainly have 

Xm(Tte°)c+X* 

by means of the map to the first factor as well as a surjection 

X% —> X % > 0 

with kernel M*. Dual to this we have 

0 -> X* -> X* - • M* -> 0. 

Here 

M* - Hom(M*, Z). 

There is clearly a central extension Gi of G\ over Pso that if TGl is the inverse 
image of T°l then 

z*(fGo = x* 
and the contragredient to TGl —» r G l is 

We define G over P by twisting G\ by the cocycle {\pa(\l/~1)} in the adjoint 
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group of G\ and obtain a commutative diagram 

with vertical arrows defined over F. If Z is the kernel of <p or of <pi, for they are 
isomorphic, then 

M* = X*(Z). 

Since M* is induced we infer from the Tate-Nakayama theory and Hilbert's 
Theorem 90 that if F is a local or a global field then 

G(F)-+G(F) 

is surjective and that if it is global then 

G(AF)->G(AF) 

is surjective as well. This allows us when F is local to identify representations 
of G(F) as representations of G(F) which are trivial on Z(F), and when F is 
global to identify automorphic representations of G(AF) with automorphic 
representations of G(AF) trivial on Z(AF). 

If T is any Cartan subgroup of G with inverse image T then 

1 - > Z - > T -> T-> 1 

is exact and 

W(Ga\{F/F), T(F)) 

is injective. Consequently 

35(f) = T)(r) 

and 

<g(f) - @(r). 

There is another way of expressing the last relation. 
Certainly X*(T8C) = X*(T8C). I claim that the groups 

{X G X*(Tac)\\ = 2^Gai(^/F)Wr/G(o-)M(o-) — #(o-), /X(O-) Ç X * ( r ) } 

IP(G*\(F/F),T{F)) 

and 

[X G X * ( r s c ) | X = 2^Gai(x:/F)W7'/G(o')M(o") — M(O-), M(O-) £ - ^ r * ( ^ ) i 
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are also equal. Since 

x*(T) = {(x, M) e xt(T) e Q|ci(x) = e2(M)} 

the first group is certainly contained in the second. On the other hand if 
M W 6 Z * ( D and 

x = EwT/G((j)/i((7) — M(O-) G x*(r 8 C ) 

then eijLt : a —» ei(ju(o-)) defines an element of H~2 (Gal (K / F), P). Since 

H-2 (Gal (K/F), Q) -> H~2 (Gal (K / F), P) 

is surjective there exists v(a) in Q so that 

E^W - KO = 0 
and 

€2(/i) — €iW = or] 

is a boundary. Here rj : (o-i, cr2) —>• 77(0-1, a2) is a 2-chain. If r\' is a 2-chain with 
values in X*(T) with €1(17)' = 77 we may replace /x by ju — 8rj' without affecting 
X and hence assume that 

€Î(M) = e i W -

Then 

p, = n ® v 

defines a chain of 

X*(T) £ X.(T) + Q 

and 

H UT/GWPW — M(C) = X. 

Finally I add a few remarks which it is useful to bear in mind when applying 
the constructions of this paper to groups in whose definition a restriction of 
scalars intervenes. Suppose F is a finite extension of E and G is the group over E 
obtained from G by restriction of scalars. Then 

TG = ResF/ETG 

is a Cartan subgroup of G over E. Moreover G\ — Res/r/^Gi is quasi-split, and 
TGl = KesF/ETGl is a Cartan subgroup of it. 

Once we have fixed an imbedding of F in Ë we may identify G(Ë) with the 
set of functions <p from Gal (Ë/E) to G(Ë) = G (F) satisfying 

<P(<TT) = CT(<P(T)) a e Gal (Ë/F). 

G\(Ë) is obtained in a similar fashion. Recall that in Lemma 2.3 of [10] we 
have associated to \p : G —» G\ an isomorphism \p : G —> G\ over Ë. If / is a set 
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of representat ives for the cosets of Gal(E/F) in Ga\(E/E) then \p takes <p to 
(pi with 

PiO") = ^(<P(T)) T t I. 

If gi is the function in G\(E) which takes r 6 / to gi then 

$ ' = ad | i o \p 

is obtained from \p' in jus t the same way tha t \p is obtained from xp. I t does 
depend on the choice of coset representat ives, bu t tha t is not impor tan t . Let us 
fix / for now. 

I t was observed in [10] tha t , as Gal ( £ / £ ) - m o d u l e s , 

X*(TG) = Ind(Ga\(E/E),Ga\(E/F), X*(TG)) 

X*(T*i) = Ind(Ga\(Ê/E),Ga\(Ë/F),X*(TGi)). 

Both these modules consist of functions on Gal(ËAE) and if J/' takes X to \x 

then 

Mr) = ^ ( X ( r ) ) r É / . 

Shapiro 's Lemma shows t ha t 

X - > E r € / X ( r ) 

yields an isomorphism &(TG) ^> ( S ( J T G ) . T h u s K pulls back to 

* : X ->J^rei K(\(T)) 

and K to 

S ' : X ^ D T € / i e ' ( X ( r ) ) . 

^G0 consists of the functions <p on Gal(E/E) with values in ^G0 satisfying 

cp(ar) = <T(<P(T)) ^ Gal(£/F). 

I t is clear t ha t Li3"° consists of those <p for which 

(2) „(T) <E *#» 

for all r C J . 
If 

TO" = Û ! T ( < T ) T / 

withaT(o-) G G a l ( Ë / F ) and T £ / a n d f = TG then COT/GM takes X to X' with 

X'(r) = œT/G(aT(a))\(r') r G J. 

If 

UTIG(G) = w ^ o - ) ^ 2 ^ ) , 

where cô2(cr) lies in the Weyl group of L P in ^i? 0 and w1(o-) takes positive roots 
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in LH° to positive roots, then cô1^) takes X to X' with 

X'(r) = ^(aT(a))\(rf) r Ç / . 

T h u s LH is the associate group at tached to LH by the functor &V(F) —> ©"(£) 

of [10]. Consulting the definitions of [9], we see tha t if £ : LH —» ^G extends 
L i J 0 £-> LG° then the homomorphism £ : Li?" —> LG associated to J by the funo­

torial process of [10] extends LH° <=+ LG°. 

The conclusion is tha t the constructions of this paper behave simply under 

restriction of scalars, as one anticipates. I t should also be noticed tha t the func-

torial constructions of [10] also allow one to construct the homomorphism of 

Proposition 1 even in situations which do not strictly arise from restriction of 

scalars. They can sometimes be used for connected subgroups of G = ResF/EG 

with abelian quotients. We will meet an example of this in another paper. 
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