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ON A PROBLEM OF KLEE 
BY 

N. M. STAVRAKAS AND R. E. JAMISON 

Let E be a Hausdorff topological vector space. A subset A of E is a polytope iff 
A is the convex hull of a finite number of points. In this note a necessary condition 
for every maximal convex subset of a subset B of E to be a polytope is given. This 
is related to a problem first posed by Klee [1] for compact three-cells in Euclidean 
3 space. 

If A is a convex subset of E, then a point x in A is an extreme point of A iff 
^(~{x} is convex. Let B be any subset of E. A point x in B is a fcaz/ extreme point 
of 5 iff there exists an open neighborhood V of x such that ( V n i?) ~ {*} is convex. 
The local extreme points of a set J? are denoted by 1 x B. 

LEMMA. Let A be a convex subset of a set B contained in E. Ifx elxB and x e A, 
then x is an extreme point of A. 

Proof. Let V be an open neighborhood of x such that (V n B)~{x} is convex. 
Then (An V)~{x}=A n((Vn B)~{x}) is convex. If x is not an extreme point 
of A, then there are points a and b of A ~{x} with x e [a, b]9 the closed line segment 
from a to b. Since Kis open and contains x, V n [a, b] contains two distinct points 
a' and b' with x=%(a'+ b'). (For a proof of this see [2].) But a' and b' belong to 
A n F and are distinct from x, so (A n F)~{x} cannot be convex. This contradic­
tion forces x to be an extreme point of A. 

In particular, the lemma implies that the local extreme points of a convex set 
coincide with the extreme points. 

THEOREM. Let B be a subset of E. If every maximal convex subset of B is a poly­
tope, then no point of I xB is a limit point oflxB. 

Proof. Suppose that there exists an x in 1 x B such that x is a limit point of 1 x B. 
Select an open neighborhood V of x such that (Vn B)~{x) is convex. Since E 
is Hausdorff and x is a limit point of 1 x B, V n 1 x B is infinite. Since (V n B)~ {x} 
is convex, a standard Zorn's lemma argument proves that there is a maximal con­
vex subset M of B containing (V n B)~{x}. Thus M nix B is also infinite, so 
the lemma implies that M has infinitely many extreme points. Since a polytope 
has only a finite number of extreme points, M is not a polytope, a contradiction. 

COROLLARY. Suppose E is strongly Lindelof (i.e. every open subspace has the 
Lindelôf property). If B is a subset of E and every maximal convex subset of B is a 
polytope, then 1 x B is at most countable. 

Proof. By the theorem, no point of 1 x B is a limit point of 1 x B. Thus for each 
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x in 1 x B, there is an open set Vx such that Vxn Ix B={x}. Since every open sub­
set of E is Lindelôf, there is a countable subfamily {V̂ fL x of {Vx \ x e 1 x B} such 
that [JtLi Vt = {J {Vx | x e 1 x J5} 3 1 xB. Thus since each Vi contains exactly 
one point of 1 x B, 1 x i? is countable. 

An example may be constructed in the plane to show that the converse of the 
corollary is false. 
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