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Departamento de Matemática, Universidade Federal do Piauı́,

64.049-550 Teresina, Piauı́, Brazil
E-mail: cicero.aquino@ufpi.edu.br

HENRIQUE F. DE LIMA
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Abstract. We apply appropriate maximum principles in order to obtain
characterization results concerning complete linear Weingarten hypersurfaces with
bounded mean curvature in the hyperbolic space. By supposing a suitable restriction
on the norm of the traceless part of the second fundamental form, we show that such
a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder,
when its scalar curvature is positive, or to a spherical cylinder, when its scalar curvature
is negative. Related to the compact case, we also establish a rigidity result.
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1. Introduction and statemeof the main results. In the theory of isometric
immersions, the study of complete hypersurfaces with constant scalar curvature
immersed in a Riemannian space constitutes an important theme. In the seminal
paper [10], Cheng and Yau introduced a new self-adjoint differential operator � acting
on smooth functions defined on Riemannian manifolds. As a by-product of such
approach they were able to classify closed hypersurfaces with constant normalized
scalar curvature R satisfying R ≥ c and nonnegative sectional curvature immersed in
a real space form �n+1

c of constant sectional curvature c. Later on, Li [11] extended
the results due to Cheng and Yau [10] in terms of the squared norm of the second
fundamental form of the hypersurface.

In [18], Shu applied the so-called generalized maximum principle of Omori–Yau
[15, 20] to prove that a complete hypersurface in the hyperbolic space �n+1 with
constant normalized scalar curvature and nonnegative sectional curvature must be
either totally umbilical or isometric to a hyperbolic cylinder of �n+1. Afterwards,
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Brasil Jr., Colares and Palmas [7] also used the generalized maximum principle of
Omori–Yau to characterize complete hypersurfaces with constant scalar curvature in
the unit Euclidean sphere �n+1. In [2], by applying a weak Omori–Yau maximum
principle due to Pigola, Rigoli and Setti [16], Alı́as and Garcı́a-Martı́nez studied the
behaviour of the scalar curvature R of a complete hypersurface immersed with constant
mean curvature into �n+1

c , deriving a sharp estimate for the infimum of R. Next, Alı́as,
Garcı́a-Martı́nez and Rigoli [3] obtained another suitable weak maximum principle
for complete hypersurfaces with constant scalar curvature in �n+1

c , and gave some
applications of it in order to estimate the norm of the traceless part � of the second
fundamental form. In particular, they extended the main theorem of [7] for the context
of �n+1

c .
In [12], Li, Suh and Wei studied linear Weingarten hypersurfaces immersed in

�n+1, that is, hypersurfaces whose mean curvature H and normalized scalar curvature
R satisfy R = aH + b, for some a, b ∈ �. In this setting, they showed that if Mn

is a compact linear Weingarten hypersurface with nonnegative sectional curvature
immersed in �n+1, such that R = aH + b with (n − 1)a2 + 4n(b − 1) ≥ 0, then Mn

is either totally umbilical or isometric to a Clifford torus �k(c1) × �n−k(c2), where
1 ≤ k ≤ n − 1, c1, c2 > 0 and 1

c1
+ 1

c2
= 1. Thereafter, Shu [19] proved another rigidity

theorems concerning linear Weingarten hypersurfaces with two distinct principal
curvatures immersed in a space form �n+1

c . We also point out that López [13],
and Barros, Silva and Sousa [5, 6] obtained descriptions related to rotational linear
Weingarten surfaces in the Euclidean space and in the Euclidean sphere, respectively.

Furthermore, the first and second authors [4] used the Hopf’s strong maximum
principle and an extension of a suitable maximum principle of Yau [21] due to Caminha
[8] in order to study the geometry of complete linear Weingarten hypersurfaces with
nonnegative sectional curvature immersed in the hyperbolic space �n+1. In this setting,
under appropriated restrictions on the mean curvature attains its maximum, they
proved that such a hypersurface must be either totally umbilical or isometric to a
hyperbolic cylinder �1(c1) × �n−1(c2), where c1 < 0, c2 > 0 and 1

c1
+ 1

c2
= −1.

Motivated by the works described above, our aim is to establish new
characterizations of complete linear Weingarten hypersurfaces immersed in �n+1. In
this setting, we apply an extension of the generalized maximum principle of Omori
jointly with Hopf’s strong maximum principle to an appropriated modified Cheng–Yau
operator in order to prove that such a hypersurface must be either totally umbilical or
isometric to a hyperbolic cylinder, when its scalar curvature is positive, or to a spherical
cylinder, when its scalar curvature is negative. More precisely, we obtain the following
classification result:

THEOREM 1.1. Let Mn be a complete linear Weingarten hypersurface immersed in
�n+1, such that R = aH + b with a ≤ 0 and (n − 1)a2 + 4n(b + 1) ≥ 0. Suppose that
1 ≤ H2 ≤ α, for some constant α. If

sup |�| ≤ R+
H,

where

R+
H = 1

2

√
n

n − 1

(√
n2H2 − 4(n − 1) − (n − 2)H

)
,

then
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(i) either |�| ≡ 0 and Mn is totally umbilical,
(ii) or sup |�| = R+

H. In addition, if b > −1 and |�(p)| = R+
H at some point p ∈ Mn,

then |�| ≡ R+
H and Mn is isometric to a hyperbolic cylinder �1(−√

1 + r2) ×
�n−1(r), with R = n−2

nr2 > 0, or to a spherical cylinder �n−1(−√
1 + r2) × �1(r),

with R = − n−2
n(1+r2) < 0.

Related to the compact case, we also get the following rigidity result:

THEOREM 1.2. Let Mn be a compact linear Weingarten hypersurface immersed in
�n+1, such that R = aH + b with (n − 1)a2 + 4n(b + 1) ≥ 0. Suppose that H2 ≥ 1. If
sup |�| < R+

H, where R+
H = 1

2

√
n

n−1 (
√

n2H2 − 4(n − 1) − (n − 2)H), then |�| ≡ 0 and

Mn is isometric to �n, up to scaling.

The proofs of Theorems 1.1 and 1.2 are given in Section 4.

2. Preliminaries. Let Mn be an n-dimensional, connect and orientable
hypersurface in �n+1. We choose a local field of orthonormal frame {eA}1≤A≤n+1 in
�n+1, with dual coframe {ωA}1≤A≤n+1, such that, at each point of Mn, e1, . . . , en are
tangent to Mn and en+1 is normal to Mn. We will use the following convention for the
indices:

1 ≤ A, B, C, . . . ,≤ n + 1, 1 ≤ i, j, k, . . . ,≤ n.

Denoting by {ωAB} the connection forms of �n+1, we have that the structure
equations of �n+1 are given by:

dωA =
∑

i

ωAi ∧ ωi + ωAn+1 ∧ ωn+1, ωAB + ωBA = 0, (2.1)

dωAB =
∑

C

εCωAC ∧ ωCB − 1
2

∑
C,D

KABCDωC ∧ ωD, (2.2)

KABCD = −(δACδBD − δADδBC). (2.3)

Next, we restrict all the tensors to Mn. First of all, ωn+1 = 0 on Mn, so
∑

i ωn+1i ∧
ωi = dωn+1 = 0 and by Cartan’s lemma [9] we can write

ωn+1i =
∑

j

hijωj, hij = hji. (2.4)

This gives the second fundamental form of Mn, B = ∑
ij hijωiωjen+1. Furthermore,

the mean curvature H of Mn is defined by H = 1
n

∑
i hii.

The structure equations of Mn are given by

dωi =
∑

j

ωij ∧ ωj, ωij + ωji = 0, (2.5)

dωij =
∑

k

ωik ∧ ωkj − 1
2

∑
k,l

Rijklωk ∧ ωl. (2.6)
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Using the structure equations, we obtain the Gauss equation

Rijkl = −(δikδjl − δilδjk) + (hikhjl − hilhjk), (2.7)

where Rijkl are the components of the curvature tensor of Mn.
The Ricci curvature and the normalized scalar curvature of Mn are given,

respectively, by

Rij = −(n − 1)δij + nHhij −
∑

k

hikhkj (2.8)

and

R = 1
n(n − 1)

∑
i

Rii. (2.9)

From (2.8) and (2.9) we obtain

|B|2 = n2H2 − n(n − 1)(R + 1), (2.10)

where |B|2 = ∑
i,j h2

ij is the square of the length of the second fundamental form B of
Mn.

The components hijk of the covariant derivative ∇B satisfy

∑
k

hijkωk = dhij +
∑

k

hikωkj +
∑

k

hjkωki. (2.11)

The Codazzi equation and the Ricci identity are, respectively, given by

hijk = hikj (2.12)

and

hijkl − hijlk =
∑

m

hmjRmikl +
∑

m

himRmjkl, (2.13)

where hijk and hijk denote the first and the second covariant derivatives of hij.
The Laplacian �hij of hij is defined by �hij = ∑

k hijkk. From equations (2.12) and
(2.13), we obtain that

�hij =
∑

k

hkkij +
∑
k,l

hklRlijk +
∑
k,l

hliRlkjk. (2.14)

Since �|B|2 = 2(
∑

i,j hij�hij + ∑
i,j,k h2

ijk), from (2.14) we get

1
2
�|B|2 = |∇B|2 +

∑
i,i,k

hijhkkij +
∑
i,j,k,l

hijhlkRlijk (2.15)

+
∑
i,j,k,l

hijhilRlkjk.
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Consequently, taking a (local) orthonormal frame {e1, . . . , en} on Mn such that
hij = λiδij, from equation (2.15) we obtain the following Simons-type formula

1
2
�|B|2 = |∇B|2 +

∑
i

λi(nH),ii + 1
2

∑
i,j

Rijij(λi − λj)2. (2.16)

Now, let φ = ∑
i,j φijωiωj be a symmetric tensor on Mn defined by

φij = nHδij − hij.

Following Cheng–Yau [10], we introduce an operator � associated to φ acting on any
smooth function f by

�f =
∑

i,j

φijfij =
∑

i,j

(nHδij − hij)fij. (2.17)

Since φij is divergence-free, it also follows from [10] that the operator � is self-
adjoint relative to the L2 inner product of Mn, that is,∫

M
f �g =

∫
M

g�f,

for any smooth functions f and g on Mn.
Setting f = nH in (2.17) and taking a local frame field {e1, . . . , en} on Mn such

that hij = λiδij, from equation (2.10) we obtain the following:

�(nH) = nH�(nH) −
∑

i

λi(nH),ii

= 1
2
�(nH)2 −

∑
i

(nH)2
,i −

∑
i

λi(nH),ii

= n(n − 1)
2

�R + 1
2
�|B|2 − n2|∇H|2 −

∑
i

λi(nH),ii.

Consequently, taking into account equation (2.16), we get

�(nH) = n(n − 1)
2

�R + |∇B|2 − n2|∇H|2 + 1
2

∑
i,j

Rijij(λi − λj)2. (2.18)

3. Key lemmas. Along this section, we will quote some key lemmas which we will
use in the proofs of Theorems 1.1 and 1.2. The first one is a classic algebraic result due
to Okumura [14], and completed with the equality case proved in [1] by Alencar and
do Carmo.

LEMMA 3.1. Let μ1, . . . , μn be real numbers such that
∑

iμi = 0 and
∑

iμ
2
i = β2,

with β ≥ 0. Then,

− (n − 2)√
n(n − 1)

β3 ≤
∑

i

μ3
i ≤ (n − 2)√

n(n − 1)
β3, (3.19)

https://doi.org/10.1017/S0017089514000548 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000548
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and equality holds if, and only if, either at least (n − 1) of the numbers μi are equal.

The second lemma is obtained reasoning as in the proof of Lemma 2.1 of [12] (see
Lemma 3.1 of [4]).

LEMMA 3.2. Let Mn be a linear Weingarten hypersurface immersed in �n+1, such
that R = aH + b for some a, b ∈ �. Suppose that

(n − 1)a2 + 4n(b + 1) ≥ 0. (3.20)

Then

|∇B|2 ≥ n2|∇H|2. (3.21)

Moreover, if the inequality (3.20) is strict and the equality holds in (3.21) on Mn, then H
is constant on Mn.

Now, we will consider the following Cheng–Yau’s modified operator

L = � − n − 1
2

a�. (3.22)

Related to such operator, we have the following sufficient criteria of ellipticity (see
Lemma 3.2 of [4]).

LEMMA 3.3. Let Mn be a linear Weingarten hypersurface immersed in �n+1, such
that R = aH + b with b > −1. Then, L is elliptic.

In our last lemma, we extend the generalized maximum principle of Omori [15] to
the Cheng–Yau’s modified operator L.

LEMMA 3.4. Let Mn be a complete linear Weingarten hypersurface immersed in �n+1,
such that R = aH + b with a ≤ 0 and (n − 1)a2 + 4n(b + 1) ≥ 0. If H is bounded on Mn,
then there exists a sequence of points {pk}k≥1 in Mn satisfying the following properties:

lim
k→∞

nH(pk) = n sup H, lim
k→∞

|∇nH(pk)| = 0 and lim sup
k→∞

(L(nH)(pk)) ≤ 0.

Proof. Let us choose a local orthonormal frame {e1, . . . , en} on Mn such that
hij = λiδij. From (3.22) we have that

L(nH) =
∑

i

(
nH − n − 1

2
a − λi

)
(nH)ii. (3.23)

On the other hand, we observe that, if H vanishes identically on Mn, the lemma is
obvious. So, let us suppose that H is not identically zero. By changing the orientation
of Mn if necessary, we may assume sup H > 0. Thus, for all i = 1, . . . , n, from (2.10)
and with a straightforward computation we get

(λi)2 ≤ |B|2 = n2H2 − n(n − 1)(aH + b + 1)

=
(

nH − n − 1
2

a
)2

− n − 1
4

(
(n − 1)a2 + 4n(b + 1)

)

≤
(

nH − n − 1
2

a
)2

,
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where we have used our assumption that (n − 1)a2 + 4n(b + 1) ≥ 0 to obtain the last
inequality. Consequently, for all i = 1, . . . , n, we have

|λi| ≤
∣∣∣∣nH − n − 1

2
a
∣∣∣∣ . (3.24)

Thus, from (2.7) and (3.24) we obtain

Rijij = −1 + λiλj ≥ −1 −
(

nH − n − 1
2

a
)2

. (3.25)

Hence, since we are supposing that H is bounded on Mn, it follows from (3.25) that
the sectional curvatures of Mn are bounded from below. Therefore, we can apply the
generalized maximum principle due to Omori [15] to the function nH, obtaining a
sequence of points {pk}k≥1 in Mn such that

lim
k→∞

nH(pk) = n sup H, lim
k→∞

|∇nH(pk)| = 0, lim sup
k→∞

((nH)ii(pk)) ≤ 0. (3.26)

But, since H is bounded, taking subsequences if necessary, we can arrive to a sequence
{pk}k≥1 in Mn which satisfies (3.26) and such that H(pk) ≥ 0. Thus, taking into account
that a ≤ 0, from (3.24) we get

0 ≤ nH(pk) − n − 1
2

a − |λi(pk)| ≤ nH(pk) − n − 1
2

a − λi(pk) (3.27)

≤ nH(pk) − n − 1
2

a + |λi(pk)| ≤ 2nH(pk) − (n − 1)a.

Consequently, using once more that H is bounded on Mn, from (3.27) we infer that
nH(pk) − n−1

2 a − λi(pk) is nonnegative and bounded on Mn. Therefore, from (3.23),
(3.26) and (3.27), we obtain that

lim sup
k→∞

(L(nH)(pk)) ≤
∑

i

lim sup
k→∞

[(
nH − n − 1

2
a − λi

)
(pk)(nH)ii(pk)

]
≤ 0.

�

4. Proofs of Theorems 1.1 and 1.2. Let us start with the proof of Theorem 1.1.

Proof.
Let us choose a local orthonormal frame {e1, . . . , en} on Mn such that hij = λiδij.

Since R = aH + b, from (2.18) and (3.22) we have that

L(nH) = |∇B|2 − n2|∇H|2 + 1
2

∑
i,j

Rijij(λi − λj)2. (4.28)

Thus, since from (2.7) we have that Rijij = λiλj − 1, from (4.28) we get

L(nH) = |∇B|2 − n2|∇H|2 + n2H2 − n|B|2 − |B|4 + nH
∑

i

λ3
i . (4.29)
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Now, set �ij = hij − Hδij. We will consider the following symmetric tensor

� =
∑

i,j

�ijωiωj.

Let |�|2 = ∑
i,j�

2
ij be the square of the length of �. It is easy to check that � is traceless

and

|�|2 = |B|2 − nH2. (4.30)

With respect the frame field {e1, . . . , en} on Mn, we have that �ij = μiδij and, with a
straightforward computation, we verify that∑

i

μi = 0,
∑

i

μ2
i = |�|2 and

∑
i

μ3
i =

∑
i

λ3
i − 3H|�|2 − nH3. (4.31)

Thus, using Gauss equation (2.7) jointly with (4.31) into (4.29), we get

L(nH) = |∇B|2 − n2|∇H|2 + nH
∑

i

μ3
i (4.32)

+|�|2(−|�|2 + nH2 − n).

By applying Lemmas 3.1 and 3.2, from (4.32) we have

L(nH) ≥ |�|2
(

−|�|2 − n(n − 2)√
n(n − 1)

H|�| + nH2 − n

)
(4.33)

= |�|2PH (|�|) ,

where

PH (|�|) = −|�|2 − n(n − 2)√
n(n − 1)

H|�| + nH2 − n. (4.34)

Since we are supposing that H2 ≥ 1, from (4.34) it is easy to verify that PH(|�|)
has two real roots R−

H and R+
H given by

R−
H = −1

2

√
n

n − 1

(√
n2H2 − 4(n − 1) + (n − 2)H

)

and

R+
H = 1

2

√
n

n − 1

(√
n2H2 − 4(n − 1) − (n − 2)H

)
.

Consequently, we have that

PH (|�|) = (|�| − R−
H)(R+

H − |�|). (4.35)

Thus, since we are assuming that |�| ≤ R+
H , from (4.35) we conclude that PH(|�|) ≥ 0.

Hence, from (4.33) we get

L(nH) ≥ |�|2PH (|�|) ≥ 0. (4.36)
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On the other hand, by Lemma 3.4 it is possible to obtain a sequence of points
{pk}k≥1 in Mn such that

lim
k→∞

H(pk) = sup H > 0 and lim sup
k→∞

(L(nH)(pk)) ≤ 0. (4.37)

Thus, since from (2.10) we have that

|�|2 = n(n − 1)
(
H2 − aH − b − 1

)
, (4.38)

our assumption that a ≤ 0 jointly with (4.37) give

lim
k→∞

|�(pk)| = sup |�|. (4.39)

Consequently, from (4.36) and (4.39), we have that

0 ≥ lim sup
k→∞

(L(nH)(pk)) ≥ sup |�|2Psup H (| sup �|) ≥ 0

and, hence, we conclude that sup |�|2Psup H(| sup �|) = 0. Therefore, we have that
either |�| ≡ 0 and Mn is totally umbilical or sup |φ| = R+

H . Moreover, if |�(p)| =
R+

H(p) at some point p ∈ Mn and since we are assuming that a ≤ 0, equation (4.38)
implies that H attains its maximum on Mn. Thus, since Lemma 3.3 guarantees that L
is elliptic when b > −1, from inequality (4.36) we can apply Hopf’s strong maximum
principle to conclude that H is constant on Mn. Consequently, |�| = R+

H on Mn

and, since the equality holds in (3.19) of Lemma 3.1, we conclude that Mn must be
an isoparametric hypersurface with two distinct principal curvatures one of which is
simple. Therefore, in this case, from the classification of the complete isoparametric
hypersurfaces having at most two distinct principal curvatures due to Ryan [17], we
conclude that Mn is isometric to a hyperbolic cylinder �n−1(r) × �1(−√

1 + r2), if
R > 0, or to a spherical cylinder �1(r) × �n−1(−√

1 + r2), if R < 0.
To conclude the proof, we observe that, for a given radius r > 0, the

standard product embedding �1(−√
1 + r2) × �n−1(r) ↪→ �n+1 has constant principal

curvatures given by

k1 = r√
1 + r2

, k2 = · · · = kn =
√

1 + r2

r
.

Thus, in this case,

H = nr2 + (n − 1)

nr
√

1 + r2
and |�|2 = n − 1

nr2(1 + r2)
.

Consequently, from (2.10) and (4.30), we obtain that

R = n − 2
nr2

> 0.

On the other hand, the embedding �n−1(−√
1 + r2) × �1(r) ↪→ �n+1 has constant

principal curvatures given by

k1 = · · · = kn−1 = r√
1 + r2

, kn =
√

1 + r2

r
.
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In this another case, we have

H = nr2 + (n − 1)

nr
√

1 + r2
and |�|2 = n − 1

nr2(1 + r2)
.

Hence, using once more (2.10) and (4.30) we get that

R = − n − 2
n(1 + r2)

< 0.

Moreover, with algebraic computations we verify that in both of these previous cases
we have |�| ≡ R+

H . �
We close our paper by presenting the proof of Theorem 1.2.

Proof.
Since the operator L is self-adjoint relative to the L2 inner product of the compact

hypersurface Mn, from inequality (4.36) we have that

0 =
∫

M
L(nH)dM ≥

∫
M

|�|2PH(|�|)dM ≥ 0. (4.40)

Consequently, since we are supposing that sup |�| < R+
H , from (4.40) we get that

|φ| ≡ 0 on Mn. Therefore, Mn is totally umbilical and, hence, taking into account again
the compactness of Mn, from the classification of the totally umbilical hypersurfaces
of �n+1 we have that Mn must be isometric to �n(r), for some r > 0. �
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