
The Barycentric Calculus of Mobius.

By R. E. ALLARDICE, M.A.

August Ferdinand Mobius was born at Schulpforta, in Saxony,
in the year 1790. He studied in the Universities of Leipsic and
Gottingen, and, at the age of 2G, was appointed extraordinary
Professor of Astronomy and Superintendent of the Observatory at
Leipsic. There he remained till his death, in 1868, being appointed
ordinary professor in 1844. Between the years 1817 and 1868
Mobius wrote his Barycentric Calculus, a Treatise on Statics,
another on the Mechanics of the Heavens, and a large number of
papers on Mathematical, Dynamical, and Astronomical questions.
Most of these papers were contributed to Crelle's Journal, which
was founded in 1826. The works of Mobius have recently been
collected under the direction of the Royal Scientific Society of
Leipsic, and under the editorship of Klein, Scheibner, and Baltzer.

The Barycentric Calculus was published in 1827, and forms
nearly two-thirds of the first volume of the collected works of
Mobius. Though this Calculus is thus nearly two-thirds of a cen-
tury old, its methods have never been introduced into ordinary
mathematical courses, and I have, therefore, thought it worth while
to give some account of it. The exposition of his Calculus, as given
by Mobius, is exceedingly clear, and shows that, although the methods
of the Calculus have not so wide an application as those of ordinary
Co-ordinate Geometry, yet, within their own range, they are very
powerful in the hands of one who has thoroughly mastered them.
The work also possesses a large amount of historical interest. It
was here that homogeneous co-ordinates were first used—Pliicker's
Analyliscli-geometrislie Entwickelungen, in which the theory of
trilinear co-ordinates, as they are now used, was first given, not
appearing till 1828 (the second volume not till 1831.) Here also
Mobius gave, for the first time, the method of determining the sign
of a segment of a line in accordance with the, arbitrarily assumed,
positive direction of the line (what may be called the quaternion
method of determining the sign of a segment of a line); and dis-
cussed also, for the first time, the sign of an area and the sign of a
volume. The distinction should be noted between the methods used
for determining the sign of a line in quaternions and in co-ordinate
geometry. Though one of these methods may be deduced from the
other, they are really fundamentally different.
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Some slight idea of the method of the Calculus may be given in
a few words as follows :—

Let us confine our attention to a plane, and consider three
points, A, B, C. If weights a, b, c, be imagined at the points
A, B, C, then this system will have a definite centre of gravity, P
say. In the determination of P only the ratios a : b : c are in-
volved ; and there is a one-one correspondence between the position
of P and the values of these ratios. These quantities a, b, c, or
their ratios, are therefore taken as the co-ordinates of P ; but, as
will be seen later, the whole theory is established on a purely
geometrical basis. It is obvious that this method may be extended
to space of three dimensions, by taking four non-coplanar points.
In the development of his theory, Mobius always represents a
curve or surface, not by means of an equation connecting the co-
ordinates, but by expressing the co-ordinates as functions of one or
two independent variables.

Mobius begins by pointing out how signs are to be attached to
segments of lines in accordance with the definition AB + BA = 0.

He then proceeds to give a purely geometrical theory of the
centre of gravity, somewhat as follows :—

Through A and B (fig. 1) a pair of parallel straight lines are
drawn • to draw A'B' so that a. A A' + 6.BB' = 0.

Any straight line through a definite point P satisfies this con-
dition.

P is the centre of gravity of the points A and B with weights
a and b ; and is between a and b if a and b are both positive.

If A"P"B" is any line, not through P, then

It is shown next that if A, B, C, (fig. 2) are three given points,
then a point Q may always be found such that

and a. A A" + 6.BB" + o.OC" = (a + b + c).QQ".

Q is obviously the O.G. of the system A, B, C, with the weights
a, b, c.

A similar theorem is next proved for four points, whether these
be coplanar or not.

Any number of fundamental points A, B, 0, ... N may be
employed. A definite set of co-efficients (a, b, c...n) (or weights)
determine one definite point (the centre of gravity).
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Particular case.
If a + b + c...+n = O, the point is at infinity.

Since a4=0, .-. b + c + ...n=t=0.
We may therefore determine T so that, if lines be drawn

through B, C,...T parallel to a given line and be cut by any plane
inB',C',...T', then

..+n).TT'= -a.TT'

Now this will be zero, provided the plane, B'C'...T' be parallel
to AT; i.e., pass through the point at infinity in AT. Hence this
point at infinity is the point required.

If then three fixed points A, B, C, be given in a plane, a point
P is determined in accordance with the above when the coefficients
a, b, c, are given.

We have then the relation

This is written more shortly
a A + 6B + cO = (a + b + c). P

And the notation aA. + 6B + cC = P is also employed to denote
that P is the point whose co-ordinates are a, b, c.

Mobius next considers the application of algebraical signs to
areas and to volumes; and then establishes the following results :—

If we put c = - (« + b), we may denote the same fact in any of
the three ways :—

aA + bB = 0, oA + 6B = (a + 6)0, aA + 6B + cC = 0.
In this case, a : b : c = BC : CA : AB; and A, B, 0, are collinear.

If #A + 6B + cC = D, then A, B, C, D, are coplanar
and a :6 :c = ADBC:ADCA:ADAB.

If A, B, C, D are not coplanar, and if oA + 6B + cC + dD = E,
then a:b:c : d= BODE : CDEA : DEAB : EABC

where BODE, etc., denote volumes of pyramids.
It is next shown that if A, B, C are any three non-collinear

points in a plane, the ratios a :b : c may be so determined that
oA + 6B + cO = D, where D is any fourth point whatever ; that is,
any point in a plane may be regarded as the C.G. of any other
three points.

Let AB and CD intersect in L ; then we may write
L = aA + /?B = yC + SD, where the ratios a : ft and y : S
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are determined. Now determine the ratio /3 : y so that a + /3 = y + 8,

... D = aA + /3B--yC.
A similar proposition is proved for any four non-coplanar points

in space and any fifth point taken arbitrarily.
Taking now pA. + qH + rC = P as the expression for a point in

the plane, we can determine the region in which P lies according
to the relative signs and magnitudes of p, q, r. The result is as
follows (fig. 3) :—

Plies

I. in ABO, if p, q, r have the same sign
( in BC, if q + r>p

II. < in CA, if r+p>q
' in AB, if p + q>r
I in A, if p>q + r

HI-% in B, if q>r+p
\ in C, if r >p + q

it being understood that letters on the same side of the symbol >
have the same sign, those on different sides opposite signs

A similar investigation is then given for space of three
dimensions.

Change of Triangle of Reference.

The method of effecting a change of the triangle of reference
will be most easily explained by means of the following simple
example given by Mobius.

Let A'B'C be the new triangle of reference, where A' is the
mid-point of BC, etc.

Then
2 A' = B + C, 2B' = C + A, 2C = A + B, .-. A = B' + C - A', etc.
If F=pA + qB+rC is any point'referred to ABC, its expression,

when referred to A'B'C, will be
P sp(B' + C - A') + q(C + A' - B')+ r(A' + B' - C)

= (q + r -p)A! + (r+p- q)B' + (p + q — r)C

Equations to Straight Lines and Planes.
If E and E' are any two points and w be taken as variable,

E + wSI may represent any point on the line joining E and E' and
may therefore be taken as the expression for the straight line EE'.
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If A, B, C, are any three non-collinear points in the plane, we may
put eE = a A + 6B + cC, e'E' = a'A + b'B + c'C ; . \ putting to = ve'/e,

E + wW = eE + ve'E' = aA + 6B + cC + r(a'A + 6'B + c'C)
= (a + W) A + (b + vb')B + (c + vc')C,

which is therefore the expression for the line joining the two points
E and E'.

A simpler form may be got as follows :—
P = A + 6C and Q = B + cC are any points in AC and BC
respectively. The expression for PQ is A + 6C + a:(B + cC),
that is, A + xB + (b + cx)C.

Intersection of Two Straight Lines.

To determine the intersection of
A + xB + (a + bx)C\ w

and A + yB + (o + b'y)Ci
1 : x : (o + bx) = 1 : y : (a + b'y)

.: x = y= -(a-a')l(b-b');
and the point of intersection is (b - b')A - (a - a')B + (a'b - ab')C.

Line in Space.
It may be shown very easily that a straight line in space may

be written in either of the forms
(a + a'v)A + (b + b'v)B + (c + c'v)Q + (d + dv)D or

A + xB + (a + bx)C + (c + dx)D.
Plane.

If E, F, G, are three non-collinear points, any point in the plane
EFG may be represented by K+vF + ivG, which is therefore the
expression for the plane, when v and w are taken as variables.

Hence any plane may be written
(o + a'v + a"w)A + (b + b'v + b"w)B + etc. + etc.

This plane is determined by the points (a, b, c, d), (a', b', c', d')
(a", b", c", d"). [N.B.—Mobius does not use this notation.]

By taking for the points that determine the plane, points in
three of the fundamental lines, we may reduce the expression to
the form A + xB + yC + (a + bx + cy)D.

Mobius works out the expression for the line of intersection of
two planes, the condition that two planes be parallel, and a number
of analagous problems. As a single example, I shall take the
following:—
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Given the line (au + a')A + (/3u + f3')B + uO + D,
and the plane A + vB + wG + (a + bv + cw)T>,

to find (1) their point of intersection, (2) the condition that the
plane contain the line, (3) the condition that they be parallel.

For every point on their intersection we must have

au + a' : /3w + /?' : u : 1 = 1 : v: w : a + bv + civ (1).

These three equations determine u, v and w, giving

u = (1 - aa' - bP')ftaa + b/3 + c).
We get the point of intersection by substituting this value in the
expression for the given straight line. Putting m — 1 - aa! — b/3',
n = aa + bfi + c, the point is (am + an)A + (/3m + /3'n)B + wC + nD.

If the plane contain the straight line, the equations (1) must
hold good for all values of u; hence m = n = 0.

If the plane and the straight line are parallel, then

(am + a'n) + (/Jm + ji'n) + m + n = 0,

Mobius next proceeds to the discussion of curved lines and sur-
faces. A curved line in a plane may be represented by the expres-
sion pA. + q3 + rC where p, q, r are given functions of a single
variable.

A curve of the second degree may be represented by

(a + a'v + a'V)A + (b + b'v + 6 V)B + (c + c'v + c'V)C
provided the three coefficients do not contain a common factor and
provided they cannot all by some transformation be reduced to
linear form. Thus we must not have a — b = c = 0, or a' = b' = c' = 0.
Each side of the triangle of reference is cut in two points, real or
imaginary ; and so is every other line, as it may be made a side of
a new triangle of reference.

If we put a ^ ! = a A + 6B + cC

and take A ^ C , as the new triangle of reference, the expression
becomes a^ + bjvB + clv

iG1

or when we put c /̂fej = w, and a^i/62 = a,
oAj + wBj + u^Gl (I).

To find the points at infinity on this curve we have to put
0. The points will be real and different, imaginary,
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or equal, i.e., the curve a hyperbola, ellipse or parabola, according
as a < > = 1/4.

For these different cases the expression (1) may be reduced to
one or other of the forms

These curves pass through A and C and touch BA and BC at these
points.

Other particular forms of the equation.

a(v - /3)(v - y)A + b(v - y)(v - a)B + c(v - a)(v - /3)C

represents a conic passing through A, B and C.
a(v - a)3A + b(v - PfB + c(v - yfC

represents a conic inscribed in ABC.
The next point discussed is the number of independent con-

stants 'involved in the expression pA + qB + rC where p, q, and r
are integral functions of a single variable of the n* degree.
The number is 3ra - 1, which is less by £ ( « - 1 ) ( M - 2 ) than the
number involved in the general equation of the n'h degree in
Cartesian Co-ordinates As a matter of fact, when p, q, and r are
rational functions, the above expression can only represent
unicursal curves.

Mobius next considers the question of the contact of curves and
of cusps and points of inflexion. The following will give some idea
of his method.

Let pA + qB + rG denote the curve, where p, q and r are
functions of v. Consider a particular value v of v and an adjacent
value v' + x, then

Now put

Then the point on the curve corresponding to v' + x, is
alA1 + ftjxB! + c^'C, +

This, as a matter of fact, is another form of the expression for the
curve, the new variable x occurring in the n'h degree. The first two

_.x + . x+..., etc.
dv' 2! dv'*
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terms a1A1+xb1B1 give the tangent at the point (/>', q', r'). Mobius
examines thoroughly the nature of the contact of the curves of the
2"1*, 3rd, etc., orders got by including x2, x3 When one or more of
the quantities bu clt etc., vanish, cases of contact of higher orders
arises, and this leads to the discussion of points of inflexion and
cusps.

I may pass over the discussion of asymptotes which is contained
in the next section of the Calculus, with the remark that points at
infinity are given by roots of the equation p + q + r = 0, and the
asymptotes or tangents at these points are discussed by the method
which has already been illustrated in the case of finite tangents.

Curves and Surfaces in Space.
A curve in space is represented by pA + ^B + rC + sD where

p, q, r, s are functions of a single variable.
If p is a function (of v say) of the »'* degree, the n roots of

p = 0, substituted in qB + rC + sT> give the n points where the curve
meets the plane BCD.

The line joining A to the point pA + qB + rC + sT> meets the
plane BCD in the point qB + rC + sD. Hence the curve may be
formed as the intersection of any two of the four cones such as
that which has A as vertex and qB + rC + «D as generating curve.

The expression for the tangent and the osculating plane at any
point are obtained by a method practically identical with that used
in the case of plane curves.

A surface is represented by pA + qB + rC + sD where p, q, r, s,
are functions of two independent variables.

If p, q, r, s, are functions (say of v and w) of the ntt degree, the
surface will in general be of a higher order than the na. For if
we determine v and w by means of the equations p = 0, q = 0, and
substitute the values obtained in rC + sD, we shall obtain the
points in which CD meets the surface. Now p — 0, q = 0, will have
in general more than n solutions.

The tangent-plane at a point of a surface is discussed as follows :—
Let pA + qB + rG + sT) be the surface, where p, q, r, s, are

functions of v and to. If v' and w' be particular values and x and y
infinitely small increments, p becomes
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is an infinitely near point. If now x and y are taken to be any
two independent variables, this will represent the tangent plane at
(p,' g', r', s'.)

The conditions that ABC be a tangent plane are

ds' ds'
s' = 0, j - , = 0, -T-; = 0.' do ' dw

Since s vanishes when v = v', w = w, assume s — b(v - v') + c(w - w')
where b and c are functions of v and w.

,db de

ds db de
— = (v-v)r- + c + (w-tv )-=-
dw v 'dw v 'dw

Hence b and c vanish when v = v', w = w'.
Hence * must be of the iormf(v ~v'f + g(v -v')(w-io') +h(w-w'f.

If A is the point of contact, the equation to the surface must
be of the form

aA. + [b(v - v') + c(w - w')]B + [d(v - v') + e(w - w')]C
+ [f(v - v'f+g(v - v')(w - w') + h(w - w'f]D.

where a, b,...h are functions of v and w.
In considering the nature of the contact, we may assume

a, b,...h to he constants and v - v' and w - w' to be infinitely small.
Putting t = [b(v - v') + c(w - w')]/a ; u = [d(v - v') + e(w - w')]ja the
expression becomes A + tB + uC + (it2 + ktu + lu2)D.

Put A-MB + wC = Q and Q + (it- + ktu + ZM2)D = P ; then Q is a
point in the tangent-plane ABO infinitely near the point of contact
A ; while P is a point on the surface, lying in the line QD and
distant from Q by a quantity of the second order. Further P lies
towards D or away from D according as if + ktu + lur is positive or
negative. Hence if k2 < iil, the surface is altogether on one side of
the tangent plane in the neighbourhood of A ; if k2>iil the surface
crosses the tangf>nt-plane. This leads to the distinction between
synclastic and anticlastic surfaces. There is also a limiting case
in which A* = HI, when the surface touches the plane along a curve.

Mobius shows that, if the restriction that t and u be infinitely
small be removed, then A + tB +, uC2 + (if + ktu + lu2)D represents a
quadric surface. To examine the different forms of quadric sur-
face, put s = Iu2 + ktu + it2 + u +1 + 1.
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We may show that s = —I

11

w* + e
til - k2)}

where v and w are linear functions of t and u and where

The points at infinity are obtained by making s zero; hence
there are no such points if Ail>k* and e is positive. In this case
the surface is an ellipsoid.

If Ail>k2, but e is negative, the surface does not cross the
tangent plane at the point of contact, and there are real points at)
infinity (Hyperboloid of two sheets).

If 4i7<&2, we get a hyperboloid of one sheet.
If e = o, we get an elliptic paraboloid if 4il>k2, a hyperbolic

paraboloid if 4i7<&2.
Mobius next proceeds to consider some simpler forms df the

expressions for quadric surfaces and to deduce some of the pro-
perties of such surfaces ; and then devotes a few pages to develop-
able surfaces.

The next section of the Calculus is devoted -to the problem of
determining the equation to a curve when its barycentric expression
is given; and to the converse problem.

The first of these problems is easily soluble; but, as has been
already pointed out, the second is only soluble in particular cases.
I shall only point out how the first of these problems is solved in
the case of plane curves.

Let A, B, C, be the vertices of the triangle of reference, and
let the co-ordinates of these points be (a, a'), (b, b'), (c, c) with
references to a pair of Cartesian Axes.

Let F=pA + qB + rC and let the co-ordinates of P be (x, y).
If P', A', B', 0', are the feet of the ordinates from P, A, B, C, then, by
the fundamental theorem of the Calculus,

p. AA' + ?.BB' + r.CO' = (p + q + r) .PP'
i.e., pa'+ qb'+ rc'= (p + q + r)y \

and similarly pa + qb + re = (p + q + r)x j

Thus we get x and y in terms of p, q and r. If p, q and r are given
functions of a variable v, so that pA + qB + ?-C represents a
curve, we get the equation to the curve by eliminating v between
the equations that give x and y.
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This section concludes the first part of the Barycentric Calculus ;
the second partis devoted to the discussion of certain relations between
figures and of some geometrical theorems connected with these
relations. This part also contains a lengthy discussion of the theorj
of anharmonic ratio and what are called geometrical nets.

Mobius considers five different kinds of relations between
figures. The first of these he describes by the phrase equality and
similarity (Gleichheit and Aehnlichkeit); but as the second relation
is similarity and the fourth is equality, it will be better to employ
the single term congruence. The five relations then are (1) Con-
gruence, (2) Similarity, (3) Affinity, (4) Equality, (5) Collineation.
The most general of these relations is the last, all the others being par-
ticular cases of i t ; and towards the end of his discussion, Mobius
shows that of any two plane figures between which the relation of
collineation subsists, one may be exhibited as a conical projection
of the other. The relation of collineation is thus the same as
that of homology or homography, of which a discussion was given
before the date of the Barycentric Calculus by Poncelet, and after
that date by Chasles; and an account of the theory of homology is
now contained in many geometrical text-books. But as Mobius's
treatment is based on the methods of his Calculus, and for the sake of
completeness, it may be well to give some account of his theory of
these five geometrical relations.

The account of congruence and similarity I may pass over with
the remark that he enumerates the number of conditions required
to determine certain figures. The results of these enumerates I
shall bring together in a table at the end of this account of his
discussion.

The relation of affinity is defined as follows :—
Let ABC and A'B'C be any two triangles, and let D and D' be

two points determined with reference to these triangles by means of
the relations D = a A + 6B + cC and D' = aA' + b B' + cC, then D and
D' are corresponding points. From this it is obvious that if one
system of points be given then the corresponding system of points
will be determined when three of the points are given ; but these
three points may be given arbitrarily.

If P, Q, R, S, are any four points of the one system, P', Q', R', S',
the corresponding points in the other system, we shall have rela-
tions of the form
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+ qQ + rR +sS

and .-. p-.q-.r : s = AQRS : APSR : ASPQ : ARQP
= AQ'R'S' : AP'S'R' : AST'Q' : AR'Q'P'.

Hence the ratio PQR : P'Q'R' is constant.
It is next shown that the above definition is equivalent to that

given in terms of Cartesian co-ordinates by Euler in his Introductio
in Analysis Infinitorum; and then the theory is extended
to space of three dimensions by means of the definition that E
and E' are corresponding points if E = aA + 6B + cC + c?D and
E' = oA' + 6B' + cG' + dD'.

It is easily shown, by a method perfectly analogous to that used
above for plane figures, that corresponding solids are to one another
in a constant ratio. *•

Further if in one figure, three points are collinear or four
points coplanar, then the same will be true of the corresponding
points in the other figure; and if A, B, 0, are collinear points and
A', B', C, the corresponding points, then AB : BO = A'B': B 'C

It has been pointed out that in two plane figures that bear to
one another the relation of affinity, if P, Q R, and P', Q', R', are
corresponding points, then APQR : AP'Q'R' = const (m, say), and
in space of three dimensions if P, Q, R, S, and P', Q', R', S', are
corresponding points, then vol.PQRS : vol.P'Q'R'S' = const (n,
say). If m is unity, we get the relation of equality for plane
figures; and if n is unity, for solid figures. To obtain two such
figures, it is only necessary to make the triangles of reference equal
in area in the one case, and the tetrahedrons of reference equal in the
other case.

Mobius works out a number of cases of the calculation of parts
of figures in plane and solid geometry, in connection with these
relations, and applies this theory to prove some properties of conic sec-
tions and of quadric surfaces. I select the following as an example.

Given five points ABODE (fig. 4) in a plane, and given the four
ratios

ABC :CDA=p^
BCD : DAB = q I to calculate the ratio
A B E : C D E = r { DBE-=-ACE = *.
DAE:B0E = s )

Assume d"D = dA + d'B + C, e"E = eA + e'B + C ... (1), (2),
so that d" = 1 + d + d' and e" = 1 + e + e'.
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Eliminating first C and then A, we get

K = O, (3)
(de'-ed')B + (J-e)C+ed"D-de"E = O (4)

From (1) we get the relations

BCD : DCA : DAB : ABC = d : d' : 1 : d"

with similar results from (2), (3), and (4).
These enable us to express p, q, r, s and t in terms of d, d', e, e ;

viz., we get

p = - d"/d', q = d, r = d"/(de' - d'e), « = (« ' - d')jed" and t = (e - d)/e'd".

On eliminating d, d', e, e' from these four equations, we get

The next chapter is devoted to the discussion of anharmonic
ratio (Doppelschnittsverhaltniss) (ratio bissectionalis). I t is here
that this theory was first fully discussed ; but as the subject is now
well known, I may pass it over altogether.

The next subject considered is that of geometrical nets in a
plane and in space of three dimensions. If we start with four
points in a plane, and join them in every possible way, we get three
new points. If we draw the three straight lines joining these
three points in pairs, we obtain three new points as the intersections
of these lines with lines already drawn in the figure. Proceeding in
this way we may get an infinite number of points and straight lines
in the plane. The figure formed by all these straight lines is called
a plane geometrical n e t ; and the analogous figure in space of three
dimensions may be formed by starting with five points in space.

I t is easily shown by mathematical induction that if A, B, C, D
are the four principal points of a plane net, and if D = a A + bB + cC,
then every other point of the net may be expressed in the form
kaA. + juiB + vcC where A., ju., v are rational numbers, and are inde-
pendent of a, b, and c. Further, by calculating the anharmonic
ratio of four collinear points, we may show that its value is inde-
pendent of a, b, c; and therefore this anharmonic ratio does not
depend on the position of A, B, C, D, but only on the steps by which
the four points considered have been derived from A, B, C, D. The
converse to the theorem quoted above is then proved, namely, that
any point P = XaA + /x6B + vcC where A, /*, v are rational numbers is
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a point in the net. In proving this we may assume A, /A, V, to be
integers. Constructions are given for the points 2a A + 6B + cC,
3<iA + 6B + cC, etc., in succession, and this shows that we may con-
struct the point A.aA + 6B + cC. Then constructions for the points
AaA + 26B + cO, XaA + 36B + cC are given, showing that we may
construct XaA + /u.6B + cC, and then similarly that we may construct
XaA + pbE + vcG. In order to apply this theory to the last of the
geometrical relations, that of collineation, Mobius proves (what is
really obvious) tRat every point of the plane is either a point of the
net, or infinitely near to a point of the net. He proves a number of
theorems in plane and solid geometry by means of the theory of
nets, and then proceeds to consider what he calls a " Vieleckschnitts-
verhaltniss." This word may be translated by the phrase " poly-
gonal cross-ratio" There is a triangular cross-ratio, tetragonal
cross-ratio, and so on. If P, Q, R, are points in the sides BO, CA,
AB of a triangle, then

BP CQ AR . , . ,
—_. . is a triangular cross-ratio.

PC QA RB
It is shown that, just as in the case of an ordinary cross-ratio, if

A, B, C, P, Q, R, are points of a net, then the value of the triangular
cross-ratio is independent of the positions of the four principal
points of the net.

The defining property of the last kind of geometrical relation
considered, that of collineation, is this, that to three collinear points
in the one figure shall correspond three collinear points in the other
figure. Two geometrical nets (both plane or both solid) satisfy this
definition, and are the most general figures that can satisfy it. For
if we start with two tetrads of corresponding points A, B, C, D, and
A, B', C, D', we may obtain from these by the first step, three new
points in each figure, E, F, G, and E', F', G', and by the definition
of collineation E' must correspond to E, F' to F, and G' to G ; and
so on for all the other points of the two nets. Now we may put
D = «A + 6B + cC and D' = a'A' + b'B' + c'G', where a, b, c, a', b', c,
are arbitrary, and any point of the first net may be written
P = XaA + i>J>B + vcC, and the corresponding point in the second net
will be Xa'A' + fib'B' + vc'C. Hence this is the analytical definition
of the relation of collineation. If we suppose A, /J,, V to be functions
of a single variable, we shall get two curves which are subject to
this relation; and it is obvious that any two corresponding curves
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are of the same order. From what has been proved above it follows
that a cross-ratio or a polygonal cross-ratio in one figure is equal to
the cross-ratio or the polygonal cross-ratio formed by the correspond-
ing points in the other figure.

As has been mentioned above, Mobius shows that of any two
figures between which this relation of collineation subsists either
may be regarded as the conical projection of the other. Hence the
relation of collineation is identical with that of homography, or if
the relative position of the two figures be restricted in a certain way,
that of ltomology. The above definition is easily extended to space
of three dimensions; and, among his illustrations of the theory,
Mobius shows that by the method of collineation, any one conic
section may be transformed into any other, but that a similar
theorem does not hold good of quadric surfaces. These divide them-
selves into two groups, the first of which includes the ellipsoid, the
hyperboloid of two sheets and the elliptic paraboloid, and the second
the hyperboloid of one sheet and the hyperbolic paraboloid ; in other
words, the first class includes the non-ruled surfaces, and the second
class the ruled surfaces. Any one surface of one of these classes
may be transformed into any other of that class ; but one from one
class cannot be transformed into one from the other class.

Mobius next explains what he calls the contracted (abgekiirzte)
Barycentric Calculus. This contracted form is applicable to pro-
blems which are true of all figures collinearly related. The contrac-
tion consists in omitting the a, b, c, from the equations, and taking
for the four principal points A, B, C and D s A + B + C. This con-
tracted method is applied to certain problems connected with the
triangle and the tetrahedron.

•* Mobius next proceeds to classify certain geometrical problems
according to the geometrical relation (congruence, similarity, etc.)
under which they come. If there are n points in a straight, in a
plane or in space, we may want to calculate the length of a line, the
ratio of two lines, an area, etc. The following table gives the
number of conditions necessary in each case :—
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Congruence
Similarity .
Equality

Affinity

Collineation

I.

n-\
n-2
n-1

n - 2

n - 3

II.

2w-3
2«-4
2ra-5

2«-6

2n-8

III.

3n- 6
3n- 7
3 / i -H

3ra-12

3n-15

Ratios.
Portions of space

(areas, etc.)
Ratios between por-

tions of space.
Polygonal cross-

ratios.

The meaning of this table may be illustrated by taking (say) the
second column under the head of " affinity." If there are n pgints
in a plane, and if 2re - 6 independent ratios of areas of triangles or
polygons formed by certain of these points are given, then all the
figures that can be constructed to satisfy these conditions will have
the relation of affinity to one another ; and from the 2n - 6 given
ratios any other ratio may be calculated. Many illustrations are
given by Mbbius, and one of these has been quoted above.

Mobius points out that problems connected with congruence and
similarity, e.g., such as involve angles, cannot be solved by means of
the Barycentric Calculus at all ; those that are true of all figures
which satisfy the relation of affinity can be solved by the ordinary
form of the Calculus ; while those that are true of all figures col-
linearly related may be solved by the contracted form. This forms
a three-fold classification of geometrical theorems.

The third and last part of the work is concerned with the appli-
cation of the Calculus to the investigation of certain properties of
the Conic Sections and with a discussion of the principle of duality.
From this part I shall only select a few examples by way of illus-
tration. The first question considered is the determination of a
conic section by means of five given points or five given tangents.

As we have seen already, the general expression for a conic cir-
cumscribing the triangle of reference is

a(v - ft)(v - y) A + b(v - y)(v - a)B + c(v - a)(v - /8)C.

This expression may be reduced to the form

fxA-gx(\-x)B + h(\-x)C ... ... (1)
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where

y - a v — /? '

Let D = a A + 6B + cC, then the conditions that the conic pass
through this point are

-jL.:-g: A =a:b:c,
1 - x x

whence fja +g/b + hjc = O.

If E = a'A + b'B + c'G is the fifth point, we must also have
//a ' +gjb' + h/c = 0 ; and from these two equations we get

V be b'c ' \ cal c'a ' \ rib' a'b

= a(fi — y) : b(y — a) : c(a — /$),

where a' = a/a, b = bjfi, c' = c/y.

Hence the expression for the conic through the five points
A, B, C, D, E, is

- b(y - a)a;(l - x)B + c(a - (3)(l - x)G;

arid the values of x that give these points are

1, fi, 0, - (a - /3)/(y - a) and - 7(a - /8)/fly - a).

Putting (a - /3)/(y - a) = m, and .-. (/3 - y)l(y - a) = - 1 + m, we
get the expression o(l — m)xA. + bx(l — x)B + cm(\ - x)G, which, if
we suppose m to be arbitrary, will represent any conic passing
through A, B, 0, D.

Taking the form (1) we may determine the condition that it
represent an ellipse, a hyperbola or a parabola, by considering the
sum of the co-efficients. This sum is

fx-gx(\ -

The discriminant of this is

The condition for a parabola is

g + h - / = 2 Jgh o r / = ( J9 -

Putting e— s/(h/g), the expression for a parabola circumscribing
ABC becomes

(1 - efxA -x(l-x)B + e>(\- x)C.
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Now take a fourth point D = aA + 6B + cC, and put a
then the equation to determine e, so that the parabola shall pass
through D reduces to

that is, (a + e)6e2 - 2bce + (a + b)c = 0.

The discriminant of this reduces to the form abed.
Now if this expression is positive, two of the factors must be

positive and the other two negative, and therefore each of the points
ABCD will be outside the triangle formed by the other three. On
the other hand, if the expression is negative, three of the factors must
have the same sign, and therefore one of the points will be inside
the triangle formed by the other three. In the first case it will be
possible to construct two parabolas to pass through ABC and D,
and in the other case no such parabola can be described.

Using the form a(l - m)xA + bx(l - x)B + cm(l - x)C .. (2),
we find that the discriminant of the sum of the co-efficients is

M = (b + cfm - (c + afm(l - m) + (a + bf(l - vi).

The discriminant of M, considered as a function of m, is abed; and
hence the expression (2) may represent a parabola if abed is positive,
as we have already shown. If, on the other hand, abed is negative
M will always have the same sign, and (2) can represent only hyper-
bolas or only ellipses. When m = 0, M becomes (o + 6)*, and hence if
abed is negative (2) can represent only hyperbolas. This case, it is
to be remembered, occurs when one of the four points A, B, C, D,
lies within the triangle formed by the other three.

Of five points in a plane there will always be four such that each
of them lies outside the triangle formed by the other three. Let
these be A, B, C, D (fig. 5).

If E lies in one of the spaces II the curve must be a hyperbola;
if in one of the spaces G it may be either a hyperbola or an ellipse.
Construct the two parabolas through ABCD (fig. 6). These para-
bolas must lie altogether in the spaces G. If we letter the spaces
as in the figure, we see that, if E lies i:>. one of the spaces L, the
curve is an ellipse; if E lies in one of the other spaces, the curve is
a hyperbola. This follows from the continuity of M and from the
fact that M is zero when E is on one of the parabolas.

As a last illustration of the application of the Calculus we may
take the following :—

https://doi.org/10.1017/S0013091500030923 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500030923


20

In the triangle ABC (fig. 7) is inscribed the triangle A'B'C, in this
the triangle A"B"C", and so on, so that the three sets of correspond-
ing vertices lie on straight lines which pass through a fixed point
D. In the triangle ABO, a conic is inscribed touching the sides at
A', B', 0', in A'B'C a conic is inscribed touching at A", B", C". To
show that the centres of all these conies lie in a straight line passing
through D.

Let dD = iA + kB + IC,

and put k+l=i',l+i = k',i+k=l'
k1 +1' = i", l' + i' = k", i' + k' = I", etc.

Then i'A' = kB + IC, k'B' = lC + iA, FC'^i

Similarly i"A" = k'B' + I'C, etc., etc.

Now the centre of the conic which is inscribed in ABC and
touches the sides at the points AB + IG, IC + tA, iA + kB, is

mM = i(k +I) A + k(l + i)B + l(i + k)C

where m = ii' + kk' + W.

Similarly the centre of the second conic is

m'M' = i\k' +1') A' + k'(l' + t)B' + l'(i' + k')G

= i"(kB + IC) + k"(lG + iA) + l"(iA + kB)
= i(k" +1") A + k(l" + i")B + l(i" + k")G

where m' = i'i" + k'k" + IT = «'" + kk'" + IV".

From these we get

m'M' - mM = i(i'" - i')A + k(k'" - k')B +1(1"' - l')C.

Now

i'" -i' = A" + 1" -i' = 1' + i' + i' + k' -i' = i' + k' + V = 1d;

and hence

m'M' - mM = 2d(iA + kB + IC) = 2rf»D.

Hence M, M' and D are collinear and hence all the centres lie
on a straight line passing through D.
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Mobius calculates the values of the successive ranges formed by
these centres, and finds that

(DMM'M") = 5, (MM'M"M'") = (M'M"M'"M"") = etc. = ^ .

The last two chapters of the Calculus are devoted to a discussion
of the principle of duality. This principle, which is now so well
known, was only being investigated when Mobius wrote in 1827.
As a consequence of the theory of reciprocal polars, it was first
stated by Poncelet in the year 1818, and as an independent prin-
ciple by Gergonne in 1826, and the Barycentric Calculus was pub-
lished in 1827. In his preface Mobius states that before the part
of his work dealing with duality was sent to press he had heard of
the papers of Poncelet and Gergonne, but had not seen them. It is
unnecessary to give an account of his treatment of the subject^ but
it may be well to state that he enunciates the principle quite gene-
rally as a characteristic property of space and treats the subject
independently of the properties of conic sections.

Second Meeting, December 11, 1891.

Professor J. E. A. STEGGALL, M.A., President, in the Chair. ,

Note on an approximate fractional expression for the
expansion of (1 + K)" to any odd number of terms.

By Professor J. E. A. STKGGALL.

In Bonnycastle's Arithmetic a rule is given for finding any root
of a number by approximation which in substance reduces to this
statement:—If a and b are nearly equal, then the n"1 root of ajb is
nearly equal to

or, if we call alb, 1+x, we have ( 1 + * ) ~ = j r -^4-—TT~
zn + {n — Y)x

For example, let a = 2, 6 = 1, n = 3, then an approximation to
the cube root of 2 is

4.2 +2.1 _ j _ t

4.1 + 2.2 4
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