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Abstract

Our aim in this paper is to deal with Sobolev inequalities for Riesz potentials of functions in Lebesgue
spaces of variable exponents near Sobolev’s exponent over nondoubling metric measure spaces.
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1. Introduction

In the present paper, we are concerned with Sobolev inequalities for Riesz potentials
of functions in Lebesgue spaces of variable exponents near Sobolev’s exponent in the
nondoubling setting.

Sobolev space is a useful tool for studying the existence and regularity of solutions
of partial differential equations. For 0 < α < n, we define the Riesz potential of order
α for a locally integrable function f on Rn by

Uα f (x) =

∫
Rn
|x − y|α−n f (y) dy.

Here it is natural to assume that∫
Rn

(1 + |y|)α−n| f (y)| dy <∞

(see [9, Theorem 1.1, Ch. 2]). The famous Sobolev inequality says that the Riesz
potential Uα f of order α with f ∈ Lp(Rn) belongs to Lp∗(Rn) when 1 < p < ∞ and
1/p∗ = 1/p − α/n > 0.
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Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss
nonlinear partial differential equations with nonstandard growth condition. For a
survey, see [2, 4].

Let G be a bounded Borel set in Rn. Let p(·) : G→ (1,∞) be a variable exponent
satisfying the log-Hölder conditions on G. Denote by Lp(·)(G) the family of all
measurable functions f on G such that

‖ f ‖Lp(·)(G) = inf
{
λ > 0 :

∫
G
| f (x)/λ|p(x) dx ≤ 1

}
<∞.

If p(x) < n/α, then we set

1/p∗(x) = 1/p(x) − α/n.

We take the following result from [6]. There are related results in [5, 10]. The case
supx∈G p(x) < n/α was shown in [3].

Theorem 1.1 [6]. Let p(·) be a variable exponent on G satisfying log-Hölder conditions
on G such that

1 < p− := inf
x∈G

p(x) ≤ p(x) < n/α

for x ∈ G. Then there exists a constant c > 0 such that

‖γ(·)−1Uα f ‖Lp∗(·)(G) ≤ c‖ f ‖Lp(·)(G)

for all f ∈ Lp(·)(G), where
γ(x) = p∗(x)(p(x)−1)/p(x).

We denote by (X, d, µ) a metric measure space, where X is a bounded set, d is a
metric on X and µ is a nonnegative complete Borel regular outer measure on X which
is finite in every bounded set. For simplicity, we often write X instead of (X, d, µ). For
x ∈ X and r > 0, we denote by B(x, r) the open ball centred at x with radius r and we
set dX = sup{d(x, y) : x, y ∈ X}. We assume for simplicity that 0 < dX < ∞, µ({x}) = 0
for x ∈ X and µ(B(x, r)) > 0 for x ∈ X and r > 0.

In the present paper, we do not postulate on µ the so-called ‘doubling condition’.
Recall that a Radon measure µ is said to be doubling if there exists a constant c0 > 0
such that µ(B(x, 2r)) ≤ c0µ(B(x, r)) for all x ∈ supp(µ) (= X) and r > 0. Otherwise µ is
said to be nondoubling. We say that a measure µ is lower Ahlfors Q-regular if there
exists a constant c1 > 0 such that

µ(B(x, r)) ≥ c1rQ (1.1)

for all x ∈ X and 0 < r < dX . We assume here that µ is lower Ahlfors Q-regular. Note
that if µ is a doubling measure and dX < ∞, then µ is lower Ahlfors log2 c0-regular
since

µ(B(x, r))
µ(B(x, dX))

≥ c−2
0

( r
dX

)log2 c0
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for all x ∈ X and 0 < r < dX (see, for example, [1, Lemma 3.3]). However, there exist
lower Ahlfors measures which are nondoubling. For example, let

X1 = {x = (x1, 0) ∈ R2 : 0 ≤ x1 < 1}, X2 = {x = (x1, x2) ∈ R2 : |x| < 1, x1 < 0}

and define (X,d, µ) = (X1,d2,m1) ∪ (X2,d2,m2), where d2 denotes the two-dimensional
Euclidean distance and mi denotes the i-dimensional Lebesgue measure. It is easy
to show that µ is nondoubling and lower Ahlfors 2-regular. For other examples of
nondoubling metric measure spaces, see [13].

Our aim is to give a general version of Sobolev’s inequality for Riesz potentials
Iα,τ f of functions in Lp(·)(X) on nondoubling metric measure spaces X (Theorem 3.1)
as an extension of Theorem 1.1 (see Section 2 for the definitions of Iα,τ f and Lp(·)(X)).
To this end, we apply Hedberg’s trick (see Hedberg [8]) by the use of the Hardy–
Littlewood maximal operator Mλ adapted to our setting (see Theorem 2.4).

For variable exponents attaining the value 1, we refer to [10, 14].

2. Boundedness of the maximal operator

Throughout this paper, let C denote various positive constants independent of the
variables in question and C(a, b, . . .) be a constant that depends on a, b, . . . .

We consider a variable exponent p(·) such that

|p(x) − p(y)| ≤
Cp

log(e + 1/d(x, y))
for all x, y ∈ X (2.1)

and
1 < p− := inf

x∈X
p(x) ≤ sup

x∈X
p(x) =: p+ <∞,

where Cp > 0.
For α > 0 and τ > 0, we define the Riesz potential of order α for a locally integrable

function f on X by

Iα,τ f (x) =

∫
X

d(x, y)α f (y)
µ(B(x, τ d(x, y)))

dµ(y)

(see, for example, [7, 11]).
Denote by Lp(·)(X) the family of all measurable functions f on X such that

‖ f ‖Lp(·)(X) = inf
{
λ > 0 :

∫
X
| f (x)/λ|p(x) dµ(x) ≤ 1

}
<∞.

If p(x) < Q/α, then we set

1/p∗(x) = 1/p(x) − α/Q.

For a locally integrable function f on X and λ ≥ 1, the Hardy–Littlewood maximal
function Mλ f is defined by

Mλ f (x) = sup
r>0

1
µ(B(x, λr))

∫
B(x,r)∩X

| f (y)| dµ(y).
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For λ ≥ 1, we say that X satisfies (Mλ) if there exists a constant C > 0 such that

µ({x ∈ X : Mλ f (x) > k}) ≤
C
k

∫
X
| f (y)| dµ(y)

for all measurable functions f ∈ L1(X) and k > 0.

Remark 2.1. In [12], Sawano showed that X satisfies (Mλ) for λ ≥ 2 if X is a separable
metric space (see also [15]).

Lemma 2.2. Let 1 < p0 <∞ and λ ≥ 1. Suppose that X satisfies (Mλ). Then there exists
a constant C > 0 such that ∫

X
{Mλ f (x)}p0 dµ(x) ≤ C

for all measurable functions f with ‖ f ‖Lp0 (X) ≤ 1.

Lemma 2.3. Let λ ≥ 1 and let f be a nonnegative measurable function on X with
‖ f ‖Lp(·)(X) ≤ 1 such that f (x) ≥ 1 or f (x) = 0 for each x ∈ X. Set

I = I(x, r, f ) =
1

µ(B(x, λr))

∫
B(x,r)∩X

f (y) dµ(y)

and
J = J(x, r, f ) =

1
µ(B(x, λr))

∫
B(x,r)∩X

f (y)p(y) dµ(y).

Then there exists a constant C > 0 such that

I ≤ CJ1/p(x)

for all x ∈ X.

Proof. Let f be a nonnegative measurable function on X with ‖ f ‖Lp(·)(X) ≤ 1 such that
f (x) ≥ 1 or f (x) = 0 for each x ∈ X. First consider the case when J ≥ 1. Set k = J1/p(x).
Then

I ≤ k +
1

µ(B(x, λr))

∫
B(x,r)∩X

f (y)
( f (y)

k

)p(y)−1
dµ(y).

Since ‖ f ‖Lp(·)(X) ≤ 1, we find by (1.1) that

J ≤
1

µ(B(x, λr))

∫
X

f (y)p(y) dµ(y) ≤
1

µ(B(x, λr))
≤ c−1

1 λ−Qr−Q.

Hence, for y ∈ B(x, r),

k−p(y) ≤ {J1/p(x)}−p(x)+Cp/log (e+1/r) ≤ {J1/p(x)}−p(x)+Cp/log (e+1/(CJ−1/Q)) ≤ CJ−1.

It follows that
I ≤ CJ1/p(x).

In the case J ≤ 1, we find that
I ≤ J ≤ J1/p(x).

Consequently, the result follows. �
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Now we are ready to show the boundedness of the maximal operator Mλ.

Theorem 2.4. Let λ ≥ 1. Suppose that X satisfies (Mλ). Then there exists a constant
cM > 0 such that ∫

X
{Mλ f (x)}p(x) dµ(x) ≤ cM

for all measurable functions f with ‖ f ‖Lp(·)(X) ≤ 1.

Proof. Let f be a nonnegative measurable function on X with ‖ f ‖Lp(·)(X) ≤ 1. Write

f = fχ{y: f (y)≥1} + fχ{y: f (y)<1} = f1 + f2,

where χE denotes the characteristic function of E. Since M f2 ≤ 1 on X, we see from
Lemma 2.3 that

{Mλ f (x)}p(x) ≤ C{1 + Mλg(x)},

where g(y) = f (y)p(y). Now take p1 such that 1 < p1 < p−. Applying the above
inequality with p(x) replaced by p(x)/p1,

{Mλ f (x)}p(x) ≤ C{1 + {Mλg1(x)}p1},

where g1(y) = f (y)p(y)/p1 . By Lemma 2.2,∫
X
{Mλ f (x)}p(x) dµ(x) ≤ cM ,

as required. �

3. Sobolev’s inequality

As an application of the maximal operator, we establish Sobolev’s inequality for
Riesz potentials of functions in Lebesgue spaces of variable exponents near Sobolev’s
exponent in the nondoubling setting.

Theorem 3.1. Let τ > λ ≥ 1. Suppose that p(x) < Q/α for x ∈ X and X satisfies (Mλ).
Then there exists a constant c > 0 such that

‖γ(·)−1Iα,τ f ‖Lp∗(·)(X) ≤ c‖ f ‖Lp(·)(X)

for all f ∈ Lp(·)(X), where
γ(x) = p∗(x)(p(x)−1)/p(x).

Remark 3.2 ([10, Remark 3.2]). Let G be an open bounded set in Rn. For 0 < δ < 1,
we can find f ∈ Lp(·)(G) such that∫

G
{γ(·)−δUα f (x)}p

∗(x) dx =∞,

so that the weight γ(·)−1 in Theorem 3.1 is needed.
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Lemma 3.3. Let τ > 1 and let f be a nonnegative measurable function on X with
‖ f ‖Lp(·)(X) ≤ 1. Suppose that p(x) < Q/α for x ∈ X. Then there exists a constant C > 0
such that ∫

X\B(x,δ)

d(x, y)α f (y)
µ(B(x, τ d(x, y)))

dµ(y) ≤ Cγ(x)δα−Q/p(x)

for all x ∈ X and 0 < δ < 1/2.

Proof. Let f be a nonnegative measurable function on X with ‖ f ‖Lp(·)(X) ≤ 1.
First we consider the case p∗(x)−1/Q ≤ δ. By (1.1),∫

X\B(x,δ)

d(x, y)α f (y)
µ(B(x, τ d(x, y)))

dµ(y) ≤ τ−Qc−1
1

∫
X\B(x,δ)

d(x, y)α−Q f (y) dµ(y)

≤ τ−Qc−1
1 δα−Q

∫
X

f (y) dµ(y)

≤ τ−Qc−1
1 δα−Q

∫
X
{1 + f (y)p(y)} dµ(y)

≤ Cγ(x)δα−Q/p(x).

Next we consider the case p∗(x)−1/Q > δ. Note that∫
X\B(x,p∗(x)−1/Q)

d(x, y)α f (y)
µ(B(x, τ d(x, y)))

dµ(y) ≤ Cp∗(x)1−α/Q ≤ Cγ(x)δα−Q/p(x).

On setting η(x) = p∗(x)−1/p(x) and N(x, y) = d(x, y)−Q/p(x),∫
B(x,p∗(x)−1/Q)\B(x,δ)

d(x, y)α f (y)
µ(B(x, τ d(x, y)))

dµ(y)

≤

∫
B(x,p∗(x)−1/Q)\B(x,δ)

d(x, y)α

µ(B(x, τd(x, y)))
{η(x)N(x, y)} dµ(y)

+

∫
B(x,p∗(x)−1/Q)\B(x,δ)

d(x, y)α f (y)
µ(B(x, τd(x, y)))

( f (y)
η(x)N(x, y)

)p(y)−1
dµ(y)

= J1 + J2.

Let j0 be the smallest positive integer such that τ j0δ ≥ p∗(x)−1/Q. We obtain

J1 ≤

j0∑
j=1

∫
X∩(B(x,τ jδ)\B(x,τ j−1δ))

d(x, y)α

µ(B(x, τ d(x, y)))
{η(x)N(x, y)} dµ(y)

≤ η(x)
j0∑

j=1

∫
X∩(B(x,τ jδ)\B(x,τ j−1δ))

(τ j−1δ)α−Q/p(x)

µ(B(x, τ jδ))
dµ(y)

≤ Cη(x)
j0∑

j=1

(τ jδ)α−Q/p(x).
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Since p(x) < Q/α,

J1 ≤
C

log τ
η(x)

∫ 2dX

δ

tα−Q/p(x) dt
t
≤

C
log τ

η(x)(Q/p(x) − α)−1δα−Q/p(x)

≤ Cγ(x)δα−Q/p(x).

Next we estimate J2. From (2.1), for y ∈ B(x, p∗(x)−1/Q),

{η(x)N(x, y)}−p(y) ≤ Cη(x)−p(x)d(x, y)Q.

Therefore, by (1.1),

J2 ≤ τ
−Qc−1

1

∫
B(x,p∗(x)−1/Q)\B(x,δ)

d(x, y)α−Q
( 1
η(x)N(x, y)

)p(y)−1
f (y)p(y) dµ(y)

≤ Cη(x)1−p(x)
∫

B(x,p∗(x)−1/Q)\B(x,δ)
d(x, y)α−Q/p(x) f (y)p(y) dµ(y)

≤ Cγ(x)δα−Q/p(x)
∫

B(x,p∗(x)−1/Q)\B(x,δ)
f (y)p(y) dµ(y)

≤ Cγ(x)δα−Q/p(x),

which proves the lemma. �

Proof of Theorem 3.1. Suppose that f is a nonnegative measurable function on X
with ‖ f ‖Lp(·)(X) ≤ 1. By Lemma 3.3,

Iα,τ f (x) =

∫
B(x,δ)

d(x, y)α f (y)
µ(B(x, τd(x, y)))

dµ(y) +

∫
X\B(x,δ)

d(x, y)α f (y)
µ(B(x, τ d(x, y)))

dµ(y)

≤ C{δαMλ f (x) + γ(x)δα−Q/p(x)}

for 0 < δ < 1/2, since∫
B(x,δ)

d(x, y)α f (y)
µ(B(x, τ d(x, y)))

dµ(y)

≤

∞∑
j=1

∫
X∩(B(x,(τ/λ)− j+1δ)\B(x,(τ/λ)− jδ))

d(x, y)α f (y)
µ(B(x, τ d(x, y)))

dµ(y)

≤

∞∑
j=1

∫
X∩(B(x,(τ/λ)− j+1δ)\B(x,(τ/λ)− jδ))

((τ/λ)− j+1δ)α f (y)
µ(B(x, λ(τ/λ)− j+1δ))

dµ(y)

≤
δα

1 − (τ/λ)−α
Mλ f (x).

Here note that there exists a constant m > 0 such that t−p(x)/Q < m/2 for all x ∈ X and
t ≥ 1. Considering

δ =
1
m

(γ(x)−1Mλ f (x))−p(x)/Q
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when γ(x)−1Mλ f (x) ≥ 1, we find that

Iα,τ f (x) ≤ Cγ(x)αp(x)/Q{Mλ f (x)}1−αp(x)/Q.

If γ(x)−1Mλ f (x) < 1, then

Iα,τ f (x) ≤ C{Mλ f (x) + γ(x)} ≤ Cγ(x)

for δ = 1
4 .

Hence,

γ(x)−1Iα,τ f (x) ≤ C{(γ(x)−1Mλ f (x))1−αp(x)/Q + 1} ≤ C{{Mλ f (x)}p(x)/p∗(x) + 1}

since γ(x)−1/p∗(x) ≤ C, so that there exists a constant c > 0 such that

{c−1γ(x)−1Iα,τ f (x)}p
∗(x) ≤

1
2C0
{{Mλ f (x)}p(x) + 1},

where C0 = max{cM , µ(X)}. By Theorem 2.4,∫
X
{c−1γ(x)−1Iα,τ f (x)}p

∗(x) dµ(x) ≤
1

2C0

∫
X
{{Mλ f (x)}p(x) + 1} dµ(x) ≤ 1,

which completes the proof. �
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