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1. Introduction

Let ζ3(s) =
∑

n τ3(n)n
−s, <(s) > 1. Determining full asymptotic for the shifted

convolutions ∑
1≤n≤N

τ3(n)τ3(n+ h) (1.1)

for various ranges of h is an important problem in number theory in the past hundred
years and is still wide open. We believe, however, that Equation (1.1) is too strong for
applications. What we mean by that is the following. Suppose (A) and (C) are two
statements, possibly conjectures, with (A) =⇒ (C). We say that (A) is ‘too strong’ for
(C) if there exists a statement (B) such that (i) (B) is easier to prove than (A) and (ii)
the following diagram of implications
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Generalized divisor functions in arithmetic progressions 29

holds. Thus, we propose the following modified weaker correlation sum:∑
n≤X−h

τ3(n)τ3(n+ h), (1.2)

where the length of the sum depends on the shift h. We show that this sum
in Equation (1.2) is close to its expected value in an L2 sense and that this is enough for
certain problems.
More precisely, we prove, with a power-saving error term, that the second moment

of Equation (1.2), namely:

∑
h<X

 ∑
n≤X−h

τ3(n)τ3(n+ h)−MT(X,h)

2

� X3−1/100, (B)

is small, for a certain explicit main term MT(X,h). The main tool used in the proof is a
trigonometric method of I. M. Vinogradov.
Second, as an application of the above bound (B), we obtain the full asymptotic for the

variance of the ternary threefold divisor function in arithmetic progressions, averaged over
all residue classes (not necessarily coprime) and moduli: there exist computable numerical
constants c0, . . . , c8 such that

∑
q≤X

∑
1≤a≤q

 ∑
n≤X

n≡a(q)

τ3(n)−MT(X; q, a)


2

= X2(c8 log
8 X + · · ·+ c0) +O

(
X2−1/300

)
,

(C)
for some explicit main term MT(X; q, a). This result refines a related conjecture (see
Conjecture 1.1) about the leading order asymptotic of a similar variance and improves a
previously known upper bound by the author.
Quantities of the form (C) have their roots in the celebrated Bombieri–Vinogradov

Theorem [4, 24], which, in one form, asserts that

∑
1≤q≤N1/2(logN)−B

max
y≤N

max
(a,q)=1

∣∣∣∣∣∣∣∣
∑

1≤n≤y
n≡a(q)

Λ(n)− y

ϕ(y)

∣∣∣∣∣∣∣∣� N(logN)−A, (1.3)

where Λ(n) is the von Mangoldt function and B = 4A + 40 with A> 0 arbitrary.
Analogues of Equation (1.3) have been found for all τk(n) [19] and τ2(n)

2 [16, Lemma
8], where τk(n) is the k -fold divisor function:

∑∞
n=1 τk(n)n

−s = ζk(s),<(s) > 1. Around
the same time, Barban [2, 3], Davenport–Halberstam [7] and Gallagher [9] found the
following related inequality in which the absolute value is being squared:

∑
1≤q≤N(logN)−B

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣∣∣∣
∑

1≤n≤N
n≡a(q)

Λ(n)− N

ϕ(q)

∣∣∣∣∣∣∣∣
2

� N2(logN)−A, (1.4)
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giving a much wider range for q. In fact, Davenport and Halberstam proved a slightly
stronger result than Barban’s, while Gallagher gave a simplified elegant proof.
For this reason, this type of inequalities are often referred to as
Barban–Davenport–Halberstam type inequalities.
Barban–Davenport–Halberstam type inequalities have many applications in number

theory. For instance, a version of this inequality (with Λ(n) replaced by related convolu-
tions over primes) was skillfully used by Zhang [25, Lemma 10] in his spectacular work
on bounded gaps between primes.
In 1970, Montgomery [15] succeeded in replacing the inequality in Equation (1.4) by

an asymptotic equality. Montgomery’s method is based on a result of Lavrik, which
in turns relied on I. M. Vinogradov’s theory of exponential sums over primes. One of
Montgomery’s results is

∑
1≤q≤Q

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣∣∣∣
∑

1≤n≤N
n≡a(q)

Λ(n)− N

ϕ(q)

∣∣∣∣∣∣∣∣
2

= QN logN+O(QN log(2N/Q))+O
(
N2(logN)−A

)
,

(1.5)
for Q ≤ N and A> 0 arbitrary. A few years later, Hooley [12], by introducing new
ideas in treatment of the off-diagonal terms specific to primes, sharpened the right side
of Equation (1.5) to

QN logN +O(QN) +O(N2(logN)−A)),

with Λ(n) replaced by the Chebyshev function θ(n).
Motohashi [17], by using an approach similar to Montgomery, elaborately established

a more precise asymptotic with lower order and power saving error terms for the divisor
function τ(n). Recently, by function field analogues, Rodgers and Soundararajan [22]
were led to an analogous conjecture for the leading order asymptotic of the variance of
the k -fold divisor function τk over the integers. We state here a smoothed version of that
conjecture formulated in [20, Conjecture 1].

Conjecture 1.1. Let w(y) be a smooth function supported in [1, 2] with∫
w(y)2 dy = 1,

and

M[w](σ + it) �`
1

(1 + |t|)`
,

uniformly for all |σ| ≤ A for any fixed positive A> 0, for all positive integers `, where
M[w] denotes the Mellin transform

M[w](s) =

∫ ∞

0

w(x)xs−1 dx,

https://doi.org/10.1017/S0013091523000664 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000664


Generalized divisor functions in arithmetic progressions 31

of w. Then, for X, d → ∞ such that (logX/log d) → c ∈ (0, k), we have

∑
1≤a≤d
(a,d)=1

|∆w(τk;X, d, a)|2 ∼ ak(d)γk(c)X(log d)k
2−1, (1.6)

where

∆w(τk;X, d, a) =
∑

n≡a (mod d)

τk(n)w
( n

X

)
− 1

ϕ(d)

∑
(n,d)=1

τk(n)w
( n

X

)
,

ak(d) = lim
s→1+

(s− 1)k
2

∞∑
n=1

(n,d)=1

τk(n)
2

ns
,

and γk(c) is a piecewise polynomial of degree k2 − 1 defined by

γk(c) =
1

k!G(k + 1)2

∫
[0,1]k

δc(w1 + · · ·+ wk)∆(w)2dkw,

with δc(x) = δ(x − c) a Dirac delta function centred at c, ∆(w) =
∏

i<j(wi − wj) a
Vandermonde determinant, and G the Barnes G-function, so that in particular G(k+1) =
(k − 1)!(k − 2)! · · · 1!.

In [22], Rodgers and Soundararajan confirmed an averaged version of this conjecture in
a restricted range over smooth cutoffs. Harper and Soundararajan [11] obtained a lower
bound of the right order of magnitude for the average of this variance. In [20], by using
the functional equation for L(s, χ) and a multiplicative Voronoi summation formula, the
author confirmed the asymptotic equation (1.6) for the restricted dual range k−1 < c < k
for all k. By the large sieve inequality, the author also obtained in [19, Theorem 3] an
upper bound of the same order of magnitude for this averaged variance.
The smoothed asymptotic equation (1.6) as well as the un-smoothed version are closely

related to the problem of moments of Dirichlet L-functions [5] and correlations of divisor
sums [6]. This is due to the appearance of the factor γk(c) in the leading order asymptotic
in Equation (1.6). This piecewise polynomial ‘gamma-k-c’, as it is commonly referred to,
is known to be connected with the geometric constants gk in the moment conjecture:

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k dt ∼ akgkT
(log T )k

2

k2!
, (T → ∞),

where

ak =
∏
p

(
1− 1

p

)(k−1)2
(
1 +

(
k−1
1

)2
p

+

(
k−1
2

)2
p2

+ · · ·

)
,
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by the conjectural relation

k2!

∫ k

0

γk(c) dc = gk, (k ≥ 1).

We note that the coprimity condition (a, d) = 1 in Equation (1.6) is essential for this
phenomenon.
In summary, we obtain in this paper a new upper bound for the second moment of

the error term of the modified shifted convolution of τ3(n) in Theorem 2.1 and, as an
application, apply this bound to obtain a full asymptotic with a power-saving error term
for a variance of τ3(n) in arithmetic progressions in Theorem 2.2. The novelty of our
results is the demonstration that a modified version of the original additive correlation
sum is adequate for certain applications.

1.1. Notations

τk(n): the number of ways to write a natural number n as an ordered product of k
positive integers.
τ(n) = τ2(n): the usual divisor function.
ϕ(n): Euler’s function, i.e., the number of reduced residue classes modulo n.
ζ(s): Riemann’s zeta function with variable s = σ + it.
Γ(s): Gamma function.
γ: Euler’s constant = 0.5722 . . . .
γ0(α): 0th generalized Stieltjes constant:

γ0(α) = lim
m→∞

(
m∑

k=0

1

k + α
− log(m+ α)

)
.

e(x) = e2πix.

eq(a) = e2πi
a
q .

cq(b): Ramanujan’s sum

cq(b) =
∑

1≤a≤q
(a,q)=1

eq(ab).

(m,n): the greatest common divisor of m and n.
[m,n]: the least common multiple of m and n.
N : sufficiently large integer.
ε: arbitrary small positive constant, not necessarily the same in each occurrence.
Pr(logN): a polynomial of degree r in logN , not necessarily the same in each

occurrence.
Throughout the paper, all constants in O-terms or in Vinogradov’s notation� depends

on ε at most.
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2. Statement of results

Our main results are the following.

Theorem 2.1. We have, for sufficiently large N,

∑
1≤k<N

 ∑
n≤N−k

τ3(n)τ3(n+ k)− S∆(k,N)

2

� N299/100, (2.1)

where S∆(k,N) is given by Equation (3.20) with ∆ = N4/19.

As an application, we apply Equation (2.1) to prove

Theorem 2.2. We have the following asymptotic equality, with effectively computable
numerical constants Sj , (0 ≤ j ≤ 8),

∑
1≤`≤N

∑
1≤b≤`

∣∣∣∣∣∣∣∣
∑

1≤n≤N
n≡b(mod `)

τ3(n)−NP2(logN)

∣∣∣∣∣∣∣∣
2

= N2
8∑

j=0

S8−j log
8−j N +O

(
N2− 1

300

)
,

(2.2)

where

P2(logN) = Res
s=1

 ∑
n≡b(mod `)

τ3(n)

ns

Ns−1

s

 . (2.3)

2.1. Remarks

(1) Our bound (2.1) is an improvement of a related result of Baier et al. [1], who proved
an analogous estimate to Equation (2.1) but for correlations of τ3 with fixed length
and shifts up to N1−ε. More precisely, they proved in [1, Theorem 2]: Assume that
N1/3+ε ≤ H ≤ N1−ε. Then, there exists δ > 0 such that

∑
h≤H

∣∣∣∣∣∣
∑

N<n≤2N

τ3(n)τ3(n+ h)−MT2(N,h)

∣∣∣∣∣∣
2

� HN2−δ,

for some main term MT2(N,h).
(2) The expected main term (EMT) P2(logN) in Equation (2.2) is a certain polyno-

mial of degree two in logN whose coefficients can all be determined explicitly (c.f.
Lemma 3.6):

P2(logN) =
1

2
Ã log2 N − (Ã− B̃) logN + (Ã− B̃ + C̃),
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where

Ã = Ã(`, b) = `−1
∑
q|`

q−3cq(b)

q∑
α,β,γ=1

eq(aαβγ),

B̃ = B̃(`, b) = `−1
∑
q|`

q−3cq(b)

q∑
α,β,γ=1

eq(aαβγ)(3γ0(α/q)− 3 log q),

C̃ = C̃(`, b) = `−1
∑
q|`

q−3cq(b)

q∑
α,β,γ=1

eq(aαβγ)(
3γ0(α/q)γ0(β/q)− 9γ0(α/q) log q +

9

2
log2 q

)
,

γ is Euler’s constant, γ0(α) is the 0th Stieltjes constant and cq(b) is the Ramanujan
sum. Different main terms are also considered by other authors. Our choice of EMT
Equation (2.3) here differs from that of Equation (1.6) by an admissible amount
which can be shown to be at most O(X2/3+ε). This has the harmless effect of
changing lower order terms coefficients Sj in the asymptotic; see the discussion
proceeding Lemma 4.17. Since our average over b(mod `) is over all residue classes
not necessarily coprime to `, the expression Equation (2.3) is the natural EMT
to consider, as can readily be seen from its shape. When coprimality condition is
imposed on b(mod `), the corresponding EMT is the one appearing in Equation
(1.6); this EMT comes from the contribution of the principal character χ mod `.

(3) The constants Sj , 0 ≤ j ≤ 8, have complicated expressions but can be explicitly
determined from our proof. We give here the value of the leading constant S8:

S8 =
1

8!

∏
p

(
1− 9p−2 + 16p−3 − 9p−4 + p−6

)
≈ 1.22326× 10−6. (2.4)

(4) T. Parry has recently informed us that he has succeeded in obtaining an asymptotic
formula for all k for the quantity:

∑
q<Q

q∑
a=1

∣∣∣∣∣∣∣
∑
n<x

n=a(q)

τk(n)−main term

∣∣∣∣∣∣∣
2

,

with power saving error terms.
His result is now available: By using a different method of Goldston and Vaughan

[10], Parry obtained in [21, Theorem 1] there is a quantity fx(q, a), such that for
fixed a, q ≥ 1, ∑

n≤x
n≡a (mod q)

τk(n) ∼
x

q
fx(q, a), (x → ∞),
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and setting

Ex(q, a) =
∑
n≤x

n≡a(q)

τk(n)−
xfx(q, a)

q
and V (x,Q) =

∑
q≤Q

q∑
a=1

|Ex(q, a)|2,

one has, for some polynomial P (·, ·) of degree ≤ k2 − 1 and 1 ≤ Q = o(x),

V (x,Q) = xQP (log x, logQ)

+Ok,ε

Q2

(
x

Q

)c

+ x3/2+ε︸ ︷︷ ︸
k=2

+x2−4/(6k−3)+ε︸ ︷︷ ︸
k>2

+Qx1−d+ε

 , (2.5)

where

c ∈

(1/2, 1), for k = 2,

(1− 1/k(k − 2), 1), for k > 2,

and d ∈ (0, 1) is any value for which we have∑
n≤X

τk(n)
2 = XP (logX) +Oε

(
X1−d+ε

)
,

for some polynomial P of degree k2 − 1. We view our endpoint estimate (2.2) a
complement to (2.5) and vice versa for k =3.

2.2. Outline of the proofs

We follow the approach of Motohashi [17] in his treatment of the divisor function τ(n),
which in turn was based on Montgomery’s adaptation [15] of a result of Lavrik [14] on
twin primes on average.
To control the error term, we prove an analog of Lavrik’s result for τ3, using a simpler

version of Vinogradov’s method of trigonometric sums, as in [17]. The standard convexity
bound for ζ(s) in the critical strip suffices for our purpose. We remark here that our
analogue of Lavrik’s result can be seen as an average result concerning the mean square
error of the following modified additive divisor sum∑

1≤n≤N−h

τ3(n)τ3(n+ h) (2.6)

of length N − h averaged over h up to h ≤ N−1. The advantage of considering Equation
(2.6) is that the length of this sum becomes shorter the larger the shift h is, making
contribution from large shifts small, so a power saving is possible when an average over
h is taken. This idea might also have applications to the sixth power moment of ζ(s),
which we plan to revisit in the near future.
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To evaluate the main term, we proceed slightly different from Motohashi due to
some complications involving an exponential sum in three variables. We show that the
resulting sum can be evaluated, on average, thanks to an orthogonality property of the
Ramanujan’s sums.

3. Proof of Theorem 2.1

For σ> 1 and (a, q) = 1, let

E

(
s;

a

q

)
= E3

(
s;

a

q

)
=

∞∑
n=1

τ3(n)eq(an)n
−s. (3.1)

The case for the usual divisor function τ(n) was considered by Estermann (1930)
who obtained analytic continuation and the functional equation for the corresponding
generating function. Smith extended the result to all τk. We specialize to a special case
his results.

Lemma 3.1. ([23, Theorem 1, pg. 258]). The function E3(s; a/q) has a meromor-
phic continuation to the whole complex plane where it is everywhere holomorphic except
for a pole of order 3 at s=1. Moreover, E(s; a/q) satisfies the functional equation:

E(s; a/q) =
( q
π

)− 3
2 (2s−1) Γ3

(
1−s
2

)
Γ3( s2 )

E+(1−s; a/q)+i
( q
π

)3
2 (2s−1) Γ3

(
2−s
2

)
Γ3
(
1+s
2

)E−(1−s; a/q),

(3.2)
where

E±(s; a/q) =
∑

m1,m2,m3≥1

G±(m1,m2,m3; a/q)(m1m2m3)
−s, (σ > 1),

G±(m1,m2,m3; a/q) =
1

2q3/2
{G(m1,m2,m3; a/q)±G(m1,m2,m3;−a/q)},

and

G(m1,m2,m3; a/q) =
∑

x1,x2,x3(q)

eq(am1m2m3 +m1x1 +m2x2 +m3x3).

We rewrite the functional equation (3.2) as follows (c.f. Ivic [13]). Let

A±(n, a/q) =
∑

n1n2n3=n

q∑
x1,x2,x3=1

1

2

(
eq(ax1x2x3 + n1x1 + n2x2 + n3x3)

± eq(−ax1x2x3 + n1x1 + n2x2 + n3x3)
)
.
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We have that

|A±(n, a/q)| ≤ q3τ3(n).

Then from Lemma 3.1, we obtain the following form of the functional equation.

Lemma 3.2. ([13, Lemma 2, pg. 1007]). For σ < 0 and (a, q) = 1, we have

E(s; a/q) =
( q
π

)−3
2 (2s−1)

{
Γ3
(
1−s
2

)
Γ3
(
s
2

) ∞∑
n=1

A+(n, a/q)ns−1

+i
Γ3
(
2−s
2

)
Γ3
(
1+s
2

) ∞∑
n=1

A−(n, a/q)ns−1

}
, (3.3)

where the two series on the right-side are absolutely convergent.

We also need the Laurent expansion of E(s; a/q) at s =1 for residue calculations. We
first recall a lemma from Motohashi [17].

Lemma 3.3. We have, uniformly for any integer d,

∑
1≤m≤y

τ(dm) = y
∑
q|d

ϕ(q)

q
(log dy + 2γ − 1− 2 log q) +O(τ2(d)y1/2 log2 y).

Proof. See [17, Lemma 4.6.1, p. 193]. �

Lemma 3.4. For (a, q) = 1, we have

E(s; a/q) =
1

q

(
A

(s− 1)3
+

B

(s− 1)2
+

C

s− 1

)
+

∞∑
n=0

cn(a, q)(s− 1)n, (3.4)

where

A = A(q) = q−2

q∑
α,β,γ=1

eq(aαβγ),

B = B(q) = q−2

q∑
α,β,γ=1

eq(aαβγ)(3γ0(α/q)− 3 log q),

C = C(q) = q−2

q∑
α,β,γ=1

eq

(
aαβγ)(3γ0(α/q)γ0(β/q)− 9γ0(α/q) log q +

9

2
log2 q

)
,
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with

γ0(α) = lim
m→∞

(
m∑

k=0

1

k + α
− log(m+ α)

)
. (3.5)

The coefficients A,B and C are independent of a and satisfy:

A(q) � log2 q, B(q) � log3 q, C(q) � log4 q, (3.6)

uniformly in a.

Proof. See Ivić [8, pp. 1007–1008] for the Laurent expansion (3.4). In fact, Ivić also
gave upper bound of the form qε for A,B, and C which came from the bound:

q∑
α,β,γ=1

eq(aαβγ) ≤ q
∑

1≤α≤q

τ(αq) � q2+ε.

We can sharpen this upper bound by applying Lemma 3.3 and bounding
∑

q|d
ϕ(q)
q by

log(q), giving:

q∑
α,β,γ=1

eq(aαβγ) ≤ q
∑

1≤α≤q

τ(αq) � q2 log2 q.

Thus, noting that γ0(α) � 1 by Equation (3.5), the bound Equation (3.6) follows. �

Lemma 3.5. For n ≥ 1 and (a, q) = 1, we have:

Res
s=1

E

(
s;

a

q

)
ns

s
= q−1n

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
, (3.7)

where A,B and C are given in Lemma 3.4.

Proof. We have, by Equation (3.4),

Res
s=1

E

(
s;

a

q

)
ns

s
=

1

2
lim
s→1

d2

ds2

(
(s− 1)3E

(
s;

a

q

)
ns

s

)
=

1

2q
lim
s→1

d2

ds2

(
(A+B(s− 1) + C(s− 1)2 +O((s− 1)3))

ns

s

)
= q−1n

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
.

�
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Lemma 3.6. For σ > 1, let

R(s; `, b) =
∑

n≡b(mod `)

τ3(n)n
−s.

We have

Res
s=1

R(s; `, b)
Ns

s
= N

(
Ã

2
log2 N − (Ã− B̃) logN + (Ã− B̃ + C̃)

)
,

where

Ã = Ã(`, b) = `−1
∑
q|`

q−1cq(b)A(q),

B̃ = B̃(`, b) = `−1
∑
q|`

q−1cq(b)B(q),

C̃ = C̃(`, b) = `−1
∑
q|`

q−1cq(b)C(q),

with A(q), B(q), C(q) given in Lemma 3.4.

Proof. We can write R(s; `, b) as:

R(s; `, b) =
1

`

∑
q|`

∑
1≤a≤q
(a,q)=1

eq(−ab)E

(
s;

a

q

)

=
1

`

∑
q|`

1

q
cq(b)

(
A(q)

(s− 1)3
+

B(q)

(s− 1)2
+

C(q)

s− 1

)

+
∞∑

n=0

1

`

∑
q|`

1

q
cq(b)cn(a, q)(s− 1)n

=
Ã(`, b)

(s− 1)3
+

B̃(`, b)

(s− 1)2
+

C̃(`, b)

s− 1
+

∞∑
n=0

1

`

∑
q|`

1

q
cq(b)cn(a, q)(s− 1)n.

The lemma follows as in the previous one. �

For α ∈ R, let

D(α,N) =
∑

1≤n≤N

τ3(n)e(αn). (3.8)

Using Equation (3.1) we first estimate D(α,N) for α = a/q with (a, q) = 1.
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Lemma 3.7. For (a, q) = 1, we have

D

(
a

q
, n

)
=

n

q

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
+O

{
(nq + q2)3/5+ε

}
,

with A,B,C given in Lemma 3.4.

Proof. We have

D

(
a

q
, n

)
= Res

s=1
E

(
s;

a

q

)
ns

s
+Res

s=0
E

(
s;

a

q

)
ns

s
+

1

2πi

∫ −δ+iT

−δ−iT

E

(
s;

a

q

)
ns

s
ds (3.9)

+O

{
n1+ε

T
+ nε +

1

T

∫ 1+δ

−δ

∣∣∣∣E (σ + iT ;
a

q

)∣∣∣∣nσ dσ

}
,

where δ = (log(nq + 1))−1 and T is to be determined latter. By expressing the residue
as an integral around the origin,∣∣∣∣Ress=0

E

(
s;

a

q

)
ns

s

∣∣∣∣� (log(qn+ 1))3. (3.10)

By the functional equation (3.3) and the convexity argument,∣∣∣∣E (σ + iT ;
a

q

)∣∣∣∣� (qT )
3
2 (1−σ)(log qT )6,

uniformly for −δ ≤ σ ≤ 1 + δ. Hence, we get∣∣∣∣∣ 1

2πi

∫ −δ+iT

−δ−iT

E

(
s;

a

q

)
ns

s
ds

∣∣∣∣∣� (Tq)
3
2 (log qT )7, (3.11)

and

1

T

∫ 1+δ

−δ

∣∣∣∣E (σ + iT ;
a

q

)∣∣∣∣nσ dσ � n

T
(log qT )6

∫ 1+δ

−δ

(
Tq

n2/3

)3
2 (1−σ)

dσ. (3.12)

Taking

T = q−1(nq + q2)2/5,

it follows from Equations (3.7), (3.9), (3.10), (3.11) and (3.12) that

D

(
a

q
, n

)
=

n

q

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
+O

{
(nq + q2)3/5+ε

}
.

�
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Lemma 3.8. For α ∈ R, we have

D(α,N) =
1

q

∑
1≤n≤N

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
e

((
α− a

q

)
n

)
(3.13)

+O

{
(Nq + q2)3/5+ε

(
1 +

∣∣∣∣α− a

q

∣∣∣∣N)} ,

with A, B and C given in Lemma 3.4.

Proof. We have

D(α,N) =
∑

1≤n≤N

{D(a/q, n)−D(a/q, n− 1)} e((α− a/q)n).

This, together with Lemma 3.7 and partial summation, gives Equation (3.13). �

Let

F

(
α,

a

q
,N

)
=

1

q

∑
1≤n≤N

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
e

((
α− a

q

)
n

)
,

(3.14)
and

G∆(α,N) =
∑

1≤q≤∆

q∑
a=1

(a,q)=1

∣∣∣∣F (α, aq ,N
)∣∣∣∣2 , (3.15)

where ∆ satisfies

4∆ ≤ Ω, (3.16)

where Ω is the order of a Farey series (see § 3.1) and ∆ is to be determined more precisely
later; see Equation (3.30) below. By Lemma 3.8 and Equation (3.14),

|D(α,N)− F (α, a/q,N)| � (Nq + q2)3/5+ε

(
1 +

∣∣∣∣α− a

q

∣∣∣∣N) . (3.17)

Now, by Equations (3.14) and (3.15),

G∆(α,N) =
∑

|k|≤N−1

e(αk)

 ∑
1≤q≤∆

1

q2
Wq(k,N)

q∑
a=1

(a,q)=1

eq(−ak)

 , (3.18)
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where

Wq(k,N) =
1

4
A2

∑
1≤n≤N−|k|

log2 n log2(n+ |k|) (3.19)

− 1

2
A(A−B)

∑
1≤n≤N−|k|

log n log(n+ |k|) log n(n+ |k|)

+ (A−B)2
∑

1≤n≤N−|k|

log n log(n+ |k|)

− 1

2
A(A−B + C)

∑
1≤n≤N−|k|

(log2 n+ log2(n+ |k|))

− (A−B)(A−B + C)
∑

1≤n≤N−|k|

log n(n+ |k|)

+ (A−B + C)2(N − |k|)
= w1(q)T1(k,N) + · · ·+ w6(q)T6(k,N),

say. For the innermost sum in Equation (3.18), we have

q∑
a=1

(a,q)=1

eq(−ak) = µ

(
q

(q, |k|)

)
ϕ(q)

ϕ
(

q
(q,|k|)

) = cq(|k|).

Thus, we write Equation (3.18) as

G∆(α,N) =
∑

|k|≤N−1

 ∑
1≤q≤∆

q−2cq(|k|)Wq(k,N)

 e(αk) =
∑

|k|≤N−1

S∆(k,N)e(αk),

(3.20)
say. Now, by Equation (3.8), we have

|D(α,N)|2 =
∑

|k|≤N−1

V (k,N)e(αk),

where

V (k,N) =
∑

1≤n≤N−|k|

τ3(n)τ3(n+ |k|). (3.21)

Thus,

|D(α,N)|2 −G∆(α,N) =
∑

|k|≤N−1

(V (k,N)− S∆(k,N))e(αk),

and we obtain
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Lemma 3.9.

∑
|k|≤N−1

(V (k,N)− S∆(k,N))
2
=

∫ 1

0

∣∣|D(α,N)|2 −G∆(α,N)
∣∣2 dα, (3.22)

with D(α,N), G∆(α,N), V (k,N) and S∆(k,N) given by Equations (3.8), (3.15), (3.21)
and (3.20), respectively.

This integral will be estimated in § 3.1 below.

Lemma 3.10. With

T1(k,N) =
∑

1≤n≤N−|k|

log2 n log2(n+ |k|), (3.23)

T2(k,N) =
∑

1≤n≤N−|k|

log n log(n+ |k|) log(n(n+ |k|)),

T3(k,N) =
∑

1≤n≤N−|k|

log n log(n+ |k|),

T4(k,N) =
∑

1≤n≤N−|k|

(log2 n+ log2(n+ |k|)),

T5(k,N) =
∑

1≤n≤N−|k|

log(n(n+ |k|)).

given from Equation (3.19), we have

T1(k,N) = (N − |k|) log2 N log2(N − |k|) +O(N log3 N),

T2(k,N) = (N − |k|)(log2 N log(N − |k|) + logN log2(N − |k|)) +O(N log2 N),

T3(k,N) = (N − |k|) logN log(N − |k|) +O(N logN),

T4(k,N) = (N − |k|)(log2 N + log2(N − |k|)) +O(N logN),

T5(k,N) = (N − |k|)(logN + log(N − |k|)) +O(N).

Proof. For k > 0, by partial summation, we have

T5(k,N) = (N − k) log(N − k) +N logN − k log k − 2(N − k) +O(logN).

Similarly, we obtain the other Tj’s. �

Lemma 3.11. We have, for any (a, q) = 1 and ε> 0,∑
n≤X

τ(n)eq(an) = q−1X (logX − 2 log q + 2γ − 1) +Oε

(
(qX)

1
2+ε + q1+ε

)
,

where the big-oh is independent of a.
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Proof. See, e.g. [17, page 179, line -3]. �

We will apply Perron’s formula in the following form.

Lemma 3.12. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series which converges absolutely

for σ > 1. Suppose an = O(nε) for any ε> 0 and f(s) = ζ(s)`F (s) for some natural
number ` and some Dirichlet series F(s) which converges absolutely in <(s) > 1/2. Then
for X not an integer, we have

∑
n≤X

an =
F (1)

(`− 1)!
XP`−1(logX) +Oε

(
X

1− 1
`+2

)
,

where P`−1(logX) is the polynomial in logX of degree ` − 1 with leading coefficient 1
given explicitly by

P`−1(logX) = (`− 1)!Ress=1ζ(s)
`F (s)

Xs−1

s
.

Proof. See [18, Problems 4.4.16, 4.4.17]. �

Lemma 3.13. We have∑
n≤X

τ23 (n) =
A3

8!
XP8(logX) +O

(
X10/11

)
,

where A3 = 8!S8 with S8 given in Equation (2.4), and P8(logX) is a polynomial of
degree 8 in logX and leading coefficient 1.

Proof. We have

∞∑
n=1

τ23 (n)n
−s =

∏
p

{
1 +

∞∑
ν=1

(
ν + 2

2

)2

p−νs

}
,

where both members of this equation are absolutely convergent if σ> 1. Hence, if σ> 1,

{ζ(s)}−9

{ ∞∑
n=1

τ23 (n)n
−s

}
=
∏
p

{
(1− p−s)9(1 + 9p−s + 36p−2s + · · · )

}
=
∏
p

{
1 + a2p

−2s + a3p
−3s + · · ·

}
= F (s),

say, where

aν =
ν∑

r=0

(−1)r
(
9

r

)(
ν − r + 2

2

)2

.
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We adopt the convention for the binomial coefficients that
(
n
m

)
= 0 if m >n. We have

a2 = −9, a3 = 16, a4 = −9, a5 = 0, a6 = 1 and aν = 0 for ν ≥ 7. The coefficient aν
satisfies

|aν | ≤ Kν2,

where K is independent of ν. Hence,

∞∑
ν=2

|aν |p−νs ≤ K ′p−2s,

where K ′ is independent of p. Hence, if σ > 1/2, then
∑

p p
−2s is absolutely convergent,

and thus is also

F (s) =
∏
p

{
1 +

∞∑
ν=2

aνp
−νs

}
.

Hence we obtain that

∞∑
n=1

τ23 (n)n
−s = {ζ(s)}9 F (s),

where F (s) is absolutely convergent for σ > 1/2. It follows at once, by Lemma 3.12, that

∑
n≤X

τ23 (n) =
A3

8!
XP8(logX) +O

(
X10/11

)
,

where

A3 = F (1) =
∏
p

(
1− 9p−2 + 16p−3 − 9p−4 + p−6

)
.

�

Lemma 3.14. We have∫ N−1

1

t log t

N − t
dt = N

(
log2 N − logN − π2

6
+ 1

)
+O(logN),

and∫ N−1

1

t log2 t

N − t
dt = N

(
log3 N − 2 log2 N −

(
π2

3
− 2

)
logN + 2ζ(3)− 2

)
+O(log2 N).

Proof. Expanding into a geometric series and integrate by parts, we have
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46 D. T. Nguyen∫ N−1

1

t log t

N − t
dt =

∞∑
m=1

1

Nm

∫ N−1

1

tm log tdt

= N log(N − 1)
∞∑

m=1

1

m+ 1

(
N − 1

N

)m+1

−N
∞∑

m=1

1

(m+ 1)2

(
N − 1

N

)m+1

+O(1)

= N

(
log2 N − logN − π2

6
+ 1

)
+O(logN).

This gives the first integral. The second integral is computed in a similar way. �

3.1. An analogue to a result of Lavrik

In this section we estimate the integral in Equation (3.22) by the trigonometric method
of I.M. Vinogradov along the line of Lavrik, following Motohashi (§ 3).
Let a/q be a term of the Farey series of order Ω, which is to be determined later; see

Equation (3.30) below. Let

a′

q′
,
a

q
,
a′′

q′′
,

be consecutive terms of the Farey series and let C(a/q) be the interval
[
a′+a
q′+q

, a+a′′
q+q′′

]
. The

interval C(a/q) contains the fraction a/q with length bounded by∣∣∣∣C (a

q

)∣∣∣∣ ≤ 2

qΩ
. (3.24)

Let

U(N) =

∫ 1

0

∣∣|D(α,N)|2 −G∆(α,N)
∣∣2 dα,

denote the integral in Equation (3.22). We proceed to estimate U (N ). We have

U(N) =
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣|D(α,N)|2 −G∆(α,N)
∣∣2 dα (3.25)

≤ 2
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣∣∣∣|D(α,N)|2 −
∣∣∣∣F (α, aq ,N

)∣∣∣∣2
∣∣∣∣∣
2

dα

+ 2
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣∣∣∣G∆(α,N)−
∣∣∣∣F (α, aq ,N

)∣∣∣∣2
∣∣∣∣∣
2

dα

= U1(N) + U2(N),
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say. For U1(N), we have, from Equation (3.17) and the inequality
∣∣|A|2 − |B|2

∣∣2 ≤ 4|A−
B|2(|A|2 + |B|2), valid for any complex numbers A and B, that∣∣∣∣∣|D(α,N)|2 −

∣∣∣∣F (α, aq ,N
)∣∣∣∣2
∣∣∣∣∣
2

� (Nq + q2)
6
5+2ε

(
1 +

∣∣∣∣α− a

q

∣∣∣∣2 N2

)
(
|D(α,N)|2 +

∣∣∣∣F (α, aq ,N
)∣∣∣∣2
)
.

Thus, for α ∈ C(a/q), we have, by Equation (3.24), that the above is bounded by(
(NΩ)

6
5+2ε +Ω

12
5 +4ε +

N
16
5 +2ε

Ω2
+

N2

Ω
8
5−4ε

)(
|D(α,N)|2 +

∣∣∣∣F (α, aq ,N
)∣∣∣∣2
)
,

and we get

U1(N) �

(
(NΩ)

6
5+2ε +Ω

12
5 +4ε +

N
16
5 +2ε

Ω2
+

N2

Ω
8
5−4ε

)
(3.26)

×


∫ 1

0

|D(α,N)|2 dα+
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫ 1

0

∣∣∣∣F (α, aq ,N
)∣∣∣∣2 dα


�

(
(NΩ)

6
5+2ε +Ω

12
5 +4ε +

N
16
5 +2ε

Ω2
+

N2

Ω
8
5−4ε

)
N log8 N.

For U2(N), we have, by Equation (3.15),

U2(N) �
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣∣∣∣∣∣∣∣∣∣∣
∑

1≤q′≤∆

q′∑
a′=1

(a′,q′)=1

a′q 6=aq′

∣∣∣∣F (α, a′q′ , N
)∣∣∣∣2
∣∣∣∣∣∣∣∣∣∣∣∣

2

dα (3.27)

+
∑

∆<q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣∣∣F (α, aq ,N
)∣∣∣∣4 dα

= U3(N) + U4(N),

say. By Equation (3.14), we have

U4(N) � (N log2 N)4

Ω

∑
∆<q≤Ω

1

q4
� N4 log8 N

Ω∆3
. (3.28)
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It remains to estimate U3(N). By partial summation, we can write F (α, a′/q′, N) as

1

q′
(A(a′, q′) log2 N + (B(a′, q′)− 2A(a′, q′)) logN + 2A(a′, q′)−B(a′, q′)

+ C(a′, q′))
∑

1≤n≤N

e

((
α− a′

q′

)
n

)
− 1

q′

∫ N

1

(
2A log ξ

ξ
+

B − 2A

ξ

)
∑

1≤n≤ξ

e

((
α− a′

q′

)
n

)
dξ.

Thus, ∣∣∣∣F (α, a′q′ , N
)∣∣∣∣� q′

ε
log3 N

q′
∣∣∣sinπ (α− a′

q′

)∣∣∣ .
The function F (α, a′/q′, N) has period 1 in α, and |a/q − (a′/q′ ± 1)| ≤ 1/2. Thus,

U3(N) is at most

� ∆2 log12 N
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∑
1≤q′≤∆

2q′∑
a′=−q′

(a′,q′)=1

0<

∣∣∣∣a′q′ −a
q

∣∣∣∣≤1
2

q′
ε

q′4
∣∣∣sinπ (α− a′

q′

)∣∣∣4 dα.

By Equation (3.16), we have, for α ∈ C(a/q),

1

2

∣∣∣∣aq − a′

q′

∣∣∣∣ ≤ ∣∣∣∣α− a′

q′

∣∣∣∣ ≤ 3

4
,

for N sufficiently large. Hence,

U3(N) � Ω2∆2 log12 N
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∑
1≤q′≤∆

q′
ε

2q′∑
a′=−q′

(a′,q′)=1

a′q 6=aq′

1

|aq′ − qa′|4

� Ω2+ε∆2 log12 N
∞∑
u=1

t(u)

u4
,

where t(u) is the number of integer solutions to |aq′−qa′| = u in the range of summation.
We have

t(u) � ∆2Ω,
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which yields

U3(N) � Ω3+ε∆4 log12 N. (3.29)

From Equations (3.22), (3.25), (3.26), (3.27), (3.28) and (3.29), we get the inequality

∑
1≤k≤N−1

(V (k,N)− S∆(k,N))2 � Nε

(
N11/5Ω6/5 +Ω12/5N +

N21/5

Ω2
+

N3

Ω8/5

+Ω3∆4 +
N4

Ω∆3

)
.

We now take, for example,

Ω = N25/38 and ∆ = N4/19. (3.30)

Then, the requirement Equation (3.16) is satisfied, and we have proved

Lemma 3.15. The inequality∑
1≤k≤N−1

(V (k,N)− S∆(k,N))2 � N299/100,

holds for sufficiently large N.

4. Proof of theorem 2.2

Let Q(N ) denote the sum on the left side of Equation (2.2). We have

Q(N) =
∑

1≤`≤N

∑
1≤n1,n2≤N

n1≡n2(mod `)

τ3(n1)τ3(n2) (4.1)

+
1

4
N2 log4 N

∑
1≤`≤N

∑
1≤b≤`

Ã(`, b)2

−N2 log3 N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 − Ã(`, b)B̃(`, b))

+N2 log2 N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 − 2Ã(`, b)B̃ + B̃(`, b)2)

+N2 log2 N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 − Ã(`, b)B̃(`, b) + Ã(`, b)C̃(`, b))

+ 2N2 log2 N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 + B̃(`, b)2

− 2Ã(`, b)B̃(`, b)− B̃(`, b)C̃(`, b) + Ã(`, b)C̃(`, b))
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+N2
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 + B̃(`, b)2 + C̃(`, b)2

− 2Ã(`, b)B̃(`, b) + 2Ã(`, b)C̃(`, b)− 2B̃(`, b)C̃(`, b))

−N log2 N
∑

1≤`≤N

∑
1≤b≤`

Ã(`, b)
∑

1≤n≤N
n≡b(`)

τ3(n)

+ 2N logN
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)− B̃(`, b))
∑

1≤n≤N
n≡b(`)

τ3(n)

+ 2N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)− B̃(`, b) + C̃(`, b))
∑

1≤n≤N
n≡b(`)

τ3(n)

= Q1(N) + · · ·+Q10(N),

say. We start with evaluating Q1(N), whose treatment is the most difficult of the 10. We
have

Q1(N) = N
∑

1≤n≤N

τ23 (n) + 2
∑

1≤`≤N−1

∑
1≤u≤(N−1)/`

∑
1≤n≤N−u`

τ3(n)τ3(n+ u`) (4.2)

= N
∑

1≤n≤N

τ23 (n) + 2
∑

1≤k≤N−1

V (k,N)τ(k),

where V (k,N) is given by Equation (3.21). Here we have, by Lemma 3.13,

∑
n≤N

τ23 (n) =
A3

8!
NP8(logN) +O

(
N10/11

)
, (4.3)

with A3 and P8(logN) given in that lemma. Now, by Lemma 3.15,

∑
1≤k≤N−1

V (k,N)τ(k) =
∑

1≤k≤N−1

S∆(k,N)τ(k) (4.4)

+O


 ∑

1≤k≤N−1

τ2(k)

1/2

 ∑
1≤k≤N−1

(V (k,N)− S∆(k,N))2

1/2


=
∑

1≤k≤N−1

S∆(k,N)τ(k) +O
(
N599/300

)
= Q11(N) +O

(
N599/300

)
,
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say. We now calculate Q11(N). By Equation (3.20), (3.19) and (3.23), we have

Q11(N) =
6∑

j=1

∑
1≤q≤∆

q−2wj(q)
∑

1≤k≤N−1

τ(k)cq(k)Tj(k,N).

If q =1, then

c1(k) = 1, A(1) = 1, B(1) = 3γ, C(1) = 3γ2,

and, hence,

w1(1) =
1

4
,

w2(1) =
1

2
(3γ − 1),

w3(1) = (1− 3γ)2,

w4(1) = −1

2
(1− 3γ + 3γ2),

w5(1) = (3γ − 1)(1− 3γ − 3γ2),

w6(1) = (1− 3γ + 3γ2)2.

Thus,

Q11(N) =
6∑

j=1

wj(1)
∑

1≤k≤N−1

τ(k)Tj(k,N) (4.5)

+
6∑

j=1

∑
1<q≤∆

q−2wj(q)
∑

1≤k≤N−1

τ(k)cq(k)Tj(k,N).

To calculate the k -summations, we need to compute the following sums:

H1(N) =
∑

1≤k≤N−1

τ(k) log(N − k), (4.6)

H2(N) =
∑

1≤k≤N−1

τ(k) log2(N − k),

H3(X) =
∑

1≤k≤X

τ(k)cq(k),

H4(N) =
∑

1≤k≤N−1

τ(k)cq(k) log(N − k),

H5(N) =
∑

1≤k≤N−1

τ(k)cq(k) log
2(N − k),

H6(N) =
∑

1≤k≤N−1

kτ(k) log(N − k),
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H7(N) =
∑

1≤k≤N−1

kτ(k) log2(N − k),

H8(X) =
∑

1≤k≤X

kτ(k)cq(k),

H9(N) =
∑

1≤k≤N−1

kτ(k)cq(k) log(N − k),

H10(N) =
∑

1≤k≤N−1

kτ(k)cq(k) log
2(N − k).

Assume q > 1. We now compute the first sum in Equation (4.6). By partial summation,
we have

H1(N) =

∫ N−1

1

t

N − t
log t dt+ (2γ − 1)

∫ N−1

1

t

N − t
dt+O(N1/2 logN).

By the first part of Lemma 3.14, this is equal to

N

(
log2 N − logN − π2

6
+ 1

)
+ (2γ − 1)(N logN −N) +O(N1/2 logN).

Thus,

H1(N) = N log2 N + (2γ − 2)N logN +

(
π2

6
− 2γ

)
N +O(N1/2 logN).

Similar, by both parts of Lemma 3.14, we get

H2(N) =

∫ N−1

1

1

N − t

(
t log2 t+ (2γ − 2)t log t+

(
π2

6
− 2γ

)
t+O(t1/2 log t)

)
dt

= N log3 N + (2γ − 4)N log2 N +

(
4− 4γ − π2

6

)
N logN

+

(
2ζ(3)− 2− (2γ − 2)

(
π2

6
− 1

)
− π2

6
+ 2γ

)
N +O

(
N1/2 log2 N

)
.

We now estimate H3(X). We have, by definition of the Ramanujan sums,

H3(X) =
∑

1≤a≤q
(a,q)=1

∑
1≤k≤X

τ(k)eq(ak).

By Lemma 3.11, the inner sum is q−1X (logX − 2 log q + 2γ − 1) +

Oε

(
(qX)

1
2+ε + q1+ε

)
. Thus,

H3(X) =
ϕ(q)

q
X (logX − 2 log q + 2γ − 1) +O

(
(q3X)

1
2+ε + q2+ε

)
.
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The error term here is negligible. Using the above we get, by partial summation,

H4(N) = NP2(logN) +O
(
(q3N)

1
2+ε + q2+ε

)
and

H5(N) = NP3(logN) +O
(
(q3N)

1
2+ε + q2+ε

)
,

for some polynomials P2(logN) and P3(logN) of degrees two and three in logN ,
respectively. Similarly, by partial summation we can easily obtain:

Lemma 4.16.

H6(N) =
1

2
(N − 1)2 log2(N − 1) + λ1(N − 1)2 log(N − 1) + λ2(N − 1)2

+O(N3/2 logN),

H7(N) =
1

2
(N − 1)2 log3(N − 1) + λ3(N − 1)2 log2(N − 1) + λ4(N − 1)2 log(N − 1)

+ λ5(N − 1)2 +O(N3/2 log3 N),

H8(N) = N2Q1(logN) +O
(
(q3N2)

1
2+ε +Nq2+ε

)
,

H9(N) = N2Q2(logN) +O
(
(q3N2)

1
2+ε +Nq2+ε

)
,

H10(N) = N2Q3(logN) +O
(
(q3N2)

1
2+ε +Nq2+ε

)
,

with numerical constants λj’s and some explicit polynomials Q1, Q2 and Q3 of degrees
one, two and three, respectively.
Here, we have

λ1 = γ − 1/2,

λ2 =
π2

12
− 1

2
γ − 3

4
,

λ3 = γ − 5/4,

etc.

Collecting the wj’s, Tj’s and the Hj’s above, we deduce the following:

Lemma 4.17. There is an explicit polynomial P5(logN) of degree 5 in logN such
that

Q11(N) = N2P5(logX) +O
(
N

61
38+ε

)
.

Consequently, from Equations (4.2), (4.3), (4.4) and (4.5), we obtain that

Q1(N) = N2P8(logN) +O(N599/300).
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With more effort, though tedious in details, one can calculate similar asymptotic expan-
sions for Q2(N) to Q10(N) in Equation (4.1). However, for our purpose, it suffices to
bound the sums Q2-Q10 and show that they are smaller than the leading term N2 log8 N .
Indeed, by Equation (3.6) and orthogonality of the Ramanujan sum cq(b), we have that

Q2(N), . . . , Q10(N) � N2 log6 N. (4.7)

We demonstrate one such bound for Q2(N) – the other bounds can be obtained simi-
larly. Suppose first that q =1. We have, in this case, Ã(`, b) = `−1 for any b, and hence

∑
1≤`≤N

∑
1≤b≤`

Ã(`, b)2 =
∑

1≤`≤N

∑
1≤b≤`

`−2 � logN. (4.8)

Assume next q1, q2 > 1. Suppose (q1, q2) = 1. Then∑
1≤b≤`

cq1(b)cq2(b) =
∑

1≤b≤`

cq1q2(b) � q1q2.

From this and Equation (3.6), we get∑
1≤b≤`

Ã2(`, b) = `−2
∑
q1|`

∑
q2|`

q−1
1 q−1

2

∑
1≤b≤`

cq1(b)cq2(b) log
2 q1 log2 q2

= `−2
∑
q1|`

log2 q1
∑
q2|`

log2 q2 � `−2 log4 `,

and, hence, ∑
1≤`≤N

∑
1≤b≤`

Ã(`, b)2 �
∑

1≤`≤N

`−2 log4 ` � logN. (4.9)

It remains to consider the case where (q1, q2) > 1. We have∑
1≤b≤`

cq(b)
2 =

∑
d1|q1

∑
d2|q2

d1d2µ(q1/d1)µ(q2/d2)
∑

1≤b≤`
d1|b
d2|b

1 � `(q1q2)
ε + (q1q

1+ε
2 ).

Thus, ∑
1≤`≤N

∑
1≤b≤`

Ã2(`, b) �
∑

1≤`≤N

`−1τ(`) � log2 N.

This, together with Equations (4.8) and (4.9), give that Q2(N) is at most
O(N2 log6 N), verifying Equation (4.7) for Q2(N).
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As mentioned before, the estimates in Equation (4.7) are crude simply for the purpose
of showing they do not contribute to the leading term. It is possible, by procedures
analogous to the computations for Q1(N) and

∑
k Wq(k,N) demonstrated in the proof,

to compute explicitly a polynomial P6(logN) of degree 6 in logN such that:

Q2(N) + · · ·+Q10(N) = N2P6(logN) +O(N599/300).

We conclude, therefore, that Q(N ), which is the left-hand side of Equation (2.2), is
given by:

N2P8(logN) +O(N2−1/300),

which gives the right-hand side of Equation (2.2). This completes the proof of the
theorem.
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(13) A. Ivić, On the ternary additive divisor problem and the sixth moment of the zeta-
function, in sieve methods, exponential sums, and their applications in number theory,
(Ed. G. R. H. Greaves, G. Harman M. N. Huxley), pp. 1001–1039 (Cambridge Univ.
Press, Cambridge, 1997).

(14) A. F. Lavrik, Binary problems of additive number theory connected with the method of
trigonometric sums of I. M. Vinogradov, Vestnik Leningrad. Univ. 16(13) (1961), 11–27.

(15) H. L. Montgomery, Primes in arithmetic progressions, Michigan Math. J. 17(1) (1970),
33–39. doi:10.1307/mmj/1029000373

(16) Y. Motohashi, An asymptotic formula in the theory of numbers, Acta Arith. 16(3) (1970),
255–264. doi:10.4064/aa-16-3-255-264

(17) Y. Motohashi, On the distribution of the divisor function in arithmetic progressions,
Acta Arith. 22(2) (1973), 175–199 doi:10.4064/aa-22-2-175-199.

(18) M. R. Murty, Problems in Analytic Number Theory, Graduate Texts in Mathematics
(Book 206), 2nd edn. (Springer, 2007) 10.1007/978-1-4757-3441-6

(19) D. T. Nguyen, Generalized divisor functions in arithmetic progressions: I, J. Number
Theory 227(1) (2021), 30–93. doi:10.1016/j.jnt.2021.03.021

(20) D. T. Nguyen, Variance of the k-fold divisor function in arithmetic progressions for
individual modulus. Preprint, arXiv:2205.02354 [math.NT], (2022).

(21) T. Parry, A Montgomery–Hooley theorem for the k-fold divisor function. Preprint,
arXiv:2302.11045v1 [math.NT], (2023).

(22) B. Rodgers and K. Soundararajan, The variance of divisor sums in arithmetic progres-
sions, Forum Math. 30(2) (2018), 269–293. doi:10.1515/forum-2016-0227

(23) R. A. Smith, The generalized divisor problem over arithmetic progressions, Math. Ann.
260(1) (1982), 255–268. doi:10.1155/IMRN.2005.1

(24) A.I. Vinogradov, The density Hypothesis for Dirichlet L-series, Izv. Akad. Nauk SSSR
Ser. Mater. 29(1) (1965), 903–934.

(25) Y. T. Zhang, Bounded gaps between primes, Ann. Math. 179(3) (2014), 1121–1174.
doi:10.4007/annals.2014.179.3.7

https://doi.org/10.1017/S0013091523000664 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000664

	Generalized Divisor Functions in Arithmetic Progressions: II
	1. Introduction
	1.1. Notations

	2. Statement of results
	2.1. Remarks
	2.2. Outline of the proofs

	3. Proof of Theorem 2.1
	3.1. An analogue to a result of Lavrik

	4. Proof of theorem 2.2
	Acknowledgements
	References


