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Abstract

We study weak convergence of an Euler scheme for non-
linear stochastic delay differential equations (SDDEs) driven
by multidimensional Brownian motion. The Euler scheme has
weak order of convergence 1, as in the case of stochastic
ordinary differential equations (SODEs) (i.e., without delay).
The result holds for SDDEs with multiple finite fixed delays
in the drift and diffusion terms. Although the set-up is non-
anticipating, our approach uses the Malliavin calculus and
the anticipating stochastic analysis techniques of Nualart and
Pardoux.

1. Introduction

Stochastic differential delay equations serve as models of noisy physical processes
whose time evolution depends on their past history. In physics, laser dynamics with
delayed feedback is often investigated [8, 25], as well as the dynamics of noisy bi-
stable systems with delay [26, 36]. Several authors have studied stochastic oscillator
ensembles with delayed coupling [13, 16]. These can be interpreted as mean-field
models of coupled biological oscillators, such as groups of chorusing crickets, flashing
fireflies and cardiac pacemaker cells. In biophysics, stochastic delay equations are
used to model delayed visual feedback systems [5, 22] or human postural sway [10].

Since the model equations are generally non-linear and do not allow for explicit
solutions, there is a clear need for numerical approximation methods of solution.
Until recently, emphasis on the numerical analysis of stochastic differential delay
equations has been on strong convergence of the numerical schemes. Early inves-
tigations in this direction were initiated by Ahmed, Elsanousi and Mohammed [1]
and C. and M. Tudor [37, 38, 39]. Recently, this topic has gained more attention.
See for example [2, 3, 15, 23, 24].

Specific approximation methods studied include the Euler-Maruyama scheme
and the ©-method, with order of strong convergence 1/2, and the Milstein-method,
with strong order 1.
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Weak convergence of Euler scheme for SDDFEs

The main motivation for considering weak approximations is the computation of
the expectation of functionals of solutions of stochastic differential equations. This
problem arises, for example, in the fair pricing of options in mathematical finance.
Weak approximations are also used in the computation of Lyapunov exponents
of systems described by stochastic functional differential equations, as has been
suggested by Milstein and Tretyakov in [27]. Lyapunov exponents for stochastic
functional differential equations were studied by Mohammed and Scheutzow [31,
32].

Weak approximations for SODE’s (without memory) are well-developed. To men-
tion only a few references we quote Bally and Talay [7], Kloeden and Platen [17],
Milstein and Tretyakov [28] and Kohatsu-Higa [19].

The earliest reference on weak approximation of numerical methods for stochastic
differential equations with delay is [21]. This paper however provides no rigorous
justification of their statements and time has shown that such justification is very
technically demanding. The first rigorous analysis was recently given by E. Buckwar
and T. Shardlow in [6]. The result in [6] establishes weak convergence of order 1
for the Euler scheme applied to semi-linear SFDEs of the form:

t

v+// (u+s) du(s du—|—/f du—l—/ (x(u)) AW (u), t=>o,
n(t — o), a.e. t e [U—T,U).
(1.1)
In the above SFDE, the memory term is linear, driven by a smooth measure u, and
there is no delay in the diffusion coefficient. The initial function 7 is assumed to be
Lipschitz. The coefficients f, g : R? - R? satisfy appropriate regularity and linear
growth conditions. The driving noise W (t), t > 0, is standard Brownian motion
on a filtered probability space (2, F, (F;)i>0, P). The approach in [6] is based on
embedding the SFDE (1.1) in an infinite-dimensional non-delay stochastic evolution
equation in the Hilbert space My := R? x L?([—7,0], R%). The weak numerical
approximation is then performed at the level of the induced stochastic evolution
equation in the Hilbert space Ms.
Recent results on weak convergence of the Euler scheme for a class of SFDE’s
were obtained independently by E. Clément, A. Kohatsu-Higa and D. Lamberton
[9]. The results in [9] deal with SFDE’s with drift and diffusion terms of the form

b</0 2(u+ 5) du(s)) and U(/O 2(u+ 5) du(s))

with v a finite measure on [—r, 0] and b, 0 : R — R sufficiently smooth real-valued
functions. The techniques used in [C.K-H.L] are based on duality arguments and
provide convergence with respect to bounded measurable test functions under suf-
ficient non-degeneracy of the diffusion coefficient. The methods used in this article
are based on an Itd formula for tame (and quasitame) functionals of segments of
the solution process of the SFDE (Theorem 2.1, Corollary 1, Lemma 4.2). Due to
the presence of the delay, the application of the tame It6 formula yields anticipating
(Skorohod) integrals, and hence necessitates the use of anticipating calculus tech-
niques. This is somewhat surprising in view of the fact that the coefficients of the
SDDE are non-anticipating (cf.[K-H], where the set-up is intrinsically anticipating).
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Weak convergence of Euler scheme for SDDFEs

Furthermore, the availability of the tame Ito formula offers the potential for devel-
oping higher-order weak convergence schemes for stochastic systems with memory.
However, such higher methods are not treated in this article (cf. [15]).

In the present article, we prove weak convergence of order 1 of the Euler scheme
for fully mon-linear stochastic delay equations in R, with multiple discrete (and
continuous) delays and multidimensional Brownian noise. However, and for sim-
plicity of exposition, we will focus on one-dimensional SDDEs with two delays and
driven by a single Wiener process W. The appropriate extensions of our analysis
to higher dimensions are straightforward. They are indicated in Section 4 of this
article.

In order to describe the main result of the paper, we introduce some notation
which will be used throughout the article.

Let C([—7,0],R) denote the Banach space of continuous paths 7 : [-7,0] — R,
given the supremum norm

Inllc :== sup [n(s)].

—7<s<0

The symbol HY*([-7,0],R) denotes the Banach space of all continuous paths
7 : [—7,0] — R, which are a.e. differentiable on [—7,0] and such that

/
essup ' (s)] < 0.
The space H'*°([—7,0], R) is furnished with the H!**°-norm

nll1,00 == sup_|n(s)| +essup_ . coln'(s)l-
—7<s<0
The corresponding Banach spaces C([—7,0], R?) and H>°([-7,0],R?) of R’
valued mappings are defined analogously.
Consider the one-dimensional SDDE for o <t < T

z(t) = n(0) + /f(x(u — Tl),x(u)) du + /g(x(u — Tg),a:(u)) dW (u), (1.2)

with initial condition
n(t — o) c—T<t<o, T:=7VTy,

where T > 0 is fixed, the initial instant o € [0,T], the coefficients f, g : R? >R
satisfy suitable regularity and linear growth hypotheses, and the initial path n €
HY([-7,0],R).

Let m := {—T =ty <ty <<t <tr=0<t <ta--- <itny-1 <
ty = T} be a partition of [—7,T], with mesh denoted by |r| := max{(¢t; — t;—1) :
—M+1< i< N} Let 0 € [0,7], and for any u € [o,T], define |u] :=t,—1 Vo
whenever u € [t;_1,t;]N[o, T]. For each initial path n € HY°°([-7,0], R), define its
piecewise-linear approzimation n™ € H**°([—7,0],R) by

0" (s) = (%)n(tm) + (%)n(ti)

for s € [ti—1,ti), —M +1 <4 <0, and n™(0) := n(0). Define the continuous Euler
approzimations y : [c — 7,T] x Q@ — R of the solution = : [c — 7,7T] x Q@ — R of
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(1.2) to be solutions of the SDDEs:

n(0) +

y(t) = (1.3)

+[9(u(lu] = 72),y(lu]) AW (u), o<t<T,

n(t —o), o—T<t<o, T:=T1VT

jf(y(m — ) u(lul)) du
f

Denote solutions of (1.2) and (1.3) by x(¢t;0,n) and y(t;0,n), 0 —7 <t < T.
The main objective of this article is to show that, for a sufficiently regular test
function ¢ : R — R, the following estimate holds:

[E¢(z(t;0,m)) — E¢(y(t;oon™))| < K(1+ |Inll{ ) [ (1.4)

for all t € [0,T], o € [0,T] and all n € H>°([-7,0],R). In (1.4), || - |[1.0c is the
H'*>_norm of the initial path 7, ¢ is a positive integer, and K is a positive constant,
independent of the partition 7, the initial instant o and the initial path 7.

To establish the estimate (1.4), we employ the Malliavin calculus and anticipat-
ing stochastic analysis techniques developed by Nualart and Pardoux [33]. More
specifically, we are able to handle SDDEs with non-linear drift and diffusion coef-
ficients. We further allow for multi-dimensional noise and several finite delays in
both drift and diffusion terms, as well as quasitame dependence on the history in
all the coefficients.

As will be apparent in the sequel, the impetus for appealing to anticipating
stochastic analysis is provided by the tame It formula developed in [15]. Malliavin
calculus has recently become an important tool in the investigation of numerical
methods for stochastic differential equations. See for example Bally and Talay [7],
Kohatsu-Higa [19, 20] and Fournié, Lasry, Lebuchoux and Lions [11, 12]. Our
approach is however different from these works as indicated at the end of this
section.

We now give a brief outline of the proof of the estimate (1.4). We do this in
several steps:

Step 1 For simplicity, take 0 =0, t = t,, € 7N[0,T], 1 < n < N. By exploiting the
discrete delay structure of (1.3), it follows that the Euler approximation y(¢,;t;,n)
is a (Fréchet) C* tame functional in n € C([—7,0], R). Using a telescoping argument
along the partition points t;, Fréchet differentiability of the Euler approximation
y(tn;ti,n) in 7, the Markov property for z; and y; together with the Mean Value
Theorem, we write

E¢($(tn§ 0, 77)) _E(b(y(tn; 0, 77))

n 1
= ZE/ D((bo y)(tn;th)\xti + (1 - )\>ytz) ’ [xti - ytz] dA
i=1 70

where @y, := @y, (- 3tim1, 2,4 (+30,n)) and ye, == ye, (- 5tim1, 2, (+50,1m)).

Step 2 The main task is to show that each of the terms in the above sum is
O((t;—t;—1)?). This is realized through use of the tame Ité6 formula. The application
of the latter formula to the differences x+, —y:, generates multiple Skorohod integrals
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) 0 ti+s u
Ji ::/ Y(ds)/ / 31 (v) dvdW (u),
ti—1—1; ti—1 ti—1

0 ti+s u
T ::/ Y(ds)/ / Yo (v) dW (v — 72) dW (u),
ti—1—1; ti—1 ti—1

i

) 0 ti+s u
Js ::/ Y(ds)/ / S3(v) dW (v — 1) du.
ti—1—1; ti—1 ti—1

i

of the form

In the above expressions, Y (ds) is a random discrete measure on [—7, 0] induced
by Fréchet derivatives of the tame functionals C'([—7,0],R) 2 n — y(tn;ti,n) € R.
Thus Y (ds) has Malliavin smooth random atoms. The processes ¥;, j = 1,2, 3, are
Malliavin smooth and possibly anticipate the lagged Brownian motions W (- — 7;),
1=1,2.

Step 3 To estimate the expectation of the terms containing Skorohod integrals in
Step 2, we use the definition of the Skorohod integral as the adjoint of the weak
differentiation operator, coupled with estimates on higher-order moments of the
Malliavin derivatives of the 3;’s, j = 1,2, 3. These higher order moment estimates
are obtained using the corresponding higher moments of the Euler approximations
y and their linearizations. This is a somewhat delicate computation which turns on
the crucial fact that the Euler approximations y(t,;t;,n) are tame in 7. It yields

|BJI = O((t; —ti—1)?), j=1,2,3.

Summing over ¢ = 1,...,n, we get a positive constant K and a positive integer
q such that the estimate
[Ep(x(t;o.n)) — Eo(y(tio,n)| < K(1+ [nllf ) I7] (1.5)

holds for all t € [0,T], 0 € [0,T] and all n € HY*°([—7,0], R).

Step 4 To complete the proof of the estimate (1.4), we need to replace n in the
Euler approximation y(¢; o,n) in (1.5) by its piecewise-linear approximation n™. To
do so, we use the triangle inequality

|E¢(x(t;0,m)) — E¢(y(t;oon™))| < |E(x(t;o,m)) — Ed(z(t;o,n™))|

- - (1.6)
+ [E¢(x(t;o.n™)) — E¢(y(t;oon™))|
together with
|Eg(x(t; 0,m)) — E¢(z(t;0,0"))| < Klln—n"lc (1.7)
and the elementary estimate
n —n"llc <27 [lsol7]- (1.8)

See ([29], p. 41) for the estimate (1.7). The required estimate (1.4) now follows
from (1.5)-(1.8).

The above outline highlights the following unique features of the analysis in this
article:
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e Although the original SDDE is non-anticipating, the tame 1t6 formula gives
rise to anticipating terms containing Malliavin derivatives of the solution of
the SDDE [15].

e The formulation and the implementation of the Euler scheme do not require
the use of (or familiarity with) the Malliavin calculus.

e By contrast with the non-delay case (SODEs), SDDEs do not correspond to
diffusions on Euclidean space. Thus techniques from deterministic PDEs do
not apply.

e The use of anticipating calculus methods seems unavoidable in deriving first
order weak convergence for the Euler scheme.

We conclude the introduction by giving an outline of the paper. In Section 2 we
state the tame It6 formula used in Step 2 above. The main estimate (1.4) is proved
in Section 3 in the one-dimensional case (Theorem 3.1). A multidimensional version
of Theorem 3.1 with multiple discrete and quasitame delays is stated in Section 4
(Theorem 4.1). Section 5 provides numerical examples to illustrate our results.

2. The tame Ité formula

Our proof of weak convergence of the Euler scheme depends crucially on an Ito
formula for a certain class of functionals on C([—7, 0], R?) called tame functionals.
These tame functionals act on segments of sample-continuous random processes
[—7,00] x @ — R% . We will refer to this formula as the tame Ité formula. Details
of the proof of this formula are given in [15]. In the present context, we will only
state the formula in one space dimension (d = 1), although the formula holds true in
any Euclidean space for R%-valued processes driven by multi-dimensional Brownian
motion.

First, we need some notation.

Suppose that W (t), t > 0, is one-dimensional standard Brownian motion on a fil-
tered probability space (Q, F, (F¢)t>0, P). For simplicity of notation, set W (t) := 0
if —7 <t < 0. Denote by D the Malliavin differentiation operator associated with
w.

Throughout the article, we will reserve the notation D for the Malliavin differ-
entiation operator, and D for the Fréchet differentiation operator.

For any p > 1 and any integer k > 0, let L*? stand for the space L?([0, T'], D*?)
where D*P is the closure of all real valued random variables Z having all weak
derivatives D' Z € LP(Q, H®") for 1 < j < k, furnished with the norm

1/p
e = (BIZP)7 + (ZEHD%H@J) .

In the above equation, H denotes the Hilbert space L?([0,T],R). The spaces
Lfo’c,p > 4, are defined to be the set of all processes X such that there is an in-
creasing sequence of F-measurable sets A, ,n > 1, and processes X, € L*P n>1,
such that X = X,, a.s. on 4, for each n > 1, and |, A, = Q. By virtue of
its local nature the Malliavin differentiation operator D extends unambiguously to
the spaces Lloc7p > 4. For further properties of weak derivatives and the spaces
kP, the reader may refer to ([34, pp. 61, 151, 161] and [35].

1Z]
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Define the tame projection II : C([—7,0], R) — R* associated with s1,--- , s €
[_T7 O] by

I(n) == (n(s1),- -, n(sk)) (2.1)

for all € C([—7,0],R%).

Denote by C*2([0,T] x R*,R) the space of all functions ¢ : [0,7] x R¥ — R
which are of class C! in the time variable [0, 7] and of class C? in the space variables
R".

A functional ¥ : [0,T] x C([-7,0],R) — R is called tame, if there exists a
function ¢ € C42([0,T] x R*,R) and a tame projection II such that

\Il(tv 77) = Qs(ta H(U))

for all t € [0,7] and n € C([-7,0],R).
Consider a pathwise-continuous (not necessarily adapted) R-valued process X :
[—7,00) x © — R given by

X(t) = {n(O) + fou(s) AW (s) + [ v(s) ds, t >0, (2.2)

n(t), -7 <t <0,
where 1 belongs to C([—7,0],R) and is of bounded variation, u € leo’lc’m > 4,
and v € ]Lll:cl. The stochastic integral in (2.2) is understood in the Skorohod sense.
Note that the processes u and v may not be adapted to the Brownian filtration
(Fi)i>0. For convenience, whenever ¢ € [—7,0), we set u(t) := 0, and v(t) := 7/(¢),
where 1’ is the (classical) derivative of 7. Associate with X its segment process
X: € C([-7,0],R), t € [0,T], defined by

Xi(s) :=X(t+s), s€[-71,0], te]l0,T]. (2.3)

We are now ready to state the tame It6 formula. It describes how the seg-
ment process X; € C([-7,0],R) transforms under tame functionals ¥ : [0,T] x
O([_Tv 0]7 R) —R.

THEOREM 2.1. Assume that X is a sample-continuous process defined by (2.2),
where n : [—7,0] — R is of bounded variation, u € leo’i, and v € L}(ﬁ. Suppose

¢ € CV2([0,T] x R*,R), and let 11 be the tame projection (2.1). Then for all
t € 10,T] we have a.s.

¢(ta H(Xt)) - ¢(07 H(XO))

_[toe
- 0 g(S’H(Xs)) ds
L (2.4)
+;/0 Ox; (s, 11(X)) dX (s + s3)
1 k t 926
- Jz—:l/o T 5 ED)uls +50) T, X (o) ds

where
V;,SjX(S) = D;:’SiX(S +55) + Dyys, X (s +55)
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and
D;’:"SiX(S + Sj) = eli%lJr DSJrSiX(S +55+ 6)7

Dy, X(s+s5):= 111%1Jr Dots, X(s+ 55 —€).
O

Proof. See Hu, Mohammed and Yan [15], Theorem 2.3.

Remark 2.2. Note the misprint in formula (2.7) of [15], where the factor Dy, X (s+
sj) must be replaced by 77, ;. X (s).

The following corollary is an important special case of Theorem 2.1. In the proof
of Theorem 3.1, it plays a crucial role in estimating the difference, across partition

points, between the segments of the solution z of our SDDE (1.2) and its Euler
approximation y.

COROLLARY 1. Let v : R> — R be of class C?, and suppose x solves the SDDE

n(0) + fot f(x(u — Tl),a:(u)) du + fotg(x(u — 7'2),33(u)) dW (u), t >0

x(t):{n(t) —T7<t<0, T:=T71VTo,
(2.5)

where the coefficients f,g : R*> — R are of class C?%, and n € C([-7,0],R) is of
bounded variation. Suppose § > 0. Then a.s.

dw(x(t - 5),$(t))
o
= o—(a(t = 6),2(t)) Lo,5)(t) dn(t — 0)

N 81‘1
N S—Z@(t = 8), (1)) 15,000 (1) [ f (2(t = 71 = 8),2(t = 8)) dt
+g(x(t — 72— 8),2(t — 8)) AW (t — 6)]
+ g—i(ﬂf(t —0),2(t)) [f (2t — 1), 2(t)) dt+ g(a(t — 72), 2(t)) AW (2)]
+ 7(98;) (z(t — 8),2(t)) g(a(t — T2 — &), 2(t — 6)) L5 00) (t) Dys(t) dt
T10T9
+ %%(W —8),2(t)) g(x(t — 72 — 6), 2t — 6)) 5,00 (£) dt
+ %%(W —8),2(t)) g (x(t — 72), 2(t))? dt,
(2.6)
for all t > 0.

Proof. Suppose t > §. Apply Theorem 2.1 with ¢ := ¥(21,22), X = 2z, (n) :=
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(n(—0),n(0)), n € C([—7,0],R), where x solves the SDDE (2.5). This gives
N N

dy (z(t — 0),z(t)) = 8—m(x(t —6),x(t)) da(t — 8) + a—xz(x(t —6),z(t)) da(t)
%851(;/}332 (z(t—6),2(t)g(x(t — 6 — 72), (t — 6))2Ds_s(t) dt
L 82’(/J t—9§ t t t))2Dsx(t — ) dt
T (e = 8), (1) gt — ), 2(1)2 Deslt — )
0
+ %%(aj(t — 5),x(t))g(x(t —0—12),x(t — 5))Dt+_5x(t —9) dt
+ %%(gg(t —6),x(t)) g(x(t — 72),2(t)) D x(t) dt,
2

since Dy z(t) = 0.

Now,
D a(t) = g(x(t — 1), x(t))
and
D sx(t—06) = g(z(t — 6 — 1), z(t = 9)).
Hence
d1/)(x(t —9), a:(t)) = g—i(a:(t —9),x(t)) [f(x(t -1 —0),xz(t — 5)) dt
+g(z(t —6 — 1), z(t — 8)) AW (t — 6)]
+ g—i (x(t —9), a:(t)) [f(x(t —7), a:(t)) dt + g(x(t —T2), a:(t)) dW(t)]
+ %(aj(t —6),x(t))g(x(t — 6 — 72),(t — 0)) Dy_sx(t) dt
+ %%(x(t — 5),x(t))g(x(t —6—m),x(t — 5))2 dt
+ %%(w(t —8),2(t)) g (2(t — 72), 2(t))* dt.

This proves statement (2.6) of the corollary when ¢ > ¢.

If 0 <t <4, then z(t — 0) = n(t — ¢) is of bounded variation; so (2.6) follows
directly from the classical It6 formula. This completes the proof of the corollary. [

Remark 2.3. Note that the second term in the right hand side of (2.6) contains the

(F)e=o-adapted factor g—i(x(t —0),x(t)) which anticipates the lagged Brownian

motion W (t—¢). Although the process [0,00) > t — (z(t—0),z(t)) € R* is (F)i>o-
adapted, it is not a semimartingale with respect to any natural filtration. Therefore,
it is not possible to infer (2.6) from the classical It6 formula for semi-martingales.
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3.  The Euler scheme

In this section, we will establish weak convergence of order 1 of the Euler scheme
for the non-linear SDDE

n(0) + ft f(x(u — Tl),x(u)) du + ftg(x(u — Tg),a:(u)) dW (u), t > o,

n(t — o) oc—T<t<o, T:=T1VTy,

a(t) =

(3.1)
where the initial path € H»*°([—7,0],R), ¢ > 0, and the coefficients f,g: R* —
R are of class C}; viz. f and g have all partial derivatives up to order 3 globally
bounded on R2. The space of all such functions is often denoted by CP(R?* R).
Similarly CZ(R? R) denotes all functions R*> — R with first and second-order
partial derivatives globally bounded. As before, W (t), ¢t > 0, is one-dimensional
standard Brownian motion on a filtered probability space (2, F, (Ft)t>0, P). Set
Wi(t):=0if —7 <t <0.

Recall the partition 7 := {t_pr < t_prp1 < - <t_1 <tp=0<t1 <ta--- <
tn—1 <ty =T} of [-7,T], with mesh denoted by |r|, introduced in Section 1. The
Euler approximations y := y(:;0,7) : [o — 7, T] x Q@ — R of the solution z(-; o, n) of
(3.1) satisfy the SDDEs

00+ [ F(y(lu) — ).y (L)) du

VD=0 Tolu(lnl — ) p(lul) aW ), 10

n(t —o), c—T<t<o, T:=TVT.

(3.2)

The following is the main result of this article. It establishes weak convergence
of order 1 of the Euler scheme (3.2) to the solution of the SDDE (3.1). Note that we
assume test functions ¢ € Cp (derivatives up to order three exist and are bounded
and continuous).

THEOREM 3.1. Let 7 be a partition of [—7,T] with mesh |r|, and ¢ : R — R
be of class Cp. In the SDDE (3.1), assume that the coefficients f,g are Cp. Let
z(-;0,m) be the unique solution of (3.1) with initial path n € H“*°([-7,0],R).
Let n™ € HL"O([—T7 O]7R) be the piecewise-linear approximation of n along the
partition 7. Denote by y(-; 0,m) the Euler approzimation to x(-;o,n) associated with
the partition m and defined by (3.2). Then there is a posiltive constant K and a
positive integer q such that

[E¢(x(t;0,m)) — E¢(y(t;0,n™)| < K(1+ [0l o) I7] (3-3)

forallt € [o—7,T],0 €[0,T], and all n € H->([-7,0], R). The constant K may
depend on T, q and the test function ¢, but is independent of 7, n,t € [o,T] and
o €10,7T].

For simplicity of presentation, we will only discuss the case of single delays
71, T2 in the drift and diffusion coefficients as in (3.1). It should be noted that the
conclusion of Theorem 3.1 still holds if we allow for multi-dimensional noise and
several delays in the drift and diffusion coefficients of the SDDE. The extension of
Theorem 3.1 to this case is given in in Section 4 of this article.
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The proof of Theorem 3.1 requires the following sequence of lemmas. In these
lemmas and for the rest of the section, we will refer to the solutions of (3.1) and
(3.2) by z(-;0,m) and y(+; o, n), respectively.

The first lemma establishes the tame character of the Euler approximation
y(t;o,n) and its Fréchet derivative Dy(t;0,m) in the initial path n. This fact dic-
tates that the telescoping argument in the proof of Theorem 3.1 is with respect to
the Euler approximation y and not the solution z of the SDDE (3.1). This issue is
especially important in view of the well-known fact that the solution x(t;o,n) of
(3.1) is almost surely extremely erratic in the initial path n ([29], Chapter V, pp.
144-148).

LEMMA 3.2. Fiz a partition point t; € & for some i € {0,1,--- ,N}. Then for a.a.
w € ), the function

[t;, T] % C([—T,O],R) — R,
(t,n) — y(t,w;ti,n)

is a tame function. That is, there exists a deterministic function F : RT x RF %
R"x R' — R which is piece-wise continuous in the first variable (the time variable)
and of class C¢ in all other variables (space variables), and there exist fized numbers
ti,to, ...tk < t, 81,82,...,80 <, f1, o, ..., € [—7,0] such that a.s.

y(t tz‘ﬂ?) = F(t7 W(t)7 W(t1)7 W(t2)7 ceey W(tk)7 81,825+, Shan(ﬂl)7 v 777(/”))

for alln € C([—T, O],R) and all t € [t;,T]. In particular, for a.a. w € Q and each
t € [t;,T], the map

O([_Ta O]a R) ont— y(t7w; tzﬂl) €R
is C' (in the Fréchet sense), and

—

Dy(t,witi,n)(€) = > OmF (£, W(t,w), W(t1,w), ..., W(ts,w), 51, .., 5n,0(11),
m=1
() - n() )€ (pm)
(3.4)
foralln € C([—T, 0], R) and for every bounded measurable function & : [—7,0] — R.
In the above formula, O, F denotes the partial derivative of F with respect to the
variable n(m,).

Proof. The second and last assertions of the lemma are direct consequences of the
first. So we will only prove the first assertion. The latter assertion is proved using
forward steps along the partition points {0 = tg,t1,t2,t3, -+ ,txy = T}, and finite
induction. More specifically, and with no loss of generality, suppose ¢ = 0 and let
t € [0,T]. Consider the following cases.

Case 0 <t < tq:

y(t;0,m) = 1(0) + f(n(=71),n(0))t + g(n(—72),n(0)) W (t)
=N (tv W(t)a 77(0)7 77(_7-1)7 7](—7'2)) .

This is clearly a tame function of 7, satisfying the regularity properties stated in
the lemma.

https://doi.org/10.1112/5146115700000053X Published online by Caff{gridge University Press


https://doi.org/10.1112/S146115700000053X

Weak convergence of Euler scheme for SDDFEs

Case t1 <t < to:

y(t;0,m) = y(tr) + f(y(tr — ), y(t1)) (t = t1) + g (y(tr — 72), y(t2)) [W(t) — W (t1)].

This is a tame function of i because y(t1;0,7), y(t1 — 71;0,7n) and y(t; — 72;0,7)
are all tame functions of 1, and the composition of tame functions with real-valued
functions is again tame. Indeed, suppose without loss of generality that 71 < 75 and
let t1 — 71 < 0. Then

y(£;0,m) = n(0) + f (n(=71),1(0))t1 + g(n(—72),n(0)) W (1)

+ f(n(ti=71),1(0) + f (n(=71),n(0))tr + g(n(=72),n(0)) W (t:)) (t - t1)

+ g(n(ti—72),n(0) + f(n(—=71),n(0))t1 + g(n(—72), n(0)) W (t1)) [W(t) — W (t1)]
= Fp(t, W(t), W(t1),t1,n(0),n(ts — 1), n(tr — 72),n(=71),1(—72)).

It is easy to see that F3 is tame and fulfills the regularity requirements of the lemma.
The other cases 71 < t1 < 72, and 7 < 7 < t1 can be treated similarly.

Case tog < t < t3:

y(t;0,m) = y(ta) + f(y(ta — 11), y(t2)) (t — ta) + g(y(t2 — 72), y(ta)) [W(t) =W (t2)]
= F5(t, W (t), W (t1), W(tz), W(ty — 1), W(ta — 72), t1,t2,7(0), n(—71),
n(=72),n(ty — 1), n(t1 — 12)),
with F3 tame in 7, as required.

Case t, <t <tpyr:

By induction, there are fixed numbers sy, $2, . .., sk < tx, and p1, 42, ..., g € [—7,0]
such that

This is a tame function of 7, continuous in the time variable ¢ and of class C? in
all space variables.
To complete the proof of the lemma, take

N-1
F(t’ RRERE} ) = Z l[t,i7ti+1)(t)Fi+1('a ERE] ')7
=1

for ¢ € [0,T]. It is easy to check that F satisfies all the requirements of the lemma.
O

Warning 1. The lemma is false if the Euler approximation y is replaced by the
exact solution z of the SDDE (3.1). In fact, for a.a. w € 2, every measurable
version z(t,w; 0,n) of the solution to (3.1) is locally unbounded in 7 ([29], pp. 144-
147). As will be apparent later in the proof of Theorem 3.1, this fact will force the
telescoping argument to be centered about the Euler approximation y rather than
the solution x. On the other hand, the following statement is true: Let ¢ : R — R
be C°, h,g: R?* — R be C5°. Then the map

LX(Q,C([-7,0],R); F») 2 ¢ 5 E¢(z(t;0,9)) € R
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is globally Lipschitz and (Fréchet) C', with Fréchet derivative

DF(¥)(n) = E{D¢(2(t;0,v)) Da(t; 0, ¢)(n) }

for all ¢,n € L2(Q,C([—T, 0, R); 7). To see this, note that the Lipschitz and
C! properties of the map L*(Q,C([-7,0,R);F,) > ¢ — x(t;0,7) € L*(L,R)
follow by arguments similar to the proofs of Theorems 3.1, 3.2 in ([29], pp. 41-45).
Compose the above map with the C;° function ¢ : R — R to establish the above
assertion. Details are omitted.

The following lemma is key to the proof of Theorem 3.1. It involves the applica-
tion of the tame Itd formula in Corollary 1, Section 2. See Step 2, Section 1.

LEMMA 3.3. Assume that f,g are CZ. Fiz n € C([—7,0], R), of bounded variation.
For each 1 <i < N, define the process A* : [—7,0] x 2 — R by

Ai =Tty ( s ti—lvxti—1(' ;077])) — Yi; ( S ti—lvxti_1(' ;077])) )
ViZ.
Ai(s) := x(ti +s5tio1, e, (- ;0,77)) — y(ti +s5tio1, e, (- ;0,77)), s € [-1,0].

For brevity of notation, set x(u) := x(u;0,n) and y(u) := y(u;0,n) for v € [—7,T).
Then

) (ti+s)Vti—1
A'(s) z/ [f(x(u — Tl),a:(u)) — f(x([uj — Tl),a:(Luj)] du

ti—1

(tits)Vti—1
e[ et ) ) — o) — ) ()] V0 (35

ti—1
0
= ZA;—(S), s € [—7,0],
i=1
where

_ (ti+8)Vti_s
Af(s): = / / f v—Tl),a:(v))f(a:(v—271),33(11—7'1))><
Ab(s) : =

Q’\

X 17, 00y (v) dv du

_|_

(ti+s)Vti—1 u
/ of (z(v —11),2(v))g(z(v — 11 — T2),2(v — 71)) X

ti1 LUJ 81‘1
X 1 00)(v) AW (v — 71) du

+

(tit+s)Vti—1 u 8f
- 1 _
/ Lu axl z(v —11),2(v)) 10,7, (v) dnp(v — 71) du,,

8f z(v—11),2(v)) f(z(v —71),2(v)) dv du

@\
=
+
&
<
$
L

=

£

% ‘

N

_|_

t +s Viti—1 U 8
/ z(v—11),2(v))g(z(v — 72),z(v)) AW (v) du ,

ti—

s
H
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/(ti"l‘s)\/ti—l u 82]0

3(8) L= ] 8%1(%2

(m(v — Tl),x(v))g(x(v -7 —T2),x(v— 71)) X

ti—1

X 17, 00) (V) Dy—ryz(v) dv du

_ (ti+s)Vti_1 o2
Ay(s) 1= % /ti_l /M 8—;%@(11 — Tl),x(v))g(x(v -1 —T2),x(v— 7'1))2><

X 17, 00y (v) dv du,

(ti+8)vti,1 /u 82]0
(ts +s)\/tl 1 u ag

/ —(x(v — 7'2),x(v))f(m(v -1 —T2),x(v— 7'2))

X 17, 00)(v) d dv dW (u)

t+s Viti—1 u
[ 30 = ), 0(0) o (0) (e = ) AW ().
lu) O%1

Ai(s): (z(v—11),2(v))g(z(v — 7'2)7:6(1)))2 dv du ,

Il
N —
:*\
L

Ai(s)

_|_

(tit+s)Vti—1 u
/ 89 ( (U—Tg),x(v))g(x(v —272)7x(v—72))x

1 Lu] 81‘1
X 17, 00)(v) AW (v — 72) dW (u) ,
(ti+s)Vti—1 u 82

=
00 -
—
Va)
~—
Il

/
|
i(s): = /
/,

(x(v —T2), x(v))g(x(v —279),x(v — 7'2)) X
X 1i7;,00) (V) Dy—ry () dv dW (u)
(tit+s)Vti—1 U 82
% / 1 /Lujvn 8—33%(96(1} — Tg)7x(v))g(x(v —27m),z(v — Tg))zx

X 1[72700) (U) dv dW(U) )

1 (ti+s)Vti—1 u 829 )
3 / / —5 (2(v = 1), 2(v)) g (2(v — 72), 2(v))” dv AW (u)

ti—1 [u] 81U2

lu] 8$18$2

@@.

—
»

N
Il

Aio(s) :

for all s € [-7,0] and 1 < i < N.

Proof. Fix1<i<N.
Recall that z(u) := x(u;0,7n) and y(u) = y(u;0,n), —7 < u < T. Suppose
ti—1 <u<t;. Then LUJ =t;_1 and LUJ — 71 =ti_1— 7 <t;_1. Hence
y(lulitict, e, (+30,1m) = y(tiistic, @, (+:0,m)) = 2¢,_,(0;0,7)
= z(ti-1;0,m) = z([u])

and

y(lu) = mtict, e (+30,0) = y(ticy — 715 tim, @, (+30,1))

=z, (=11;0,m) = z([u] — 7).

Furthermore, if ¢;_1 < u < t;, then by the Markov property for the solution segment
Ty, it follows that

z(utiog, 2, (+0,m)) = 2(u; 0,n) = z(u).
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In addition, suppose that «w — 7 > ¢;,_1. Then we may replace v by v — 7 in the
above identity to obtain

w(u—7i5tion, e, (+50,m) = 2(u—71150,7) = x(u —71).
On the other hand if u — 7 < t;_1, then
w(u—Tisticr, @, (+50,n) =2, (u— 11— ti_1;0,7)
= x(u’ - 7—1;0777)
=xz(u—m).
Now suppose s € [—7,0] and consider

A(s) ==a(ti + s;timr, @, (+:0,m) —y(ti + sitic, ze,_, (+50,m))

in the following two cases:
0 < ti—1 < t; + s

tit+s tit+s
Ai(s) = / fz(u—m71),2(u)) du+ / g(z(u —72), z(u)) dW (u)

tif1t’i+s ti—1 s
- [ ral =) du= [ ga(l =)L) W

- /+ [ (@ = 70),2(w) = f(2(lu) —71), ()] du

ti—1

ti+s
+/ [g(x(u - 72),x(u)) - g(x([uj — Tg),x(LuJ))] AW (u).

ti—1

ti—T <t s <t <t
A(s) =, (ti+s—ti_1;0,m) —x¢,_ (ti+5—t;_1;0,n) = 0.

Putting the above two cases together, gives

) (ti+s)Vti—1
A = [ [ (@lu =), ow)) = (o ((a) = 7). ([u))] du
ti(;il-FS)\/ti—l (36)
4 / [9(x(u — ), 3(w)) — g(x(lu] — ), 2(lul))] AW (u),

ti—1

a.s. for all s € [—7,0].
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Since f is in C?, we may now apply the tame It6 formula (2.6) (with ¢ = f,
0 = 71) to obtain:

f@tu—m),x(w) = f(z(lu) =), 2(|u]))
= / g—f(x(v - Tl),a:(v))l[moo)(v) [f(x(v —27),z(v — 7'1)) dv
[u] 921
+ g(a:(v -1 —T2),x(v— 7'1)) dW (v — 7'1)]

" »/[uJ dxy (#(v = 71),2(v)) Ljo,7,) (v) dn(v — 71)

i /M Ty (v =), 2(0) [ (a0 = 7). 2(0))

—|—g(x(v — TQ),LU(’U)) dW(v)]

1[92 f 2
T3 /LuJ Tx%(x(v —71),2(v))g(x(v =11 — 72),x(v = 71)) L[y 00)(v) dv

u 92
%/ g f(w(v —Tl)7x(v))g(x(v —7'2)7{,6(1)))2 dv.

+ [

(3.7)
Similarly, from (2.6) (with ¢ = ¢, = 72), it follows that

g9(z(u—72), 2(u) — g(a(lu) — ), 2([u)))
= / aa—g(x(v = 72),2(0)) Ly 00) () [f (z(v = 71 = 72),2(v — 7)) dv
Lu) 071
+g(z(v —2m2),2(v — 72)) AW (v — 72)]

“o
+ ,/|_uj a—i(x(’v — 7'2)723(@))1[0,7-2)(’0) dn(v _ 7—2)

(3.8)

u 2
+ %/ g (z(v = 72),2(v)) g(x(v — ), 2(v))” dv.

[u] 8—‘”%

Now substitute from (3.7) and (3.8) into (3.6) to obtain the last assertion (3.5)
of the lemma. O
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LEMMA 3.4. Suppose f,g € C?. Then for any p > 1 there is a positive constant K
such that

s sup HDw@mme<K<l+EMﬁ?+ sup Em%m£)<aw

0<o<T o—7<u,t<T o—TLS<Oo

sup sup  sup  E[D,Dy(t;0,n)(&)*
[I€llco<1 0<o<T o—7<u,t<T
€€L™®([=7.0.R)

1/2
<KO+MWW+ sup mmmg) (3.10)

o—7<s<0o
and

sup sup  E|[Dyx(t;o,n))?? < K<1+E|77|ép+ sup E||Dsn|g§) (3.11)

0<o<T o—7<u,t<T O—TKSKO

for all n € L4P(Q,C([—T, O],R);fg) which are Malliavin smooth and such that
sup  E||Dsn||?? < co. The constant K is independent of t € [0 —7,T), o € [0,T]

o—T<s<Oo

and n, but may depend on p, f,g and T'.

Proof. We first establish the estimate (3.9). Let n € L?(Q,C([-7,0],R);F,) be
Malliavin smooth and such that sup E||Dgn||?? < oco. For brevity, denote by

o—T<Ls<Oo
y(t) :=y(t;0,m), t € [0 — 7, T], the solution of (3.2) with initial process n at o.
Take Malliavin derivatives of the equation
0)+ [y Fu(lw) = ) w(le)) dv
y(t) = + [o((lv] —m),y(lv]) AW (), t>0  (3.12)
n(t — o), oc—T<t<o,
to get

D) = oy~ ) u(l) + [ 2 (u(le) ). w(10))Pu(le] - ) v

/ y(lv) =71),y([v])) Duy(lo]) do
/ 7y (0] =72).y([0])) Duy(l0) = 2) AW ()

t
0
+/ 852( (L) = 72),(1v))) Puy([v]) W (v) (3.13)
for ¢ > u; and Dyy(t) = Dyn(t — o) for o — 7 < t < u ([B.M]).

The idea is to estimate the function

0(t') = sup E|[Dy(t)|”, u<t <T, (3.14)
u<t<t

for fixed u € [0 — 7, T}, using (3.13) and Gronwall’s lemma.
Since f, g have linear growth, it is easy to see from (3.12) and Gronwall’s lemma,
that

sup  E|y(t)[*” < K(E|ln|Z +1). (3.15)

o—7<t<T
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Since g has linear growth, then

sup Blg(y(u] - n),y(lu))|” < K(Bllnl|Z +1). (3.16)

<ug

Fix u > o — 7. Take E| - |?P on both sides of (3.13) (using the fact that f, g have
bounded derivatives) to obtain

t
BP0 < K(L+EIZ + s B1Dal2) + K [ EDuy(lo] - n) ao

o—TLs<Oo

+K/ E|Duy(lv]) 7 dv+K/ EIDuy(lv] — ) dv

+K/ E[Dyy([v])[* dv.

Hence

sup E|Duy<t>|2P<K(1+E||n||é”+ sup E||Dsn|z§)

u<t<t! o—71<s<o0o

' t’
+K1/ sup E[Dyy(v)|*” dv’+Kz/ sup  E[Dyuy(v)|* dv’

uLvL! uLv<!
t/ t/
—|—K3/ sup E|Duy(v)|* dv’—|—K4/ sup E|D.y(v)|?? dv’ .
u uLv<y’ u uLvy’
Thus
t
o(t') < K(l +EIn|Z + sup E|Dsn|g§) + K/ (") dv’, u<t <T.
o—17<s<0o u
By Gronwall’s lemma,
o) < K(1 +Elll# +  sup E||Dsn|i§) exp{K(t' —w)}, u<t<T.
o—TLS<Oo

This implies the first assertion (3.9) of the lemma.
To prove the second assertion (3.10) of the lemma, first linearize (3.12) (pathwise)
with respect to any deterministic path n € C([—7,0],R). This gives a.s.:

5;‘ (v(Lo) = 1), u(191)) Dy () — ms0,m) (€) o

Dy(t;o,m) (&) = £(0) +
s y(lv] —),y(v]))Dy(Lv];0,n)(€) dv

[ 5
/ % v] = 7). y([v])) Dy([v] — 7250,1) (€) AW (v)
/

a—g = 72),y([v))) Dy(lv);0.m)(€) AW (@), t >0,
Dy(t;o,n) (&) = £(t — o), o—T<t<o,
(3.17)
for all bounded measurable functions £ : [—7,0] — R. Secondly, replace the deter-

ministic path n in the above integral equation by a Malliavin smooth random initial
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process (also denoted by) n € L* (Q,C([-7,0],R); F,) satisfying the hypotheses
of the lemma. Thirdly, take Malliavin derivatives D,, of the resulting equation to
get the following integral equation for D, Dy(¢t; 0, n)(£):

I =), y([v]))DuDy(|v];0,n)(€) dv

( y(1v])Duy(lv] — 730.m) Dy (lv] — 7130,1)(€) dv

—71),y([v]))Puy([v];0,n) Dy(|v] — 7150,1) () dv

(9
( y([v])Duy(Lv];0,m) Dy([v]);00n)(€) dv
f

—71),y(v])Duy([v] = 7150,m) Dy(lv];0,n) (€) dv

a—g [v) = 72),y((0))) Duy(lv] = 7230,m) Dy (Lv) = 250,1m) (€) v

8 y(lv] = 72),y(lv]))Duy(lv]; 0,m) Dy (lv] — 7250,1) (€) AW (v)
g‘ g 2), (12)) Py ([2); 0:1) Dy [o]: 7,7) (€) AW (v)

a—g (o) = 72),y((0))) DuDy(lv] —72:0,m) (&) AW (v)

8x18x2 —72),y([v]))Duy(lv] — 72;0,m) Dy(|v];0,1) (&) AW (v)

y(lv] = 1), y(|v]))PuDy(lv];0,0) () AW (v), t>u> o0,

DuDy(t7avn)(§):07 0'—7'<t<0',
(3.18)
for all bounded measurable functions ¢ : [-7,0] — R.

Since f and g have bounded first derivatives, it follows from (3.17) (with random
n) and Gronwall’s lemma that there is a positive constant K such that

sup sup  E[Dy(t;o,n) (&) < K (3.19)

st —r<t<T
cersS(Crol Ry © S
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for every p > 1. By the first assertion of this lemma, we have
s s EDton) < K(1EIE S sw  BIDaIE) (320
0<o<T o—7<u,t<T o—7<s<0o

for any p > 1, where K > 0 is independent of 7.

Let t > u > o and assume that n € L*(Q,C([-7,0],R);F,), is Malliavin
smooth and satisfies the hypotheses of the lemma. Take E|- |?P on both sides of
(3.18). Using (3.19), (3.20) and the fact that f and g have bounded derivatives,
this yields:

E|DyDy(t; 0,n)(€)[*

1/2
<K1||£||%.§+Kz(1+E||n||ép+ sup E||Dsn|%.zz) ez

o—T<s<o

+ Kg/ E|DuDy([v] — m1;0,1) (&) dv (3.21)

1/2
<K4<1+E||nll4c”+ sup E||Dsn|i§) ez

o—17<s<0o

t
+K3/ sup E|D,Dy(t';a,n)(&)[* dv

ult' <v
for t >u > o and £ € L*°([—7,0],R). Define

®(t'):= sup E|D.Dy(t;o,n)(E)*", t >u.

U<t
Then (3.21) says that
1/2 t
() < K4(1+En;{?+ sup E||Dsn|i’.?> -||£||§§:+K3/ d(v) dv, t' >u.
o—TLS<o u

By Gronwall’s lemma, it follows that

WV
<

1/2
<I><t'><K4(1+E|n|ép+ sup E||Dsn|i§) €12 exp{Ks(t —w)}, ¢

o—7<s<0o

Thus

1/2
sup Emwy(t;a,n)(gﬂ%<K5(1+E|n|ép+ sup E|Dsn||i§) el

o—TLu,t<T o—T<Ls<Oo

for all Malliavin smooth n € L*(Q,C([-7,0],R);F,) satisfying the hypotheses
of the lemma, and all £ € L*>([-7,0],R). ThlS immediately implies the second
assertion (3.10) of the lemma.

The last assertion (3.11) of the lemma follows by very similar argument to the
proof of (3.9). Details are left to the reader. This completes the proof of the lemma.
O
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Weak convergence of Euler scheme for SDDFEs
LEMMA 3.5. Suppose f,g € C3. Then for any p > 1,

sup sup E|DwDuy(t7 g, 77)|2p

0<o<T o—7<u,w,t<T

<K(1+E|n|ép+ sup  E|Dal+  sup Ewspsmiz)

o—TSK0o o—7L81,82K0
(3.22)
and

sup sup sup E|DyDyDy(t; 0,m)(€)|*"
I€llco<1 0<o<T o—7<u,w,t<T
£eL®([2r.01,R)

<K(1+Ellnllgc”+ sup  ElDal®+  sup Ewlesanig)

o—TLS<Oo o—7L581,52<0

(3.23)

for alln € L8 (97 C([—T, 0], R) ; .7-'(,) which are Malliavin smooth with the right hand
side of (3.23) finite. The positive constant K is independent of t € [0 — 7,T),0 €
(0,7, and 7.

Proof. Assume that the random process 7 satisfies the hypotheses of the lemma.
By Proposition 3.3 in [15], it follows that the left hand side of (3.22) is finite. To
complete the proof of (3.22), we take Malliavin derivatives D,, on both sides of the
integral equation (3.13). This yields the following integral equation for D,,D,y:

Dy Duy(tio,n) = %(y(tw —12),y([u))) Duy(lu] — 7250,m)
+ 22 (1) = 72). (L)) D u)iovn)
+/u g—xfl(y(m —T1)7y(ij))DwDuy(LvJ —T11;0,n) dv
+/u L (w101 = 7).y (1)) PuDusLo: ) o
82f

92107 (y([vj - Tg)7y(LvJ))Dwy(ij |0, n)Duy(ij — T9;0, n) dW (v)
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Weak convergence of Euler scheme for SDDFEs

+/ O (y(10) ~ ), w(11)) Dy (10): 7. ) Doy ()i 1) AW (0)

ox3
+ g—xgl(y(LUJ —T2)7y(|_vj))DwDuy(|_vJ _7—2;07,7) AW (v)
u 8:189952 (y(lv] = 7),y(lv])) Duwy(lv] = 72;0,1) Duy(lv]; 0,1) AW (v)

+/ aa—i(y(w_72)7@/(L”J))Dw17uy(w;0777) AW@w), t>u>o

DuwDyy(t;o,n) =0, oc—T<t<o.

(3.24)
Observe that (3.24) is a linear SDDE in D,,D,y. So taking E|-|?" on both sides of
(3.24), using the estimates (3.20), the fact that f,g are C? and Gronwall’s lemma,
a lengthy but straightforward argument yields (3.22). Details are left to the reader.
Note that the estimate (3.22) requires that f,g be C? (rather than the stronger
requirement that f,g € C3 which is needed for (3.23)).

The proof of (3.23) is similar to (but lengthier than) that of (3.22): Start by
taking Malliavin derivatives D,, on both sides of (3.18). This yields a linear integral
equation for D,,D,Dy. Using the fact that f,g € C}, the estimates (3.20), (3.22)
and Gronwall’s lemma in the latter integral equation, one obtains (3.23). O

Proof of Theorem 3.1.. Let t € [o,T] and 7 := {t_y < t_pp1 < -+ < t_1 <
to=0<t; <ty <ty_1 <ty =T} be a partition of [—7,T]. Without loss
of generality assume that 0 = 0 and ¢t = ¢,, € 7 for some 0 < n < N. Suppose
n € H">([-1,0],R).

Using the Markov property for the segments z; and y; ([29], [30]), we may
rewrite

E¢(x(tn; 0777)) - E¢(y(tn7 0, 77))
= E¢(y(tn? tn, e, (- ?0777))) - E¢(y(tn; 0777))

= Z {E(b(y(tTu ti7wti(' ) 0777))) - E¢(y(tn7 bie1, Tty ( " 0777)))}
i=1

= Z {Eo(y(tnitize, (<5tim, e, (+50,m))))
=1
—E¢(y(tniti,ye, (- 5timt,ze_, (+50,m)))) }
n 1
= ZE/ D((boy)(tn;ti?/\xti(';ti—17$ti—1(';077]))
i=1 0

+ (1= Ny, (-3timt, e, (+50,1))) dA
Nz (st e, (50,m) =y, (s ticn, e, (30,m))]

Our main objective is to show that each of the terms in the above sum is O((¢; —
ti—1)?). The rest of the computations in this proof are directed towards this purpose.
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In view of Lemma 3.2 and the chain rule for Fréchet derivatives, observe that
each expression

{D (boy)(tnvtl:/\xt ( Lie1, %, 1( ;0777)) +(1_/\)yti(';ti—hxti—l(';O?n)))}

corresponds to a purely atomic random measure on [—7,0]. We will denote each
such measure simply by

D(¢oy)i(A,ds)

for each A € [0, 1].
To further simplify the notation, we denote

w= e (it e, (50,m), v =y (ition e, (+50,m) (3.25)

for the rest of this proof.
Using (3.5) of Lemma (3.3), where we have applied the tame Ité-formula, we
obtain

n

E¢(z(tn;0,m)) — B¢ (y(tn; 0,m) = > ZE/ {D (¢ oy)i(A,ds)AL(s) dA

=1 j=1
(3.26)
Thus, by Fubini’s theorem, we obtain
B(x(tai 0.1) — Eo{y(tai 0.) = 33" / 60 )i\, ds)Ai(s) dA
j=11i=1
(3.27)

‘We now show how to estimate each of the 10 terms

noo.1 0
> [ E{DGonn@} dn G120
i—=1 Y0 -7
on the right hand side of (3.27), for any fixed A € [0, 1].

Let j = 10 and fix any A € [0, 1]. Then by definition of the Skorohod integral (as
adjoint of the Malliavin derivative), and using Lemma 3.2, we get

Iy = [ E{D(¢oy)i(Ads)A}y(s)}

1 0 (tit+s)Vti—1 u 82
-3/ TE{Dwoy)i(A,ds) L[ 5360

x g(z(v —7), 2(v))? dv) dW(u)}

B l (ti+pm)Vti—1 u 82g
a _mZ:: /,_ E {Du [D(@oy)i(A Liu,y) ] /M a—x%(?ﬁ(’” = 12),2(v))
x g(z(v— 7'2),12(11))2 dv} du.

In the above formula, 1{u,,y denotes the indicator function of {u,} for 1 <m <1,
where the p,,’s are defined in Lemma 3.2.

Do =
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Since f and g are CZ, then sup E|z(v)|*’ < oo for all p > 0. Thus
0<v<T

0 2
02)1<pTE (%cz( x(v — Tg),x(v))g(a:(v - 7'2),33(11)) < 00.

Recall the notation (3.25). Then by the chain rule for Fréchet derivatives and the
product rule for Malliavin derivatives, we obtain

DM[D((ZSO@/)Z()‘? )]
=D, {Dqﬁ(y(tmtl,)\xt + l—A)ytl))Dy(tmtl,/\xt + (1 =Ny )}
=Dy {Dd(y(tnsti, Aee, + (1= Nye,)) } Dy (tnsti, Awe, + (1= Nye,)
—|—D¢(y(tn,ti,/\xti+(1—)\) )) D. {Dy(tn,tl,)\xt + l—A)yt)

i

g

By the chain rule for Malliavin derivatives [34],

Du[D(¢ 0 y)i(A, )]
= D?¢(y(tniti, Aee, + (1= Nye, ) - Duy (tni ti, Ave, + (1= Ny,))
- Dy(tn;ti, Aoy, + (1= Nye, ) ()
+ Dng(y(tn; ti, Avg, + (1 — /\)yti) ~Du{Dy(tn; ti, Aoy, + (1 — )\)yt)}

(Note that Dy(tn;ti, Axe, + (1 — N)yy,) stands for the Fréchet derivative Dy(---) €
O([_T7 O]a R)*)

Thus, using the above relation, Lemma 3.2 and its notation, we obtain

0
Iig= [ ED(¢oy)i(Ads)Ajy(s)

-7

0
= ED(;S(y(tn; ti, Aoy, + (1 — )\)yti))

-7

Dy (tn; ti, Awe, + (1= Ny, ) (ds) Ao (s)

l
= EDo(y(tn; ti, Aoe, + (1= Nyw,) D O F (W (1), W(ta),..., W (t),

m=1

S1yeenyShyt ey AZ(t; + ) + (1 —)\)y(ti—i—um)?...,...)AiO(um)

l

m=1

+ (1 - )‘)y(tl + Hm): T )All()(,um)

Recall that F' and pt,,, m = 1,2,--- [, in the above relation are defined as in Lemma
3.2.

By the definition of the Skorohod integral as adjoint of the Malliavin derivative,
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we may write each summand in the above relation as
E{D¢(y(tn;ti, Axe, + (1 = Nyz, ) O F (£, W(t), ..., Ax(t; + fmm)
+ (1= Nyt + )i - )Mo (i) }
= %E{D(b(y(tn; ti, Az, + (1= Nye, ) Om F (6, W (E), ..., Ax(ti + fim)
+ (1= Ny(ti + pm); - )

(ti+pm)Vti—1  pu 52 )
x / / g (z(v = 72),2(v))g(x(v — 72),2(v))” dv dW (u)}

ti—1 [u] 8—LU%
= Rl,m, + RQ,m
(3.28)
where
1 (titpm)Vti_1
RLm 125 / E{Du D(b(y(tru tq, )\xti + (1 - )\)ytz))
ti—1
X O F (6, W(t), ..., Ax(t; + pn) + (1= Ny(ts + pm);-.)  (3:29)
v 9% 2
X W(x(v —72),2(v))g(z(v — 72),2(v))” dvy du
[u) OF2
and
1 (ti+pm)Vti—1
Rg’m ::5/ E{ng(y(tn;ti, )\Jiti + (1 — )‘)ytl)
ti—1

X DO F (6, W(t), ..., Azt + pm) + (L = Nyt + pin);-.. ) (3.30)

U 82
X /L g(ac(v—Tg),w(v))g(x(v—7'2)7:16(1)))2 dv} du.

Using the chain rule for Malliavin derivatives, and Lemma 3.4, we obtain

E|DuD¢(y(tn; ti, Aoy, + (1 — )\)yti)

= E|D2¢(y(tn;tia )\xti + (1 - )‘)yti))Duy(tn§ ti, )\xti + (1 - )‘>ytz)
<K, E|Duy(tn; ti, Aoy, + (1 — )\)yti) »

2p

2p

ng+Emm?+w%ﬁ%

2 2
b s B2t sw EDw)
o—7<s<0o o—17<s<0o

Since x and y both satisfy SDDEs with coefficients having linear growth, then
Ellze, (-5timt, @ (50, & = Ellze, (+,0,m)1&7 < Ks(L+ [0 &)
and
Ellye, (st (0,m)E < Ka(L+ Ellze,_, (-, 0,n)IF) < Ks(1+ nlleh)-
Similar estimates hold for Dz, and D,y;,. Therefore,
E[DuDé(y(tn;tis Awe, + (1= Nyi,)) | < Ko (1+ ] Z) (3.31)

https://doi.org/10.1112/5146115700000053X Published online by Caupridge University Press


https://doi.org/10.1112/S146115700000053X

Weak convergence of Euler scheme for SDDFEs

for all 0 <4 < N. The constants K;, j =1,...,6, are independent of the partition
.

Now, using the tame representation of Dy in Lemma 3.2, we have
t; l
Z Rym = EX(U) : Z 8mF(t7 W(t)v s 7)‘$(ti + .Um)+
m=1 ti1 m=1
+ (1= Ny(ti + pm); -+ )€ (pm) du
_ / EX (1) Dy(tn; i, Az, + (1= Ny, ) (€) du
ti—1

(3.32)
where
X (u) =5 Du DOyt 1, Are, + (1= V)

0%g 2
/ W(w(v —72),2(v))g(z(v — 72),2(v)) " do,
lu) OF2
for all u € [0,T], and £* € L*°([—7,0],R) is given by

fu(s) = l[tri71,(ti+s)\/ti,1](u)a s € [_Ta O]a (S [OaT]
Using (3.19), we get

E|Dy(tns;ti, Awy, + (1= Nye ) () < K (3.33)
where K is a positive constant independent of 1, u and the partition 7.

Using the definition of X (u) in (3.33), relation (3.31), the boundedness of %
and the linear growth property of g, we obtain

EIX ()] < K(1+ ||n||4c)1/2
4}1/2

{e| [ |54
/“: (1 +foto —m) + | (@)f) do }/

K1+ ||TI||2c){E
< K1+ )~ L) { B /L C1 e — ) )Y dv)z}m

T (a0 = m),aw) ‘g(x(v ~)a(@)? do

u)
u 1/2
< K(1+ [n]2)(u— LUJ>3/2{ /L (U Eleto = )P + Bl dv}

(L4 [InlfE) (L + [Inll&) 2 (u — [u])?
(1 + lInlle) (u = Lu])?

R

<
<

(3.34)
for all u € [0,T]. In the above inequalities, and throughout this proof, K stands

for a generic constant which may change from line to line, and is independent of
n € C([—7,0],R) and the partition .
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Combining (3.32), (3.34) and (3.35), gives

! ti 1/2
Y Runl< [ EX@E BBy, + 0 A€}
m=1 ti—1
t;
<Kaﬂw®/ (—ti1) du
ti—1

S KL+ [nll&) (i — ti1)?.
(3.35)
l

Next, we estimate Z Ry using (3.30) and Lemma 3.2. Rewrite the latter sum
m=1
in the following form:

ti—1

l t; l
S Ro ;:/ BN Db F (LW (W), Aati+pim) + (1= Nyt pim); ) %
m=1

m=1

{1[ti—1,(ti+#m)\/ti_1](u) : D(b(y(tn? ti, )\xti + (1 - )\)ytz)) X

u 92
/ 09 (z(v = 72),2(v))g(z(v — Tg),x(v))2 dv} du

[ 3—953
[ EDuDy (st A, + (1 — Ay )(EY () du
- (3.36)
where
Y (u) =D (y(tn; ti, Aze, + (1= Ny, ))
x /LZJ %(w(v —75),2(v)) g (x(v — 72),2(v))* dv (3:37)
and, as before,
§“(s) = i,y (tirsyvei_y (), s €[=T,0], (3.38)

for all u € [0,T7.
Since D¢ and Dg are globally bounded, a similar computation to (3.34) gives

ElY (u)]* < KL+ [[nl*)(u— [u])®, we[0,T). (3.39)
From (3.36), (3.38), (3.39) and Lemma 3.4, we get

l ti
> Rﬂ,m’ S {E[DuDy(tnsti, Aee, + (1= Nye)(E)PH2 - {EY (u) P} du

ti—1

m=1

sMwaamu+mw®W/"w—wnw

ti—1

t;
<Kuﬂw®/ (u—t; 1) du

ti—1

S KL+ [Inlle)(t — tio1)?.
(3.40)
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Using (3.35) (3.40) and (3.28) it follows that

E{D(boy (A, ds)Afg(s) } dA

(1+||77||C)Z(ti_ bia)? K+ nlls) S — tir)? (3.41)

i—1 i=1
<K (A + [Inll&) Il.

Our next task is to develop estimates similar to (3.41) for the cases 1 < j < 9.
As a sample computation, we will examine in detail the case j = 7. The rest of the
computations are left to the reader. They are similar either to the case 7 = 7 or
j =10.

Consider the case j = T:

L= / E{D(¢0y)i(Ads)Ai(s)} .

-7

where (from the notation in Lemma 3.3)

] (tit+s)Vti—1 u
A(s) == / @(x(v — 7'2),x(v))g(x(v —279),x(v — 7'2))

ti—1
X 1i7y,00)(v) AW (v — 72) AW (u)
(3.42)
for all s € [—7,0]. For simplicity, denote

h(v) := (551 (z(v = 72),2(v))g(z(v — 272), 2(V — 72)) Ly 00)(V), ©=0. (3.43)

Then, by the chain rule for Fréchet derivatives and Lemma 3.2, we get

‘ 0 (ti+s)Vti—1  pu
Ik :/_ E{D(¢oy)i()\7ds)/ / h(v) AW (v — 72) AW (u)}

trifl Luj

l
= Z E {D(b(y(tru tia )\xti + (1 - )‘)yti)amF(t7 W(t)7 ey )‘m(ti + Mm)

+ (1= Ny(ti + pm); - ) (3.44)
(titpm)Vtio1  pu
h(v) dW (v — 1) dW (u
/ /M (v) dW (v — 72) AWV ()}
1
= Z(Tl,m+T2m>7

(t +P'M)\/tz 1
Tl,m ::/ E {Du[D¢(y(tn7 ti, )\xti + (1 - A)@/t;))]

ti—1

X O F (L, W(t), ..., Ax(t; + pm) + (1 — Ny(ts + pm)s - - .) (3.45)

X ' h(v) dW (v — 72)} du
[u]
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and

(titum)Vti—1
Tom ;:/ E{D¢(y(tn;ti, Aze, + (1 — Nye,)

ti—1

X Dy [0 F (8, W (1), ..., Ax(t; + pm) + (1= Ny(ti + pim);...)]  (3.46)

X ' h(v) dW (v — 72)} du.
[u]

The above expressions (3.45) and (3.46) are obtained using the definition of the
Skorohod integral (as adjoint of the Malliavin differentiation operator) together

with the product rule for Malliavin derivatives ([34]).
Again, using the definition of the Skorohod integral once more in (3.45), yields

ti u
Tl,m, = / A E {Dv [Du{DgZS(y(tn,t“ )\xti + (1 — )\)ytl))}x
ti—1 ’U.J

amF(t7 W(t)7 L) )‘m(ti + Mm) + (1 - )‘)y(ti + Mm>; e )} h(U)}
X 1[ti—17(ti+um,)\/ti—1](u) dv du
and
ti
/ / EA{Dy[Do(y(tn; tis Ay, + (1 — Nye, ) X

DuamF(t, W), ..., z(t; + pm) + (L= Ny(ti + pm); - - .) | h(v) }

X 1[ti—17(ti+um,)\/ti—1](u) dv du

(3.47)

(3.48)

Using the product and chain rules for Malliavin derivatives, we may rewrite the

expression (3.47) in the form:

Tl m =

ti
/ / K {D D2¢( (tn;ti7 Az, + (1 - )‘>ytz)Du (y(trﬂ iy Ay, + (1 - )\)yti)

X O F(t W(t),...,. Azt + pm) + (1= Ny(ti + pim); - . )]
}l[tz 1,(ti+pm) Vi 1]( )d’U du

tq
/ / E{ Dg(b tn;tia )\xti + (1 - )\)yti)D’U (y(tru ti, )\xti + (1 - )\)ytz))

Do (y(tns ti, Ave, + (1= Nye, ) O F (6, W(E), ..., Ax(ti + fim)
+ (1= Ny(ti + pm); - - )
+ D% (y(tnsti: Awe, + (1= Nye,) DD (y (i ti, Aar, + (1= Ny, ) )
O F (6, W (), ..., A&(ti + pm) + (L = Ny(ts + pim); - - -)
+ D2¢(y(tn; ti, Avy, + (1 — /\)yti)Du (y(tn;ti, Az, + (1 — )\)yti))x
Dy F (t, W(t), ..., Ax(t; + ) + (1= Ny(ts + pm); - - .)]
X W)} i,y (it )vis ] (@) dv du.
As before, recall the definition of £*(s) in (3.38): That is

fu(s> = 1[ti—1,(ti+5)\/ti—1](u)7 s € [_T7 0]7 u e [07 T]
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Hence
l l l l
Z Tl,m« = Z Tll,m, =+ Z T12,7n =+ Z T13,m7 (349)
m=1 m=1 m=1 m=1
where
l ti u
Z T, ::/ / E{[D*¢(y(tn;ti, Aze, + (1 = Nyy,))
m=1 ti—1 Ju] (350)
X Dvy(tn;ti, )\[Eti + (1 — )\)yt‘)Duy(tn; ti, /\l‘t + (1 - /\)ytz)
X Dy (tns ti, Ay, + (1= Ny, ) (€)]h(v) } dv du,
l ti u
Z T¢,, ::/ / E{[D?¢(y(tn; ts, Awe, + (1= Nyy,))
m=1 fo L] (3.51)
X IDU'Duy(tTH ti, Ay, + (1 - )‘>ytz)
X Dy(tn;ti, Ay, + (1= Ny, ) (€4)] h(v)} dv du
and
l ti u
S, ;:/ / E{[D26(y(tn: tr Aae, + (1 — Ny, )
m=1 bl (3.52)

X Duy(tniti, Aze, + (1 — Nye,)
X Dy Dy (tnsti, Ave, + (1= Ny, ) (€")]A(v) } dv du.

Using the fact that ¢ € C, Lemma 3.4, its proof ((3.19)) and (3.43), it follows
that there exists a positive generic constant K such that

| i 7|

/ E|Dyy(tn;ti, ey, + (1 — Nys,)
tl 1 |_uJ

X [ |Duy(tn;ti7 )\xti + (1 - )‘)yt)|4] v

471/4
]

% [E|Dy(tns ts, Aee, + (1= N ) (€] x [ |pw)*]Y* dv du
ti u
< K(1+||n| dv d
( ||n||c)/ti_1 /w v du
t;
<K@+ l) [ (- tio) du
ti—1
K1+ Inllg)(t: — tiz1)?.
(3.53)

Similarly, since ¢ € CZ, it follows from (3.51), (3.52) and lemmas 3.4, 3.5, that
there is a positive generic constant K such that

l
| YT <K+ nllE)E —tio)? (3.54)

m=1
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and
l
| S T8 < KO+ InllE)  — o). (3.55)

Using (3.49), (3.53), (3.54) and (3.55), we get

n

n l
1505 T < KO+ [Inll) SOt = ti1)? (3.56)

i=1 m=1 i=1
<K@+ |nlle)Ixl.

Next, from (3.48), the chain and product rules for Malliavin derivatives, it is
easy to see that

Tom =Ty + Lo s (3.57)
where
l ti u
Z T21m = / E {D2¢(y(t7la tiv )‘xti + (1 - A)ytl))
m=1 bim1 I L] (3.58)
X Dvy(tn; ti, )\illti + (1 — )\)ytl)
X Dy Dy(tn;ti, Axy, + (1= Ny, ) (€)h(v)} dv du
and
l ti u
T2m::/ / E{Do(y(tn;ti, Ave, + (1 — Nyz,)) x
2= PPt A () (3:59)

X [DvDuDy(tnv ti, )\xti + ( ) )(é-u } dv du.

Using (3.58), (3.59), lemmas 3.3, 3.4 and the fact that ¢ € C7, we obtain the
following estimates

' Z Ty m' <KL+ [Inlle)t — tiz1)? (3.60)
and

‘ Z 15, m’ <K@+ [nlle)t — tie1)?, (3.61)

where K > 0 is a generic constant independent of 1 and the the partition 7. From
(3.57)-(3.61), it is easy to see that

Z Z T, m| <K+ [nl&) |x]. (3.62)

i=1 m=1

Now combine (3.44), (3.56) and (3.62) to get

K1 +|nle) Il (3.63)
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Estimates of the remaining 8 terms

n 1 0
Z/ / E{D(¢oy)i(Ads)Ai(s)} dX,  j=1,2,3,4,56,8,9,
i—1 Y0 —T

on the right hand side of (3.27), may be obtained by very similar arguments to
those used for developing (3.41) and (3.63). Note that in the cases j = 3,8, one
needs to employ moment estimates for the Malliavin derivatives D,xz(t) given in
(3.11) of Lemma 3.4. Thus one obtains a generic constant K > 0 and a positive
integer ¢ such that

B(DG o (N0} 0 < KO+l (30

-7

forj:234589~and

B(DG oI} 0 < KO+l W (65

-7

for j = 1, 6. Note that the last two cases involve estimates on the derivatives of
the initial process 1. As before, the constant K may depend on T, ¢ and the test
function ¢, but is independent of 7, and the choice of ¢ € [0, T], o € [0,T]. Details
of the computations in (3.64) and (3.65) are left to the reader.

Putting together the above inequalities, (3.27), (3.41) and (3.63), shows that
there is a positive constant K and a positive integer ¢ such that

|E¢(x(t;0,n)) — Eo(y(tio,m)| < K(1+ |nll{ ) I7| (3.66)

for all t € [o — 7,T], o € [0,T], and all n € H">*([-7,0],R).

To complete the proof of the weak convergence estimate (3.3), we proceed as
follows:

The estimate (3.3) will hold if we can replace 7 in the Euler approximation
y(t; o,m) in (3.67) by its piecewise-linear approximation n”. To do so, we first appeal
to the triangle inequality

[E¢(z(t;o,n)) — E¢(y(t;o,n"))| < |Ed(x(t;o,n)) — Ed(z(t;o.n™))|
+ |B¢(w(t; o,n™)) — E(y(t: o).
Using [29] (Theorem 3.1, p. 41), we have

|E¢(x(t;0,n)) — E¢(x(t;o,n™))| < Klln—n"lc. (3.68)

From the definition of ™ and the fundamental theorem of calculus, the following
two elementary estimates hold

ln—n"lle < 2[|n'|o|n] (3.69)

(3.67)

177" 100 < NI7ll100 5 (3.70)

for all n € H'>°([-7,0],R).
Now in (3.67), replace n by ™ and use (3.71) to get

[E¢(x(t;o,n™)) — E¢(y(t;o,n™))| < K(1+ [0l o) I7l. (3.71)
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The required estimate (3.3) now follows from (3.68), (3.69), (3.70) and (3.72).
The proof of Theorem 3.1 is now complete. |

4.  FEaxtension to multi-dimensional noise and several delays

In this section, we present a generalization of Theorem 3.1. This generalization
covers the case of R%valued stochastic functional differential equations (SFDEs),
driven by multi-dimensional Brownian motion and having several discrete delays
in the drift and diffusion coefficients, as well as (smooth) quasitame dependence on
the history of the solution in all coefficients.

We begin by setting up appropriate notation.

Let W(t) = (Wi(t),Wa(t), - ,Wn(t)),t = 0, be m-dimensional standard
Brownian motion on a filtered probability space (2, F, (Fi)i>0, P).

Consider a finite number of delays {7} : 1 <i < k1}, {Té’l 1< <k, 1<
m}, with maximum delay 7 := max{Tli,Tg’l 1 <i<k,1 <)<kl <l <m}.
We will designate the memory in our SFDE by a collection of tame projections

n':C:=c(-rR) - R", 1*:C—R™!

, , kol
Hl(ﬁ) = (77(7—11)777(7—12>7 T 777(7—{“))7 HZZ(”) = (77(7—211)777(7—221)7 T 777(7—22’1 ))
for all n € C, and quasitame projections
H; C - Rd?7 Hg’l . O — R%.
where dy = kid,d} = kod,do; = ko,d, d;l = ko d are integer multiples of d, for

1 <1 < m. The quasitame projections are of the form:

0 0 0
W)= ([ ot ds, [ ol ds. . [ o)l (s)ds)

—T —r

0 0 0
2 () = ( / o2 (1(3))13 () ds, / o3 (n(s))d(s)ds, - - / o2, (1(s)i2, ()ds)

—T —T —T

for all € C. The functions o}, 07, pj, uF are smooth.
Let

FiRT xR xRY - RY g R xR®2! xR% - R 1< <m,

be functions of class C' in the first variable and C} in all space variables.
Consider the SFDE

£(t) = (0) + / £, T (), T () du+ S / 01, T2 (2,), T2 () dVWi (u),
=1

(4.1)
for o <t < T, with initial path

o =n € HY (-1, O],Rd).

Associate with any partition m:= {t_p <t_pp1 < <t_1 <tg=0<1t <
to - <ty_1 <ty =T} of [-7,T], the Euler approximations y of the solution x
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of (4.1) which satisfy the following SFDE:

/ Flu), T (Y ) I (y)w))) du
+Z/ gi( 2 Ypa))s 2 (Y 1)) AW (u),

for 0 <t < T, with initial path

Yo =1 € H17°°([—T7 O]7Rd).

Under sufficient regularity hypotheses on the coefficients of (4.1), one obtains
weak convergence of order 1 of the Euler approximations y to the exact solution x.

THEOREM 4.1. Let ¢ : R — R be of class C3. Assume that the coefficients
fro,1 <1< m, in (4.1) are C' in the time variable and C} in all space variables.
Let z(-;0,m) be the unique solution of (4.1) with initial path n € H>([—,0], Rd)
starting at o € [0, T]. Let n™ be the piecewise-linear approximation of 1 along the
partition w. Denote by y(-;0,1n) the Euler approrimation to x(-;0,n) defined by
(4.2). Then there is a positive constant K and a positive integer q such that

|E¢(x(t;0,m)) — E¢(y(t;0,n™)| < K(1+ [0l o) 7] (4.3)

for allt € [o—7,T) and all n € H“*>([-7,0], Rd). The constant K may depend on
T, q and the test function ¢, but is independent of w,n, t € [oc —7,T] and o € [0,T].

The proof of Theorem 4.1 follows along very similar lines to that of Theorem
3.1. The main difference is a straightforward application of the classical It6 formula
combined with the tame It6 formula in section 2 (cf. Lemma 4.2 below). Details of
the proofs of Lemma 4.2 and Theorem 4.1 are left to the reader.

LEMMA 4.2. Let ¢ : RT x R®* — R be of class C' in the time-variable and C% in the
three space variables x1,xa, 3. Suppose x solves the SFDE (4.1) (for d = 1) with
coefficients satisfying the hypotheses of Theorem 4.1. Assume that h, p are smooth
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functions. Let 6 > 0. Then

0
dp(t, z(t — 6), z(t), 15 h(z(t + s))u(s)ds)
0
‘?;f (talt — 6),:c(t),/_5h(x(t+s))u(s)ds)dt
0
+ %(t x(t —9), x(t),/ h(z(t + s))p(s) ds) 1y 5)(t) dn(t — )
+ %(t x(t / h(z(t + s))pu(s) ds)1(5,00) (1) X

X [f (=0, 11 (2p—s), I} (2e—s dt—i—Zgl t—0, 11! (2y—s), 12! (245)) AWy (t —O)]

—|—8aj2(tx /h (t+ s))u(s)ds)x

< [f (4,1 (), 1) (24)) dt+Zgl 12 (@), T2 (20)) AW (2)]
=1
0

+ g—i(t,x(t—6),:c(t),/_6h(:c(t+s))u(s)ds)x

x [(0)h(a(t)) — p(=0)h(x(t — 0)) — /0 h(a(t+ s))u'(s) ds] dt

+%(m / h(z(t + s))p(s) ds) x

X igl(t — 0,11 (wy—5), T2 (w4—6)) 1 (5,00) (t) Dy _ 5 (t) dt

t3 g%( 7$(t—5)$(t)7/06h( t+s)) i (t—0, 112! (2, 5), 12 (2,5))
X 1i5.00)(t) dt

+§%(t o(t - 5),:5(@,/_(;11( (t+ ) i £ (2), T2 (2,))2 dt

(4.4)
for all t > 0. The symbol D' stands for Malliavin derivative with respect to the
Brownian component Wi, 1 <1 < m.

Appropriate generalizations of Lemma 4.2 hold for higher dimensional versions
of the SFDE (4.1) (d > 1).

5.  Numerical FExperiments

We present results of numerical experiments corresponding to an example of
(3.1). Our objective is to illustrate the weak convergence of the Euler-Maruyama
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method with respect to decreasing step-size by computing first moments, that is
we compute E¢(x(T)) for ¢(x) = = where 2(T') denotes a solution of (3.1).

ExXAMPLE 5.1. Consider the scalar SDDE
t
n0)+ [3e tx(u—1)—dz(u) +4—-3e ' du
0

z(t) = (5.1)

N

¢

+bfo.01 (u—%)+01z(u) dW(u), 0<t<2,
nt)=1+e 1, -1<t<0,

where W (t) is a one dimensional Wiener process.

Let m(t) := Ex(t) for t > 0. Then, m(t) satisfies the delay differential equation
m/'(t) =3e 'm(t —1) —4m(t) + 4 —3e 1, (5.2)
with initial condition
mt)=1+e ' for —1<t<0 (5.3)
) =

Equation (5.2) subject to (5.3) has the solution m(t) = 1 + e~1, the solution is a
continuation of the initial function.

To illustrate the convergence of the method, we have simulated 150000 sam-
ple trajectories with each of the (equidistant) step-sizes |7| = 272,274,..,277 and
computed the error

PH(T) = [E(x(T) — E(y(1))| (5-4)

at the final time 7' = 2. In Figure 1, we have plotted log, (u/™(T))) versus log, (|7|).

ot

12+

=15 -7 -6.5 -6 =55 -5 -45 -4 -35 -3 -25
log, ()

Figure 1: log, (ul™(T))) versus log,(|7|) for the solution of (5.1).
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For illustration purposes we also include some trajectories in the following figure,
the thick line corresponds to m(t) =1+ e~ 1%

Figure 2: Trajectories of the solution of (5.1).
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