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Abstract

This paper is motivated by relations between association and independence of random
variables. It is well known that, for real random variables, independence implies
association in the sense of Esary, Proschan and Walkup (1967), while, for random
vectors, this simple relationship breaks. We modify the notion of association in such
a way that any vector-valued process with independent increments also has associated
increments in the new sense—association between blocks. The new notion is quite natural
and admits nice characterization for some classes of processes. In particular, using the
covariance interpolation formula due to Houdré, Pérez-Abreu and Surgailis (1998), we
show that within the class of multidimensional Gaussian processes, block association
of increments is equivalent to supermodularity (in time) of the covariance functions.
We also define corresponding versions of weak association, positive association, and
negative association. It turns out that the central limit theorem for weakly associated
random vectors due to Burton, Dabrowski and Dehling (1986) remains valid, if the weak
association is relaxed to the weak association between blocks.
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1. Introduction

Random variables X1, X2, . . . , Xn are associated if

cov(f (X1, X2, . . . , Xn), g(X1, X2, . . . , Xn)) ≥ 0 (1.1)

for each pair of functions f, g : R
n → R

1, which are nondecreasing in each coordinate and
for which the above covariance exists. This definition, due to Esary et al. [5], seems to be the
most appropriate description of positive dependence phenomena encountered in various areas,
e.g. reliability theory [1], [13], statistical physics [10], [14], [15], multivariate extremes [19],
or random sets [9], to mention but a few. We refer the reader to the recent monograph [2]
for properties of association, an extensive list of references, and more abstract formalism of
associated random elements.

This paper is motivated by relations between association and independence of random
variables. It is well known [2, Theorem 1.8] that any family of independent random variables
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∗∗ Email address: adjakubo@mat.umk.pl
∗∗∗ Email address: joanka@mat.umk.pl

514

https://doi.org/10.1239/jap/1308662641 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662641


Block-associated increments 515

is associated. In particular, any stochastic process X = {Xt }t≥0 with independent increments
also has associated increments in the sense of [6]. The last statement means that, for any choice
of sampling points 0 < t1 < t2 < · · · < tn, the differences

�1X = Xt1 −X0, �2X = Xt2 −Xt1 , . . . , �nX = Xtn −Xtn−1

are associated random variables.
This simple and natural relationship breaks when we pass to processes with values in

R
d , d ≥ 2. Consider, for example, a real process {Zt }t≥0 with independent increments and

nondegenerate marginal laws, and set

Yt =
[
Zt

−Zt
]
.

Then {Yt }t≥0 retains independent increments, but clearly the components of each increment
�kY (e.g. X1 = Zt1 −Z0, X2 = −(Zt1 −Z0)) do not satisfy (1.1); hence, the random vectors
�1Y,�2Y, . . . ,�nY cannot be associated.

We aim at modifying the notion of association in such a way that

• for random variables (d = 1), the new notion is equivalent to association;

• any vector-valued process with independent increments also has associated increments
in the new sense.

This is done in Section 2, where we introduce association between blocks of random variables.
The idea consists in requiring association between real nondecreasing (in each coordinate) func-
tions of blocks. It turns out that the modified notion of association can be easily characterized
within classes of random vectors with multivariate normal or infinitely divisible distributions
(like the usual association). Similarly, when applied to increments of stochastic processes, the
new notion admits nice characterizations within particular classes of processes. For example,
for multidimensional Gaussian processes, the block association of increments is equivalent to
L-superadditivity (or supermodularity) of all covariance functions (see Theorem 3.2). This
example shows that association between blocks deals with core properties of multidimensional
stochastic processes.

In a similar spirit, in Section 4 we weaken the notions of weak association introduced by
Burton et al. [3], positive association (as defined by Bulinski and Shashkin [2]) and negative
association (due to Joag-Dev and Proschan [8]). It is interesting that obtained this way ‘weak
association between blocks’ and ‘positive association between blocks’ coincide while their
prototypes differ.

The weak association of random vectors is formally stronger than the weak association
between blocks built upon coordinates of vectors. We do not know any example showing that
the equality of both classes actually does not hold. On the other hand, an inspection of methods
based on factorization of increasing functions and used in the proofs of Theorems 2.1 and 2.2
suggests that verifying whether a sequence of random vectors is ‘weakly associated between
blocks’ may be essentially easier then the corresponding procedure for ‘weak association’.
Therefore, in Section 5 we restate a complete multidimensional generalization of Newman’s
central limit theorem [14] and Newman–Wright’s invariance principle [16] for sums of station-
ary associated random variables, originally proved in [3] for weakly associated random vectors.
The point is that this result is valid under weak association between blocks, without any change
in its proof.
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2. Association between blocks

In what follows, when referring to vectors, we mean column vectors.
Let us consider a family X = {Xi, i ∈ I } of real-valued random variables indexed by a

finite set I . Suppose that I = ⋃n
k=1 Ik , where the sets Ik are nonempty and pairwise disjoint.

The sets I1, . . . , In form the blocks’ basis J. Equip each set Ik with some arbitrary (but fixed)
linear order. Write X(Ik) for the vector with components {Xi, i ∈ Ik}. Let |I | denote the
cardinality of I .

We are ready to formulate our basic definition.

Definition 2.1. A family X = {Xi, i ∈ I } is called associated between blocks if, for all
nondecreasing functions fk : R

|Ik | → R, k = 1, 2, . . . , n, the random vector

(f1(X(I1)), f2(X(I2)), . . . , fn(X(In)))

is associated, i.e. for all nondecreasing functions g, h : R
n → R,

cov(g(f1(X(I1)), . . . , fn(X(In))), h(f1(X(I1)), . . . , fn(X(In)))) ≥ 0

if the above covariance is well defined.

The very definition and basic properties of association imply the following facts.

Proposition 2.1. Let X = {Xi, i ∈ I } be an associated family of random variables. Then,
for an arbitrary partition I = ⋃n

k=1 Ik , we have association of X between blocks based on
I1, . . . , In.

Proposition 2.2. If the vectors X(Ik), k = 1, 2, . . . , n, are independent then X is associated
between blocks.

Proposition 2.3. For a fixed blocks’ basis J = {I1, I2, . . . , In}, the family P +
J of laws of

random vectors which are associated between blocks based on I1, I2, . . . , In is closed with
respect to the topology of weak convergence.

Let X = {Xi}i∈I be an |I |-dimensional Gaussian random vector. It is well known [17]—
but by no means trivial—that the nonnegativity of all entries of the covariance matrix � of
X is necessary and sufficient for association of X. We have a very similar situation for the
association between blocks.

Theorem 2.1. A Gaussian random vector X = {Xi}i∈I is associated between blocks built on
I1, I2, . . . , In if and only if σkl = cov(Xk,Xl) ≥ 0 for all k, l which are not in the same block.

While the necessity part in the above theorem is obvious, the sufficiency does not seem to be
easy unless advanced tools are used. We propose to exploit the covariance interpolation formula
and the technique developed by Houdré et al. [7, Section 2], restated below as Proposition 2.4.
Since the covariance formula is valid for general infinitely divisible distributions, Theorem 2.1
is a direct consequence of Theorem 2.2, which will be given after the necessary notation is
introduced.

Let X = {Xi}i∈I be an |I |-dimensional infinitely divisible random vector with the Lévy–
Khinchin triplet (a,�, ν) (we write X ∼ ID(a,�, ν)) and the characteristic function ϕ(t) =
ϕ(t; a,�, ν) given by

ln ϕ(t) = i〈t, a〉 − 1

2
〈�t, t〉 +

∫
Rd

(ei〈t,u〉 − 1 − i〈t, u〉1{‖u‖≤1}(u))ν(du), (2.1)
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where 〈·, ·〉 is the scalar product in R
|I |. Recall that a ∈ R

|I | is a vector,

� = (σkl)k,l∈I ∈ R
|I | ⊗ R

|I |

is the covariance matrix of the Gaussian component of X, and ν stands for the Lévy measure
(for definitions related to infinite divisibility, we refer the reader to [21, Section 8]). We
shall associate with ν its two-dimensional characteristics νkl . If πkl : R

|I | → R
2 are standard

projections on R
2, i.e.

πkl(x1, x2, . . . , x|I |) = (xk, xl), 1 ≤ k < l ≤ |I |,
we define νkl on R

2 by the formula

νkl(A) = (ν ◦ π−1
kl )(A ∩ (R2 \ {0})). (2.2)

Note that νkl is a Lévy measure on R
2, but it does not have to be the two-dimensional

projection of ν.
A combination of results by Pitt [17] and Resnick [19] states that nonnegativity of all entries

of � together with the concentration of the Lévy measure ν on (R+)|I | ∪ (R−)|I | are enough
for the association ofX. Theorem 2.2 establishes analogous conditions for association between
blocks of an infinitely divisible random vector.

Theorem 2.2. Let X ∼ ID(a,�, ν). If, for all k, l ∈ I , which are not in the same block,

(i) σkl are nonnegative;

(ii) the measures νkl are concentrated on (R−)2 ∪ (R+)2,

then X is associated between blocks.

Let X ∼ ID(a,�, ν), and let ϕ be given by (2.1). Define

ϕ0(r, s) = ϕ(r)ϕ(s), ϕ1(r, s) = ϕ(r + s), r, s ∈ R
|I |.

For each α ∈ [0, 1], let (Y α, Zα) be an infinitely divisible random vector of dimension 2|I |
with distribution given by the characteristic function

ϕα(r, s) = ϕ1−α
0 (r, s)ϕα1 (r, s).

Then, for each α ∈ [0, 1], we have Yα ∼ Zα ∼ X and the vector (Y α, Zα) ‘interpolates’
between independent copies Y 0, Z0 of the vector X and the totally dependent copies Y 1 = Z1

of X. We are ready to restate the covariance formula due to Houdré et al. [7].

Proposition 2.4. ([7].) For any functions ψ1, ψ2 ∈ C1
b(R

|I |) (continuously differentiable with
bounded derivatives),

cov(ψ1(X), ψ2(X)) =
∫ 1

0
E

(
〈�∇ψ1(Y

α),∇ψ2(Z
α)〉

+
∫

R|I |
�uψ1(Y

α)�uψ2(Z
α)ν(du)

)
dα,

where ∇ is the gradient operator and �uψ(x) = ψ(x + u)− ψ(x).
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Now we can turn to the proof of Theorem 2.2, keeping in mind that it is enough to study
(1.1) only for functions from C1

b(R
|I |) (see, e.g. [2, Theorem 1.5]).

Proof of Theorem 2.2. Choose nondecreasing and C1
b functions fi : R

|Ii | → R, k = 1, 2,
. . . , n, and denote by F the mapping from R

|I | into R
n given by

F(xk, k ∈ I ) = (f1(xk, k ∈ I1), . . . , fn(xk, k ∈ In)).
We will identify the functions fi with their corresponding extensions f̃i (x) = fi(πIi (x)).

Let g, h : R
n → R be nondecreasing and C1

b . Our goal is to establish the sign of the
covariance

cov(g(F (X)), h(F (X))) =
∫ 1

0
E

(
〈�∇(g ◦ F)(Y α),∇(h ◦ F)(Zα)〉

+
∫

R|I |
�u(g ◦ F)(Y α)�u(h ◦ F)(Zα)ν(du)

)
dα. (2.3)

Applying the chain rule we find that ∇(g ◦ F)(y) is the product of the transposed matrix of
partial derivatives of F and the vector (∇g)(F (y)). The first of these factors is the matrix with
n columns and |I | rows, with nonzero elements only for k ∈ Ii (i is the column and k is the
row number). So

(∇(g ◦ F)(y))k =
⎧⎨
⎩
∂fi

∂xk
(y)

∂g

∂vi
(F (y)) if k ∈ Ii, i = 1, 2, . . . , n,

0 otherwise.

Hence, the scalar product in the covariance formula has the following form:

〈�∇(g ◦ F)(y),∇(h ◦ F)(z)〉

=
n∑
i=1

n∑
j=1

∑
k∈Ii

∑
l∈Ij

σkl
∂fi

∂xk
(y)

∂g

∂vi
(F (y))

∂fj

∂xl
(z)

∂h

∂vj
(F (z))

=
n∑
i=1

∂g

∂vi
(F (y))

∂h

∂vi
(F (z))

(∑
k∈Ii

∑
l∈Ii

σkl
∂fi

∂xk
(y)

∂fi

∂xl
(z)

)
(2.4)

+
n∑
i=1

n∑
j=1
j �=i

∑
k∈Ii

∑
l∈Ij

σkl
∂fi

∂xk
(y)

∂g

∂vi
(F (y))

∂fj

∂xl
(z)

∂h

∂vj
(F (z)). (2.5)

The expression in line (2.4) is nonnegative because the partial derivatives are nonnegative and

∑
k∈Ii

∑
l∈Ii

σkl
∂fi

∂xk
(y)

∂fi

∂xl
(z) ≥ 0,

due to the fact that σkl for k, l ∈ Ii are entries of the covariance matrix of the vector X(Ii).
The expression in line (2.5) is nonnegative because all partial derivatives are nonnegative and
σkl ≥ 0 if k, l are not in the same block.

It remains to check that the second summand in (2.3) is nonnegative. Let us consider the
following sets:

A+ = {u : F(y + u) ≥ F(y)} ∩ {u : F(z+ u) ≥ F(z)},
A− = {u : F(y + u) ≤ F(y)} ∩ {u : F(z+ u) ≤ F(z)}.
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It is easy to see that, on the set A = A+ ∪ A−,

�u(g ◦ F)(y)�u(h ◦ F)(z) = (g(F (y + u))− g(F (y)))(h(F (z+ u))− h(F (z))) ≥ 0,

for both factors are at the same time either nonnegative or nonpositive. It follows that it is
enough to prove that

ν(Ac) = ν(Ac+ ∩ Ac−) = 0,

where Bc is the complement of B. We have

A+ =
n⋂
i=1

{u : fi(y + u) ≥ fi(y), fi(z+ u) ≥ fi(z)};

hence,

Ac+ =
n⋃
i=1

{u : fi(y + u) < fi(y)} ∪ {u : fi(z+ u) < fi(z)},

and, similarly,

Ac− =
n⋃
j=1

{u : fj (y + u) > fj (y)} ∪ {u : fj (z+ u) > fj (z)}.

So Ac = ⋃n
1≤i �=j≤n Bij , where

Bij ={u : fi(y + u) < fi(y), fj (y + u) > fj (y)}
∪ {u : fi(y + u) < fi(y), fj (z+ u) > fj (z)}
∪ {u : fi(z+ u) < fi(z), fj (y + u) > fj (y)}
∪ {u : fi(z+ u) < fi(z), fj (z+ u) > fj (z)}.

Since the fis are nondecreasing, fi(x+u) < fi(x) implies that there exists k ∈ Ii such that
uk < 0. (If uwere in (R+)Ii , we would have fi(x+u) ≥ fi(x).) Similarly, fi(x+u) > fi(x)

implies that there exists l ∈ Ii such that ul > 0. Thus, we obtain

Bij ⊂
⋃
k∈Ii

⋃
l∈Ij

{u : uk < 0, ul > 0}.

But i �= j and so k and l in the above union of sets are not in the same block. It follows that

ν({u : uk < 0, ul > 0}) = νkl((−∞, 0)× (0,+∞)) = 0.

Hence, ν(Bij ) = 0 and ν(Ac) = 0.

For future purposes, we need a convenient reformulation of the condition imposed in
Theorem 2.2 on the two-dimensional Lévy measures νkl .

Proposition 2.5. Let ν be a measure on R
|I |, and let the measures νkl on R

2 be defined by (2.2).
Then the following statements are equivalent.

(i) For all k, l ∈ I , which are not in the same block, the measures νkl are concentrated on
(R−)2 ∪ (R+)2.
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(ii) The measure ν is concentrated on the set

S = (R+)|I | ∪ (R−)|I | ∪ U, (2.6)

where

U =
n⋃

m=1

({0}
∑m−1
i=1 |Ii | × R

|Im| × {0}
∑n
j=m+1 |Ij |).

Proof. It is clear that if ν concentrates on S given in (2.6) then the νkl satisfy (i). Thus, we
have to prove the implication (i) ⇒ (ii) only. For notational convenience, let us write k ∼ l if k
and l are in the same block and k �∼ l otherwise. Let us also defineD+

k = {x ∈ R
|I | : xk > 0},

D−
k = {x ∈ R

|I | : xk < 0}, and

D =
⋃

{(k,l) : k �∼l}
D+
k ∩D−

l .

Then (i) implies that ν(D+
k ∩D−

l ) = 0 for all pairs (k, l) such that k �∼ l and so

ν(D) = 0. (2.7)

Now (ii) follows from (2.6), (2.7), and the observation that

R
|I | = (R+)|I | ∪ (R−)|I | ∪ U ∪D = S ∪D.

The example given by Samorodnitsky [20] shows that there exists an associated (so associated
between blocks of the length 1, too) random vector with two-dimensional infinitely divisible
distribution and with Lévy measure assigning a positive mass out of the set (R+)2 ∪ (R−)2. So
in Theorem 2.2 the condition related to the concentration of the measures νkl is not necessary for
association between blocks of the multidimensional vector with infinitely divisible distribution.

On the other hand, there exists a natural framework proposed by Samorodnitsky [20] in
which the concentration of the Lévy measure on (R+)|I | ∪ (R−)|I | is necessary. The theorem
below can be proved in much the same way as Theorem 3.1 of [20] or Proposition 3 of [7].

Theorem 2.3. Let X ∼ ID(a,�, ν). Let {Xt, t ≥ 0} be a Lévy process with X1
d= X. Then

the following statements are equivalent.

(i) For every t > 0 and any choice of nondecreasing functions f1 : R
|I1| → R, . . . , fn :

R
|In| → R, the vector

(f1((Xt )I1), . . . , fn((Xt )In))

is associated.

(ii) For all indices k, l which are not in the same block, the entries σkl of the matrix � are
nonnegative and the Lévy measures νkl concentrate on the set (R+)2 ∪ (R−)2.

3. Block association of increments of stochastic processes

Let {Xt = (X1
t , X

2
t , . . . , X

d
t ), t ∈ R} be a d-dimensional stochastic process, and let 0 <

t1 < t2 < · · · < tn. We can consider an nd-dimensional random vector formed by the
increments

Xt1 −X0, Xt2 −Xt1 , . . . , Xtn −Xtn−1 .

Such a vector has naturally distinguished blocks of the length d. The first is formed by the
components of Xt1 − X0, the second by the components of Xt2 − Xt1 , and so on. Hence,
according to Definition 2.1, we have the following.
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Definition 3.1. A d-dimensional stochastic process {Xt, t ∈ R} has block-associated incre-
ments if, for every n ∈ N and any choice of 0 < t1 < t2 < · · · < tn, the increments

Xt1 −X0, Xt2 −Xt1 , . . . , Xtn −Xtn−1

form the vector associated between blocks.

With such a definition we have the expected result.

Theorem 3.1. Every process with independent increments has block-associated increments.

Next we shall discuss Gaussian processes.

Theorem 3.2. Let {Xt, t ≥ 0} be a d-dimensional Gaussian process with the covariance
functions Kk,l(s, t) = cov(Xks , X

l
t ), k, l = 1, . . . , d. The process {Xt, t ≥ 0} has block-

associated increments if and only if its covariance functions are L-superadditive on {(s, t);
s ≤ t}, i.e.

Kk,l(s1, t1)−Kk,l(s2, t1)−Kk,l(s1, t2)+Kk,l(s2, t2) ≥ 0

for all 0 ≤ s1 ≤ s2 ≤ t1 ≤ t2.

Proof. Let us consider the nd-dimensional vector

(X1
t1

−X1
0, . . . , X

d
t1

−Xd0 , . . . , X
1
tn

−X1
tn−1
, . . . , Xdtn −Xdtn−1

),

where 0 < t1 < t2 < · · · < tn. As we know from Theorem 2.1, the process {Xt, t ≥ 0} has
block-associated increments if and only if, for all k, l = 1, . . . , d, and 1 ≤ i < j ≤ n, i �= j ,
the covariances

σ
k,l
ij = cov(Xkti −Xkti−1

, Xltj −Xltj−1
)

are nonnegative. But

0 ≤ σ
k,l
ij = cov(Xkti −Xkti−1

, Xltj −Xltj−1
)

= Kk,l(ti , tj )−Kk,l(ti , tj−1)−Kk,l(ti−1, tj )+Kk,l(ti−1, tj−1).

Remark 3.1. The notion of L-superadditivity is well known; see, for example, [11, Chapter 6,
Section D].

Corollary 3.1. If the covariance functions Kk,l (k, l = 1, . . . , d) of the d-dimensional Gaus-
sian process {Xt, t ≥ 0} are continuously twice differentiable for s �= t , then {Xt, t ≥ 0} has
block-associated increments if and only if

∂2

∂s∂t
Kk,l(s, t) ≥ 0 for s �= t and k, l = 1, 2, . . . , d.

Proof. The L-superadditivity of the covariance functions is, under the corollary’s assump-
tions, equivalent to the nonnegativity of the mixed second derivatives. Indeed,

Kk,l(ti , tj )−Kk,l(ti , tj−1)−Kk,l(ti−1, tj )+Kk,l(ti−1, tj−1)

=
∫ ti

ti−1

(
∂Kk,l

∂u
(u, tj )− ∂Kk,l

∂u
(u, tj−1)

)
du

=
∫ ti

ti−1

∫ tj

tj−1

∂2Kk,l

∂v∂u
(u, v) dv du,

and (ti−1, ti) and (tj−1, tj ) are arbitrary disjoint intervals in (0,+∞).
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Similarly as Theorem 2.1 produced Theorem 3.2, we could also use Theorem 2.2 for writing
a corresponding result for infinitely divisible processes (processes with infinitely divisible,
finitely dimensional distributions—see, e.g. [12] or [18]). We shall do that in a special case and
using Proposition 2.5.

Theorem 3.3. Let {Xt, t ≥ 0} be a d-dimensional infinitely divisible stochastic process. Let
us suppose that, for every choice of 0 = t0 < t1 < t2 < · · · < tn, the distribution of
(X0, Xt1 , Xt2 , . . . , Xtn) does not have the Gaussian component and that the support of its Lévy
measure ν0,t1,...,tn is contained in the set

{(x0, x1, . . . , xn) : x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn or x0 ≥ x1 ≥ x2 ≥ · · · ≥ xn

or x1 = x2 = · · · = xn or, for some m = 2, 3, . . . , n,

x0 = x1 = · · · = xm−1, xm = xm+1 = · · · = xn},

where x0, x1, x2, . . . , xn are d-dimensional vectors and ‘≤’ and ‘≥’ are coordinatewise
inequalities.

Then {Xt, t ≥ 0} has block-associated increments.

Proof. Let U : R
(n+1)d → R

nd be given by

U(x) = U(x0, x1, . . . , xn) = (x1 − x0, x2 − x1, . . . , xn − xn−1).

It is well known that if (X0, Xt1 , Xt2 , . . . , Xtn) has an infinitely divisible distribution with a
Lévy measure ν0,t1,...,tn then the vector of increments (Xt1 −X0, Xt2 −Xt1 , . . . , Xtn −Xtn−1)

also has an infinitely divisible distribution with the Lévy measure ν0,t1,...,tn ◦U−1 (up to an atom
at 0; see, e.g. [21, Proposition 11.10]). For the block association of increments, it is enough that
the Lévy measures ν0,t1,...,tn ◦U−1 concentrate on S = (R+)nd ∪ (R−)nd ∪ ⋃n

m=1({0}(m−1)d×
R
d × {0}(n−m)d) (Proposition 2.5), so, for ν0,t1,...,tn , it is enough to concentrate on the union of

sets

{x : x1 − x0 ≥ 0, x2 − x1 ≥ 0, . . . , xn − xn−1 ≥ 0}
∪ {x : x1 − x0 ≤ 0, x2 − x1 ≤ 0, . . . , xn − xn−1 ≤ 0}
∪ {x : x2 − x1 = 0, . . . , xn − xn−1 = 0}

∪
n⋃

m=2

{x : x1 − x0 = 0, . . . , xm−1 − xm−2 = 0}

∩ {x : xm+1 − xm = 0, . . . , xn − xn−1 = 0},

which equals

{x : x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn or x0 ≥ x1 ≥ x2 ≥ · · · ≥ xn

or x1 = x2 = · · · = xn or, for some m = 2, . . . , n,

x0 = x1 = · · · = xm−1, xm = xm+1 = · · · = xn}.

Remark 3.2. It is clear that the finite-dimensional properties of the Lévy measures νt0,t1,...,tn
can be expressed in terms of their projective limit ν (see [12]): ν must be concentrated on the
union of sets consisting of nondecreasing trajectories, nonincreasing trajectories, and rather
mysterious trajectories admitting only one jump.
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4. Some other notions of relaxed association

The following notion was introduced by Burton et al. [3].

Definition 4.1. A sequence of d-dimensional random vectors (X1, X2, . . . , Xm) is said to be
weakly associated if whenever π is a permutation of {1, 2, . . . , m}, 1 ≤ k < m, and g : R

kd →
R and h : R

(m−k)d → R are coordinatewise nondecreasing, then

cov(g(Xπ(1), Xπ(2), . . . , Xπ(k)), h(Xπ(k+1), Xπ(k+2), . . . , Xπ(m))) ≥ 0,

if the covariance exists. A family of random vectors is weakly associated if its every finite
subfamily is weakly associated.

Burton et al. [3, Theorem 1] provided an example of a sequence of weakly associated random
variables (d = 1), which are not associated. Let Y1, Y2, . . . be such a sequence. Fix d > 1,
and define a sequence of d-dimensional random vectors by

Xk = (Yk, Yk, . . . , Yk︸ ︷︷ ︸
k times

).

Then it is easy to see that X1, X2, . . . is weakly associated but it is not associated between
blocks built upon coordinates. The following definition is in the spirit of Section 2.

Definition 4.2. A family X = {Xi, i ∈ I } is called weakly associated between blocks if, for
all nondecreasing functions fk : R

|Ik | → R, k = 1, 2, . . . , n, the random vector

(f1(X(I1)), f2(X(I2)), . . . , fn(X(In)))

consists of weakly associated random variables.

The next definition can be found in [2].

Definition 4.3. A family X = {Xi, i ∈ I } is called positively associated if

cov(g(X(Ag)), h(X(Ah))) ≥ 0

for any disjoint sets Ag,Ah ⊆ I , and all nondecreasing functions g : R
|Ag | → R and

h : R
|Ah| → R.

Clearly, for families of random variables (d = 1), the notions of weak association and
positive association coincide. It is interesting that, owing to this coincidence, the notions of
weak association between blocks and positive association between blocks are also the same. In
fact, a definition for the latter should look as follows.

Definition 4.4. A family X is called positively associated between blocks if, for all nondecreas-
ing functions fk : R

|Ik | → R, k = 1, 2, . . . , n, the vector

(f1(X(I1)), f2(X(I2)), . . . , fn(X(In)))

is positively associated, i.e. for any disjoint finite sets Ag,Ah ⊂ {1, 2, . . . , n}, and any non-
decreasing functions g : R

|Ag | → R and h : R
|Ah| → R,

cov(g(fi(X(Ii)), i ∈ Ag), h(fj (X(Ij )), j ∈ Ah)) ≥ 0, (4.1)

if the covariance exists.
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We see that both (4.1) and Definition 4.2 state that the random variables f1(X(I1)),

f2(X(I2)), . . . , fn(X(In)) are weakly associated, so there is no need to define positive
association between blocks.

Remark 4.1. It is easy to see that, for jointly Gaussian random variables, the two types of
relaxed association considered in the present paper (association between blocks and weak
association between blocks) coincide and are equivalent to nonnegativity of covariances of
random variables which are not in the same block.

Next we shall give a formal statement of the original form and a relaxed form of negative
association due to Joag-Dev and Proschan [8].

Definition 4.5. A family X = {Xi, i ∈ I } is called negatively associated if

cov(g(X(Ag)), h(X(Ah))) ≤ 0

for any disjoint sets Ag,Ah ⊆ I , and all nondecreasing functions g : R
|Ag | → R and

h : R
|Ah| → R.

Definition 4.6. A family X is called negatively associated between blocks if, for all nonde-
creasing functions fk : R

|Ik | → R, k = 1, 2, . . . , n, the vector

(f1(XI1), f2(XI2), . . . , fn(XIn))

is negatively associated, i.e. for any disjoint finite sets Ag,Ah ⊂ {1, 2, . . . , n}, and any
nondecreasing functions g : R

|Ag | → R and h : R
|Ah| → R,

cov(g(fi(XIi ), i ∈ Ag), h(fj (XIj ), j ∈ Ah)) ≤ 0,

if the covariance exists.

We conclude this section with a definition of the corresponding notions for increments of
processes.

Definition 4.7. A d-dimensional stochastic process {Xt, t ≥ 0} has block weakly associated
or block negatively associated increments if, for every n ∈ N and any choice of 0 < t1 < t2 <

· · · < tn, the increments

Xt1 −X0, Xt2 −Xt1 , . . . , Xtn −Xtn−1

form the sequence of vectors which are weakly or, respectively, negatively associated between
blocks formed by the d components of each increment Xti −Xti−1 .

5. Limit theorems under weak association between blocks

LetX1, X2, . . . be a sequence of d-dimensional random vectors. After building blocks upon
the coordinates of consecutive vectors we may compare the notions of weak association of
random vectors {Xk} (Definition 4.1) and weak association between blocks (Definition 4.2).
Formally, the latter is weaker: in place of nondecreasing functions g and h ‘directly’ acting on
vectors, i.e.

g(Xπ(1), Xπ(2), . . . , Xπ(k)), h(Xπ(k+1), Xπ(k+2), . . . , Xπ(m)),
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the latter definition operates with factorizations, i.e.

g(fπ(1)(Xπ(1)), . . . , fπ(k)(Xπ(k))), h(fπ(k+1)(Xπ(k+1)), . . . , fπ(m)(Xπ(m))).

As already mentioned in the introduction, we are not able to exhibit any example of a
sequence {Xk} which is weakly associated between blocks, but not weakly associated. On the
other hand, the computations performed in Section 2 and based on the covariance interpolation
formula suggest that it might be a serious advantage to deal with factorized functions while
checking whether the sequence is weakly associated between blocks. This is one reason for
including the present section into the paper.

The other reason is that the complete generalization of Newman’s central limit theorem
[14] and Newman–Wright’s invariance principle [16] for sums of stationary associated random
variables, originally proved by Burton et al. [3] for weakly associated random vectors, remains
valid under weak association between blocks, without any change in its proof. Here ‘complete
generalization’ means including as a particular case the central limit theorem for independent
and identically distributed random vectors, with covariance matrices possibly containing neg-
ative entries.

Theorem 5.1. Let X1, X2, . . . be a strictly stationary sequence of d-dimensional random
vectors, which are weakly associated between blocks, and let Sn = X1 +X2 + · · · +Xn.

If EX1 = 0, E ‖X1‖2 < +∞, and
∑∞
j=2 EXk1X

l
j < +∞ for all k, l = 1, . . . , d (whereXkj

is the kth component of the vector Xj ), then

Sn√
n

d−→ N (0, �) as n → ∞,

where � = (σkl)k,l=1...,d and σkl = EXk1X
l
1 + 2

∑∞
j=2 EXk1X

l
j .

Moreover, if

Yn(t) = 1√
n
S[nt], t ∈ R

+

(or Yn(t) is a polygonal interpolation between points (k/n, Sk/
√
n)), then

Yn
d−→ W� as n → ∞

on the function space C(R+ : R
d), where W� is a Wiener process with covariance matrix �.

Proof. In their proof, Burton et al. [3] used the weak association of the random variables

fj (Xj ) = 〈aj ,Xj 〉 =
d∑
k=1

akjX
k
j ,

where a1
j , a

2
j , . . . , a

d
j ≥ 0 are suitably chosen (for tightness purposes, convergence of finite-

dimensional distributions, etc.). Our assumption on weak association between blocks provides
exactly the same information.

Remark 5.1. It is also likely that other existing limit theorems for associated random variables
(see, e.g. [2, Chapter 3]) can be proved under relaxed assumptions like weak association between
blocks and in a similar way as Theorem 5.1. In particular, work is in progress towards results
on convergence to stable laws with infinite variance, paralleling [4].
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