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Abstract

In this paper we introduce the concepts of instantaneous reversibility and instantaneous
entropy production rate for inhomogeneous Markov chains with denumerable state
spaces. The following statements are proved to be equivalent: the inhomogeneous
Markov chain is instantaneously reversible; it is in detailed balance; its entropy production
rate vanishes. In particular, for a time-periodic birth–death chain, which can be regarded
as a simple version of a physical model (Brownian motors), we prove that its rotation
number is 0 when it is instantaneously reversible or periodically reversible. Hence, in
our model of Markov chains, the directed transport phenomenon of Brownian motors can
occur only in nonequilibrium and irreversible systems.
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1. Introduction

The concept of entropy production was first put forward in nonequilibrium statistical physics
to describe how far a specific state of a system is from its equilibrium state [10]–[13], [20],
[26]. It is closely related to macroscopic irreversibility, another concept in nonequilibrium
statistical physics. A macroscopic irreversible system in a steady state should have positive
entropy production rate and should be in nonequilibrium.

In earlier work, [21]–[24], various authors defined the entropy production rate of a stochastic
process measure theoretically as the specific relative entropy of the distribution of the process
with respect to that of its time reverse. Moreover, the formulae for entropy production rate
and circulation distribution of homogeneous Markov chains, Q-processes, and diffusions were
derived and their relationship with reversibility discussed: the chain or process is reversible if
and only if its entropy production vanishes, or if and only if there is no net circulation. All of
this work is now included in [15].

The notion of instantaneous entropy production was first put forward in [22], which is also
to be found in [15, p. 102]. Recently, Zhang [31] used the instantaneous entropy production
rate at time 0 of Markov chains to calculate the entropy production of exclusion processes on
groups. Until now, however, the mathematics of instantaneous reversibility and instantaneous
entropy production has not been rigorously studied.
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In the last three decades, the phenomenon of Brownian motors (sometimes called ratchet
systems) has attracted much interest from physicists and biochemists [2]–[5], [16], [18], [19].
A net current of particles can be driven by noise, providing that there is an appropriate
asymmetry in the system, such as a spatially periodic and asymmetric, so-called ratchet,
potential. Reimann [25] reviewed in detail the theoretical models and experimental realizations
of this phenomenon of noise-driven mass transport in spatially periodic systems out of thermal
equilibrium. In many situations, the ratchet system may be subjected to time-periodic drive
(e.g. rocking ratchets), the temperature of the thermal noise may be subjected to periodic
temporal variations (e.g. temperature ratchets), or the potential may fluctuate periodically
(e.g. on–off ratchets). As a result, we consider a stochastic differential equation of the form

dXt = b(t, Xt ) dt + σ(t, Xt ) dWt, (1.1)

in which Wt is a Brownian motion and b(t, x) and σ(t, x) are periodic in the time parameter t .
Such stochastic differential equations also appear in the phenomenon of stochastic resonance,

in which a weak periodic signal in a nonlinear system can be amplified by added noise. An
extensive description of this phenomenon from the physical point of view can be found in [8].
Noise plays a creative role in the phenomena of both Brownian motors and stochastic resonance.
However, the time inhomogeneity of (1.1) causes many difficulties in studying the properties
of its solution process mathematically.

In this article we will consider a discrete variant of (1.1), namely a continuous-time Markov
chain with time-periodic transition densities, which we will call a periodically inhomogeneous
Markov chain. Such a Markov chain arises in the numerical method for solving (1.1) which
was introduced in [7] and developed in [1], [28], and [29]. This spatially discretized model also
arises in the context of the activated barrier-crossing limit, as discussed in [25, Sections 3.8
and 6.7].

In [9] the authors discussed another, simpler, discrete model of Brownian motors, namely
discrete-time Markov chains with periodically varying transition matrices, introducing the
concepts of periodic reversibility, periodic entropy production rate, and circulation distribution.
The main result of [9] is the equivalence of the following statements: the time-periodic Markov
chain is periodically reversible; it is in detailed balance; Kolmogorov’s cycle condition is
satisfied; its entropy production rate vanishes; every circuit and its reversed circuit have the
same circulation weight.

In this paper we extend the notions and results of [15] and [21]–[24] to the situation of a
general inhomogeneous Markov chain whose definition and construction are given in Section 2.
In Section 3 we introduce for it the notion of instantaneous reversibility, define its instantaneous
entropy production rate from the physical point of view, and discuss the relationship between
these two notions. From this, we obtain the main result of this article, as follows. By π(s) =
(πi(s))i∈S we denote the distribution of X(s), and by Q(s) = (qij (s))i,j∈S we denote its
transition density matrix function at time s.

Theorem 1.1. The following statements are equivalent, in close accord with physical theory.

1. An inhomogeneous Markov chain X is instantaneously reversible at time s.

2. It is in detailed balance at time s: πi(s)qij (s) = πj (s)qji(s) for all i, j ∈ S.

3. Its instantaneous entropy production rate at time s vanishes.
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In the latter part of Section 3 we consider periodically inhomogeneous Markov chains
including birth–death chains on a ring, which are the discrete variant of Brownian motors (see
(1.1)). We introduce another concept of reversibility, so-called ‘periodic reversibility’, first put
forward in [9]. We prove that when a time-periodic birth–death chain is either instantaneously
reversible or periodically reversible for some index, its rotation number is 0. The rotation
number of a birth–death chain or a diffusion process corresponds to the average particle current,
which is the quantity of central interest in Brownian motors [15, Chapters 1, 2, and 5], [25].
Hence, in our Markov chain model, the directed transport phenomenon of Brownian motors
can occur only in nonequilibrium and irreversible systems.

In Section 4 we give the measure-theoretical definition of the instantaneous entropy pro-
duction rate of an inhomogeneous Markov chain. The main idea and method come from [15,
Chapter 2]. Section 5 contains some remarks and examples, and also some analogous results
for inhomogeneous, discrete-time Markov chains. We believe that the results can be extended
to inhomogeneous diffusion processes, though much technical work remains to be done.

2. Definition and construction

The main results in this section come from [14], [17], and [30, pp. 16–21]

Definition 2.1. (Transition density matrices (Q-property).) If the matrices

{Q(t) = (qij (t))i,j∈S : t ≥ 0}
with S = {1, 2, . . . , N}, N ≤ ∞, are such that

1. 0 ≤ qij (t) < ∞ for all t ≥ 0 and i �= j ,

2.
∑

j �=i qij (t) < ∞ for all t ≥ 0 and i ∈ S,

3. qi(t) := −qii(t) = ∑
j �=i qij (t) for all t ≥ 0 and i ∈ S, and

4. qi(t) is uniformly bounded, i.e. there exists a constant M > 0 such that qi(t) ≤ M for
all t ≥ 0 and i ∈ S,

then we call Q(·) a conservative inhomogeneous transition density matrix function on S.
Furthermore, we say that Q(·) is continuous if qij (·), i, j ∈ S, are all continuous.

Definition 2.2. Suppose that Q(·) is a continuous conservative inhomogeneous transition den-
sity matrix function. If there exists an inhomogeneous Markov process X = {X(t) : t ≥ 0}
with state space S, whose transition probability matrices

P(s, t) = (pij (s, t) = P(X(t) = j | X(s) = i))i,j∈S, t ≥ s ≥ 0,

satisfy the forward Kolmogorov equation, i.e.

∂P (s, t)

∂t
= P(s, t)Q(t), lim

t↓s
P (s, t) = I, (2.1)

or, equivalently,

lim
t↓s

∂pij (s, t)

∂t
= qij (s) for all i, j ∈ S,

then we call X an inhomogeneous Markov chain with transition density Q(·). In (2.1), I denotes
the identity matrix.
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Theorem 2.1. For any continuous conservative inhomogeneous transition density matrix func-
tion Q(·) and any distribution π(0), there exists a unique inhomogeneous Markov chain
{X(t) : t ≥ 0} with transition density Q(·) and initial distribution π(0). Moreover, its transition
probability matrices, P(s, t), are continuous in both s and t , and also satisfy the backward
Kolmogorov equation, i.e.

∂P (s, t)

∂s
= −Q(s)P (s, t). (2.2)

Moreover, π(t) = (πi(t) = P(X(t) = i))i∈S is also continuously differentiable, and satisfies
the Fokker–Planck equation, i.e.

dπ(t)

dt
= π(t)Q(t). (2.3)

Proposition 2.1. For all s ≥ 0, let τs = inf{t > 0 : X(t + s) �= X(s)}. Then

P(τs > t | X(s) = i) = exp

[
−

∫ s+t

s

qi(u) du

]
,

P(X(s + τs) = j | X(s) = i, τs) = qij (s + τs)

qi(s + τs)
for all j �= i,

P(τs ≤ t, X(s + τs) = j | X(s) = i) =
∫ s+t

s

qij (u) exp

[
−

∫ u

s

qi(v) dv

]
du,

P(X(s + τs) = j | X(s) = i) =
∫ ∞

s

qij (u) exp

[
−

∫ u

s

qi(v) dv

]
du.

Suppose that πi(t) > 0 for all i ∈ S and t ≥ 0. For arbitrarily fixed t and s, t > s > 0, and
any u ∈ [s, t], let Q−(u) = (q−

ij (u))i,j∈S , where

q−
ij (u) = πj (s + t − u)

πi(s + t − u)
qji(s + t − u), i �= j, q−

ii (u) = −
∑
j �=i

q−
ij (u).

From the Fokker–Planck equation (2.3) and the backward Kolmogorov equation (2.2), we obtain
the following result.

Proposition 2.2. For any i, j ∈ S and u and v with u ≤ v ∈ [s, t], let

p−
ij (u, v) = πj (s + t − v)

πi(s + t − u)
pji(s + t − v, s + t − u).

Then the matrix P −(u, v) = (p−
ij (u, v))i,j∈S satisfies ∂P −(u, v)/∂v = P −(u, v)Q−(v),

i.e. Q−(·) determines another family of inhomogeneous transition probability matrices,
P −(u, v), which is the same as that of {X(s + t − u) : s ≤ u ≤ t}, the time reverse of
{X(u) : s ≤ u ≤ t}.

3. Reversibility and entropy production

3.1. Instantaneous reversibility and entropy production

Definition 3.1. If, at time s, an inhomogeneous Markov chain X = {X(t) : t ≥ 0} satisfies

lim
t↓s

πi(s)pij (s, t)

πj (s)pji(s, t)
= 1
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for every i, j ∈ S such that qij (s) > 0, then we say that the Markov chain X is instantaneously
reversible at time s. If X is instantaneously reversible at any time, then we say that X is
instantaneously reversible.

We obtain the next result from l’Hôpital’s rule.

Proposition 3.1. The Markov chain X is instantaneously reversible at time s if and only if
πi(s)qij (s) = πj (s)qji(s) for all i, j ∈ S, and X is instantaneously reversible if and only if,
for all s, πi(s)qij (s) = πj (s)qji(s) for all i, j ∈ S.

This is just the detailed balance condition.
If X is instantaneously reversible at time s, then obviously π(s)Q(s) = 0.

Corollary 3.1. The Markov chain X is instantaneously reversible if and only if each of the
transition density matrices Q(t) is reversible when it is regarded as the transition density
matrix of a homogeneous Markov chain and their reversible distributions are the same.

Definition 3.2. As in the case of homogeneous Markov chains [26], the instantaneous entropy
production rate, ep(s), of X can be defined from a physical point of view as

ep(s) = 1

2

∑
i,j∈S

[πi(s)qij (s) − πj (s)qji(s)] log
πi(s)qij (s)

πj (s)qji(s)
.

It follows immediately that ep(s) is nonnegative for all s, and that ep(s) = 0 if and only if
πi(s)qij (s) = πj (s)qji(s) for all i, j ∈ S. This proves Theorem 1.1.

Corollary 3.2. The following statements are equivalent.

1. The Markov chain X is instantaneously reversible.

2. It is in detailed balance: πi(s)qij (s) = πj (s)qji(s) for all s ≥ 0 and i, j ∈ S.

3. Its instantaneous entropy production rate vanishes at all times.

3.2. Time-periodic inhomogeneous Markov chains and periodic reversibility

Suppose that Q(·) is periodic with period T > 0 and fix an s ∈ [0, T ). Then {X(kT +s) : k =
0, 1, 2, . . .} is a homogeneous Markov chain with a denumerable state space.

Assumption 3.1. For all s ∈ [0, T ), {X(kT + s) : k = 0, 1, 2, . . .} has a unique invariant
distribution π(s).

Obviously, for all t > s, θ(s, t) = π(s)P (s, t) is an invariant distribution of {X(kT +t) : k =
0, 1, 2, . . .}, so θ(s, t) = π(s)P (s, t) = π(t). That is, if π(0) is the initial distribution of
X, then the distribution of X(t) is π(t (mod T )) for all t . Furthermore, for any k ∈ Z

+,
{X(kT + t) : t ≥ 0} has the same distribution as X = {X(t) : t ≥ 0}, i.e. X is periodically
stationary. Therefore, we call {π(s) : 0 ≤ s < T } the periodically invariant distribution of X.

From the strong law of large numbers for the homogeneous Markov chain {X(kT + s) : k =
0, 1, 2, . . .}, we obtain the following results.

Proposition 3.2. For any bounded function f (i), i ∈ S,

lim
t→∞ E

∣∣∣∣1

t

∫ s+t

s

f (X(u)) du − 1

T

∑
i∈S

∫ T

0
πi(u)f (i) du

∣∣∣∣
p

= 0, p ≥ 1.
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Proof. By Jensen’s inequality and the dominated convergence theorem,

lim
t→∞ E

∣∣∣∣1

t

∫ s+t

s

f (X(u)) du − 1

T

∑
i∈S

∫ T

0
πi(u)f (i) du

∣∣∣∣
p

= lim
n→∞ E

∣∣∣∣ 1

nT

∫ s+nT

s

f (X(u)) du − 1

T

∑
i∈S

∫ T

0
πi(u)f (i) du

∣∣∣∣
p

= lim
n→∞ E

∣∣∣∣ 1

nT

n∑
i=1

∫ s+iT

s+(i−1)T

f (X(u)) du − 1

T

∑
i∈S

∫ T

0
πi(u)f (i) du

∣∣∣∣
p

= lim
n→∞ E

∣∣∣∣ 1

T

∫ s+T

s

1

n

n∑
i=1

f (X(u + (i − 1)T )) du − 1

T

∫ s+T

s

∑
i∈S

πi(u)f (i) du

∣∣∣∣
p

≤ 1

T
lim

n→∞

∫ s+T

s

E

∣∣∣∣1

n

n∑
i=1

f (X(u + (i − 1)T )) −
∑
i∈S

πi(u)f (i)

∣∣∣∣
p

du

= 1

T

∫ s+T

s

lim
n→∞ E

∣∣∣∣1

n

n∑
i=1

f (X(u + (i − 1)T )) −
∑
i∈S

πi(u)f (i)

∣∣∣∣
p

du

= 0.

We define the average entropy production rate of a time-periodic inhomogeneous Markov
chain X as ep := (1/T )

∫ T

0 ep(t) dt . Thus, from the continuity of ep(·), ep = 0 is equivalent to
ep(t) = 0 for all t . So ep = 0 if and only if X is instantaneously reversible.

Let T0 = 0 and Tk = inf{t > Tk−1 : X(t) �= X(Tk−1)}, k ≥ 1. Then, from the
construction in [30], we know that {(Tk (mod T ), X(Tk)) : k = 0, 1, 2, . . .} is a two-dimensional
homogeneous Markov chain whose transition probability density, p(s, t; i, j), is

p(s, t; i, j)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qij (t)

∞∑
k=0

e− ∫ kT +t
s qi (u) du = qij (t)

∞∑
k=0

e− ∫ t
s qi (u) du(e− ∫ T

0 qi (u) du)k

= qij (t)e− ∫ t
s qi (u) du(1 − e− ∫ T

0 qi (u) du)−1, t ≥ s,

qij (t)

∞∑
k=1

e− ∫ kT +t
s qi (u) du = qij (t)

∞∑
k=0

e− ∫ t+T
s qi (u) du(e− ∫ T

0 qi (u) du)k

= qij (t)e− ∫ t+T
s qi (u) du(1 − e− ∫ T

0 qi (u) du)−1, t < s,

with j �= i. We denote its invariant distribution by π̂i(s).
Applying Corollary 3.1, we then obtain the following lemma.

Lemma 3.1. Let Z = ∫ T

0

∑
i πiqi(s) ds. If X is instantaneously reversible, then π̂i(s) =

πiqi(s)/Z.

Example 3.1. (Time-periodic birth–death Markov chains.) Suppose that S = {1, 2, . . . , N}
with the N points lying on a ring, with i and i + 1 and 1 and N being neighbors. Also assume
that qi,i+1(t) + qi,i−1 = qi(t) for all i ∈ S and t ≥ 0. Then X is a time-periodic birth–death
Markov chain on a ring. Such a Markov chain can be regarded as an approximation of the
Brownian motor model (1.1).
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Theorem 3.1. Let

f (i, j) =

⎧⎪⎨
⎪⎩

1, j = i + 1 or i = N and j = 1,

−1, j = i − 1 or i = 1 and j = N,

0, j = i.

Then we can define the rotation number of the birth–death chain X = {X(t) : t ≥ 0} as

Rot := lim
t→∞

1

t

nt−1∑
k=0

f (X(Tk), X(Tk+1))

=
(

lim
t→∞

nt

t

) N∑
i=1

∫ T

0

∫ T

0
π̂i(s)(p(s, t; i, i + 1) − p(s, t; i, i − 1)) ds dt,

where nt denotes the number of times that X jumps in [0, t]. Moreover, if the birth–death chain
X is instantaneously reversible, then the rotation number vanishes.

Proof. First, we use the strong law of large numbers for the two-dimensional homogeneous
Markov chain {(Tk (mod T ), X(Tk)) : k = 0, 1, 2, . . .}, to conclude that

lim
t→∞

1

nt

nt−1∑
k=0

f (X(Tk), X(Tk+1)) =
N∑

i=1

∫ T

0

∫ T

0
π̂i(s)(p(s, t; i, i+1)−p(s, t; i, i−1)) ds dt.

Second, by the subadditive ergodic theorem in [27, p. 231], as k tends to ∞, nkT /kT

converges almost everywhere to a random variable with expectation E(nT )/T . Then, by the
monotonicity of nt , limt→∞ nt/t = limk→∞ nkT /kT .

If the birth-death chain X is instantaneously reversible, then, by Lemma 3.1,

N∑
i=1

∫ T

0

∫ T

0
π̂i(s)(p(s, t; i, i + 1) − p(s, t; i, i − 1)) ds dt

=
N∑

i=1

∫ T

0 qi(s) ds
∫ s+T

s
Di(t)e− ∫ t

s qi (u) du dt

Zi

=
N∑

i=1

1

Zi

{∫ T

0
Di(t) dt

∫ t

0
e− ∫ t

s qi (u) duqi(s) ds +
∫ 2T

T

Di(t) dt

∫ T

t−T

e− ∫ t
s qi (u) duqi(s) ds

}

=
N∑

i=1

1

Zi

{∫ T

0
Di(t)(1 − e− ∫ t

0 qi (u) du) dt +
∫ 2T

T

Di(t)(e
− ∫ t

T qi (u) du − e− ∫ t
t−T qi (u) du) dt

}

=
N∑

i=1

1

Zi

{∫ T

0
Di(t)(1 − e− ∫ t

0 qi (u) du) dt +
∫ T

0
Di(t)(e

− ∫ t
0 qi (u) du − e− ∫ T

0 qi (u) du) dt

}

= 1

Z

N∑
i=1

∫ T

0
Di(t) dt

= 0,

where Di(t) = πiqi,i+1(t) − πiqi,i−1(t) and Zi = Z(1 − e− ∫ T
0 qi (u) du).
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Remark 3.1. If Q(t) ≡ Q, i.e. {X(t) : t ≥ 0} is a homogeneous, irreducible Markov chain
with invariant distribution π , then, by [15, Lemma 2.2.1], limt→∞ nt/t = − ∑

i πiqii .
In the time-periodic inhomogeneous case, although we can prove that nt/t converges to a

limit random variable almost everywhere, we cannot prove that the limit is almost surely a
constant, and express it in terms of the elements of Q(·) and π(·).

In the last theorem, Rot/N is just the average number of occurrences of the circle 1 → 2 →
3 → · · · → N → 1 along almost all the trajectories of X.

From the Fokker-Planck equation (2.3), we know that
∫ T

0 π(t)Q(t) dt = 0, so the probability
flux from i to i + 1,

Ci := 1

T

∫ T

0
[πi(t)qi,i+1(t) − πi+1(t)qi+1,i (t)] dt,

is independent of i. In the case where the birth–death chain X is instantaneously reversible,
Ci = 0 for all i, i.e. all the probability fluxes vanish.

Definition 3.3. If, for some s ∈ [0, T ), the time-periodic inhomogeneous Markov chain X is
such that {X(t) : s ≤ t ≤ nT + s} and {X(nT + 2s − t) : s ≤ t ≤ nT + s} have the same
distribution for all n ∈ Z

+, then we say that the Markov chain X has periodic reversibility with
index s.

If the Markov chain X is such that {X(t) : s ≤ t ≤ nT + s} and {X(nT + 2s − t) : s ≤ t ≤
nT + s} have the same distribution for all s ∈ [0, T ) and all n ∈ Z

+, then we say that X has
complete periodic reversibility.

Here, we only consider periodic reversibility with index s. Some surprising results about
complete periodic reversibility will be presented in Section 5.

Under Assumption 3.1, if X has periodic reversibility with index s, then X is periodically
stationary.

Proposition 3.3. The following statements are equivalent.

1. The Markov chain X has periodic reversibility with index s.

2. {X(t) : s ≤ t ≤ T + s} and {X(T + 2s − t) : s ≤ t ≤ T + s} have the same distribution,
i.e.
πi0(s)pi0i1(t0, t1) · · · pin−1in (tn−1, tn)

= πin(s)pinin−1(T + 2s − tn, T + 2s − tn−1) · · · pi1i0(T + 2s − t1, T + 2s − t0)

(3.1)

for all n ∈ Z
+, ti with t0 = s < t1 < · · · < tn = T + s, and i0, . . . , in ∈ S.

3. For all t1 and t2 with s ≤ t1 < t2 ≤ s + T , and i, j ∈ S,

πi(t1)pij (t1, t2) = πj (T + 2s − t2)pji(T + 2s − t2, T + 2s − t1). (3.2)

4. For all t with s ≤ t ≤ s + T , and i, j ∈ S,

πi(t) = πi(T + 2s − t),

πi(t)qij (t) = πj (T + 2s − t)qji(T + 2s − t), i �= j,

πi(t)qii(t) = −
∑
k �=i

πk(T + 2s − t)qki(T + 2s − t), i = j.

This is the detailed balance condition.
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Proof. That statement 1 implies statement 2 follows directly from the Markov property of
X. That statement 2 implies statement 3 follows from summing over i0, i3, . . . , in in (3.1) for
arbitrarily fixed i1, i2, t1, and t2. To obtain the first equation in statement 4, sum both sides
of (3.2) over j . To obtain the other two equations in statement 4, differentiate both sides of (3.2)
with respect to t2, use the forward and backward Kolmogorov equations (2.1) and (2.2) and
the Fokker–Planck equation (2.3), and then let t2 ↓ t1. Thus, statement 3 implies statement 4.
That statement 4 implies statement 1 follows from Proposition 2.2, since q−

ij (t) = qij (t) for all
t ∈ [s, s + T ].

Although we cannot calculate π̂i(s) explicitly, we do have the following theorem for the
birth–death Markov chain in Example 3.1.

Theorem 3.2. If the time-periodic birth–death Markov chain X on a ring has periodic re-
versibility with some index s, then the rotation number Rot vanishes with probability 1.

Proof. We can prove only the case where s = 0.
By assumption, {X(t) : 0 ≤ t ≤ nT } and its time reverse X−

(n) = {X(nT − t) : 0 ≤ t ≤ nT }
have the same distribution for each n ∈ Z

+. We can define the rotation number, Rot(n), of the
birth–death Markov chain X−

(n), so Rot
d= Rot(n) d= −Rot for all n, where ‘

d=’ denotes equality
in distribution. On the other hand, Rot is almost everywhere a constant. Therefore, this constant
must be 0, i.e. the rotation number Rot vanishes with probability 1.

4. Measure-theoretic definition of instantaneous entropy production

Theorem 4.1. The instantaneous entropy production rate, ep(s) (see Definition 3.2), of the
inhomogeneous Markov chain {X(t) : t ≥ 0} can also be measure-theoretically defined as

ep(s) = lim
t↓s

1

t − s
H(P[s,t], P−

[s,t]),

where P[s,t] is the distribution of {X(u) : s ≤ u ≤ t}, P−
[s,t] is the distribution of {X(s + t −

u) : s ≤ u ≤ t}, and H(P[s,t], P−
[s,t]) is the relative entropy of P[s,t] with respect to P−

[s,t].

Before proving the theorem, we first prove two lemmas.

Lemma 4.1. For arbitrarily fixed t and s, t > s > 0, and any i ∈ S and u and v, u ≤ v ∈ [s, t],

πi(v) exp

[∫ v

u

q−
ii (s + t − w) dw

]
= πi(u) exp

[∫ v

u

qii(w) dw

]
.

Proof. It is easy to check that both sides satisfy the same ordinary differential equation,

df (v)

dv
= qii(v)f (v), f (u) = πi(u).

The desired result follows from the uniqueness of its solution.

Denote by nt the number of times that X jumps in [s, t]. Let T0 = s, T1 = inf{t > s : X(t) �=
X(s)}, Tk = inf{t > Tk−1 : X(t) �= X(Tk−1)}, and Tnt+1 = t . Then, for all i0, . . . , in ∈ S

satisfying ik �= ik+1, 0 ≤ k < n, we can define

Ai0···in (t) = {ω ∈ � : nt (ω) = n, X(s) = i0, X(Tk(ω)) = ik, k = 1, . . . , n}.
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Lemma 4.2. If Q(·) satisfies the condition

qij (t) > 0 for some t ⇐⇒ qji(t) > 0 for all t,

then P[s,t] and P−
[s,t] are absolutely continuous with respect to each other. The Radon–Nikodým

derivative is almost everywhere

dP[s,t]
dP−

[s,t]

∣∣∣∣
Ai0 ···in (t)

= πi0(s)
∏n−1

k=0 qikik+1(Tk+1) exp[− ∑n
k=0

∫ Tk+1
Tk

qik (u) du]
πin(s)

∏n−1
k=0 qin−kin−k+1(s + t − Tn−k) exp[− ∑n

k=0

∫ s+t−Tk

s+t−Tk+1
qik (u) du]

.

Proof. For all i0, . . . , in ∈ S and t0, . . . , tn+1 satisfying ik �= ik+1 for 0 ≤ k < n and
t0 = s < t1 < · · · < tn+1 = t , we can choose a sufficiently small δtk and define

A = {ω ∈ � : nt (ω) = n, X(s) = i0, tk < Tk < tk + δtk, X(Tk(ω)) = ik, k = 1, . . . , n}.
From Proposition 2.1 and Lemma 4.1, we have

P[s,t](A) =
∫ t1+δt1

t1

ds1 · · ·
∫ tn+δtn

tn

dsnπi0(s)qi0i1(s1) · · · qin−1in (sn)

× exp

[
−

n∑
k=0

∫ sk+1

sk

qik (u) du

]

and

P−
[s,t](A) =

∫ t1+δt1

t1

ds1 · · ·
∫ tn+δtn

tn

dsnπ
−
i0

(s)q−
i0i1

(s1) · · · q−
in−1in

(sn)

× exp

[
−

n∑
k=0

∫ sk+1

sk

q−
ik

(u) du

]

=
∫ t1+δt1

t1

ds1 · · ·
∫ tn+δtn

tn

dsnπin(s)qinin−1(s + t − sn) · · · qi1i0(s + t − s1)

× exp

[
−

n∑
k=0

∫ s+t−sk

s+t−sk+1

qik (u) du

]

with s0 = s and sn+1 = t . Thus,

P[s,t](A) = 0 ⇐⇒ πi0(s)qi0i1(s1) · · · qin−1in (sn) = 0

⇐⇒ πin(s)qinin−1(s + t − sn) · · · qi1i0(s + t − s1) = 0

⇐⇒ P −
[s,t](A) = 0.

The desired result follows because σ(Xu : s ≤ u ≤ t) is generated by such sets A.

Proof of Theorem 4.1. We have

H(P[s,t], P−
[s,t]) = E

(
log

dP[s,t]
dP−

[s,t]

)

=
∞∑

n=0

E

(
log

dP[s,t]
dP−

[s,t]

∣∣∣∣ nt = n

)
P(nt = n),
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and

E

(
log

dP[s,t]
dP−

[s,t]

∣∣∣∣ nt = n

)

= E

(
log

πX(T0)(s)
∏n−1

k=0 qX(Tk)X(Tk+1)(Tk+1) exp[−∑n
k=0

∫ Tk+1
Tk

qX(Tk)(u) du]
πX(Tn)(s)

∏n−1
k=0 qX(Tk+1)X(Tk)(s+t−Tk+1) exp[−∑n

k=0

∫ s+t−Tk

s+t−Tk+1
qX(Tk)(u) du]∣∣∣∣ nt = n

)

=
n−1∑
k=0

E

(
log

qX(Tk)X(Tk+1)(Tk+1)

qX(Tk+1)X(Tk)(s + t − Tk+1)

∣∣∣∣ nt = n

)
+ E

(
log

πX(T0)(s)

πX(Tn)(s)

∣∣∣∣ nt = n

)

+ E

( n∑
k=0

∫ s+t−Tk

s+t−Tk+1

qX(Tk)(u) du −
n∑

k=0

∫ Tk+1

Tk

qX(Tk)(u) du

∣∣∣∣ nt = n

)
. (4.1)

Let

C1(s) = max

{∣∣∣∣log
qij (u)

qji(v)

∣∣∣∣ : i, j ∈ S, qij (s) > 0, s ≤ u, v ≤ s + 1

}
,

C2(s) = max
i,j∈S

∣∣∣∣log
πi(s)

πj (s)

∣∣∣∣,
C3(s) = max{qi(u) : i ∈ S, s ≤ u ≤ s + 1}.

For n ≥ 2, by (4.1) we have∣∣∣∣E
(

log
dP[s,t]
dP−

[s,t]

∣∣∣∣ nt = n

)∣∣∣∣ ≤ C1(s)n + C2(s) + C3(s)(n + 1)(t − s). (4.2)

Notice that

P(Ai0···in (t)) =
∫

· · ·
∫

s<s1<···<sn<t

ds1 · · · dsn

× πi0(s)qi0i1(s1) · · · qin−1in (sn) exp

[
−

n∑
k=0

∫ sk+1

sk

qik (u) du

]

≤
∫

· · ·
∫

s<s1<···<sn<t

ds1 · · · dsn

× πi0(s)qi0i1(s1) · · · qin−1in (sn).

Therefore,

P(nt = n) =
∑

i0,...,in
ik �=ik+1

P(Ai0···in (t))

≤
∫

· · ·
∫

s<s1<···<sn<t

ds1 · · · dsn
∑

i0,...,in
ik �=ik+1

πi0(s)qi0i1(s1) · · · qin−1in (sn)

≤ (C3(s)(t − s))n

n! . (4.3)
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Hence, by (4.2) and (4.3),

∞∑
n=2

E

(
log

dP[s,t]
dP−

[s,t]

∣∣∣∣ nt = n

)
P(nt = n) = O((t − s)2) as t ↓ s.

Then, from

H(P[s,t], P−
[s,t]) = E

(
log

dP[s,t]
dP−

[s,t]

∣∣∣∣ nt = 1

)
P(nt = 1) + O((t − s)2)

=
{

E

(
log

πX(s)(s)qX(T0)X(T1)(T1)

πX(t)(s)qX(T1)X(T0)(s + t − T1)

∣∣∣∣ nt = 1

)

+ E

(∫ t

s+t−T1

qX(T0)(u) du −
∫ T1

s

qX(T0)(u) du

∣∣∣∣ nt = 1

)

+ E

(∫ s+t−T1

s

qX(T1)(u) du −
∫ t

T1

qX(T1)(u) du

∣∣∣∣ nt = 1

)}

× P(nt = 1) + O((t − s)2)

= E

(
log

πX(s)(s)qX(T0)X(T1)(T1)

πX(t)(s)qX(T1)X(T0)(s + t − T1)

∣∣∣∣ nt = 1

)

× P(nt = 1) + O((t − s)2)

=
∑
i �=j

E

(
log

πi(s)qij (T1)

πj (s)qji(s + t − T1)

∣∣∣∣ nt = 1, X(s) = i, X(t) = j

)

× P(nt = 1, X(s) = i, X(t) = j) + O((t − s)2)

=
∑
i �=j

E

(
log

πi(s)qij (T1)

πj (s)qji(s + t − T1)

∣∣∣∣ nt = 1, X(s) = i, X(t) = j

)

×
∫ t

s

πi(s)qij (u) exp

[
−

∫ u

s

qi(v) dv −
∫ t

u

qj (v) dv

]
du

+ O((t − s)2),

we find that

ep(s) = lim
t↓s

1

t − s
H(P[s,t], P−

[s,t])

=
∑
i,j∈S

πi(s)qij (s) log
πi(s)qij (s)

πj (s)qji(s)

= 1

2

∑
i,j∈S

[πi(s)qij (s) − πjqji(s)] log
πi(s)qij (s)

πj (s)qji(s)
.

5. Remarks and examples

5.1. On complete periodic reversibility

Apart from instantaneous reversibility, we have also investigated several other definitions of
reversibility of inhomogeneous Markov processes, e.g. complete periodic reversibility, in [9].
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Disappointingly, however, when a continuous-time Markov chain has complete periodic re-
versibility, it turns out to be homogeneous.

The next lemma is [6, Theorem 1.4].

Lemma 5.1. The transition probability matrices P(s, t) are nondegenerate.

Proposition 5.1. Suppose that Q(·) is periodic with period T . If, for all i0, . . . , in ∈ S and ti
with t = t0 < · · · < tn = t + T , we have

πi0(t)pi0i1(t, t1) · · · pin−1in (tn−1, t + T )

= πin(t)pinin−1(t, T + 2t − tn−1) · · · pi1i0(T + 2t − t1, T + t),

then Q(t) does not change with the parameter t , i.e. Q(·) is homogeneous.

Proof. First, by summing over i0, i2, . . . , in, we obtain πi1(t1) = πi1(T + 2t − t1), so π(s)

does not change with the parameter s, because of the arbitrariness of t1 and t . Second, by
summing over i0, i3, . . . , in, we obtain

πi1pi1i2(t1, t2) = πi1pi1i2(T + 2t − t2, T + 2t − t1).

By the arbitrariness of t , t1, and t2, P(s, s + u) depends only on u. Finally, we obtain the
desired result by differentiating P(s, s + u) with respect to u.

Remark 5.1. We must now emphasize that the complete periodic reversibility of [9] is meaning-
ful for the discrete-time case. A discrete-time Markov chain with complete periodic reversibility
degenerates to a homogeneous one when the period T is odd; however, to the authors’ surprise,
it does not always degenerate to a homogeneous one when T is even.

Here we use the notation of [9].

Example 5.1. There exist inhomogeneous examples which are completely periodically re-
versible. Let T = 2 and

P(0, 1) =
(

1 − a a

b 1 − b

)
, P (1, 2) =

(
1 − c c

d 1 − d

)
.

This example is completely periodically reversible if and only if cd(1− a − b)=ab(1− c − d).

Example 5.2. Let T = 2 and

P(0, 1) =
⎛
⎜⎝

0 1
3

2
3

1
3 0 2

3
1
2

1
2 0

⎞
⎟⎠ , P (1, 2) =

⎛
⎜⎝

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎞
⎟⎠ .

This example is completely periodically reversible.

Theorem 5.1. Suppose that a periodically inhomogeneous Markov chain ξ = {ξn : n =
0, 1, . . .} with denumerable state space S has complete periodic reversibility, and let

Pk = {pij (nT + k, nT + k + 1) :
pij (nT + K, nT + k + 1) = P(ξnT +k+1 = j | ξnT +k = i),

i, j, ∈ S, n = 0, 1, . . . } (5.1)

for k = 0, . . . , T − 1. If T is odd then P0 = · · · = PT −1, i.e. ξ is a homogeneous reversible
Markov chain. If T is even then P0 = P2 = · · · = PT −2 and P1 = P3 = · · · = PT −1.
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Proof. Recall that the periodically inhomogeneous Markov chain ξ has complete periodic
reversibility if and only if (ξk, ξk+1, . . . , ξk+T ) and (ξk+T , ξk+T −1, . . . , ξk) have the same
distribution for all k = 0, . . . , T − 1, i.e. for any k = 0, . . . , T − 1 and i0, . . . , iT ∈ S,

πk
i0
pi0i1(k, k + 1)pi1i2(k + 1, k + 2) · · · piT −1iT (k + T − 1, k + T )

= πk
iT

piT iT −1(k, k + 1)piT −1iT −2(k + 1, k + 2) · · · pi1i0(k − 1, k), (5.2)

where 
k = (πk
i )i∈S , k = 0, . . . , T − 1, are just the family of periodically invariant distribu-

tions of ξ .
Summing the last equation over i2, . . . , iT yields πk

i0
pi0i1(k, k + 1) = πk−1

i1
pi1i0(k − 1, k).

Summing (5.2) over i0, i3, . . . , iT yields πk+1
i1

pi1i2(k + 1, k + 2) = πk−2
i2

pi2i1(k − 2, k − 1).
So πk

i1
pi1i2(k, k + 1) = πk−3

i2
pi2i1(k − 3, k − 2), because of the arbitrariness of k. Therefore,

πk−1
i pij (k − 1, k) = πk−3

i pij (k − 3, k − 2) for all i, j ∈ S.

This implies that πk−1
i1

= πk−3
i1

. Hence, Pk−1 = Pk−3 for all k.

Remark 5.2. In fact, when {ξn : n = 0, 1, . . .} is completely periodically reversible, it must
have period two.

5.2. Discrete-time Markov chains

Here we state some analogous results, whose proofs are quite simple.

Definition 5.1. If an inhomogeneous Markov chain ξ = {ξn : n = 0, 1, . . .} is such that
(ξk, ξk+1) and (ξk+1, ξk) have the same distribution, then we say that ξ is instantaneously
reversible at time k. If ξ is instantaneously reversible at all times, then we say that ξ is
instantaneously reversible.

Definition 5.2. We define the instantaneous entropy production rate, ek
p, of ξ at time k as

ek
p = H(P[k,k+1], P−

[k,k+1]),

where P[k,k+1] is the distribution of (ξk, ξk+1), P−
[k,k+1] is the distribution of (ξk+1, ξk), and

H(P[k,k+1], P−
[k,k+1]) is the relative entropy of P[k,k+1] with respect to P−

[k,k+1].

Proposition 5.2. The instantaneous entropy production rate ek
p can be expressed as

1

2

∑
i,j∈S

(πk
i pk

ij − πk
j pk

ji) log
πk

i pk
ij

πk
j pk

ji

.

The main result in this case is as follows.

Theorem 5.2. The following statements are equivalent, in close accord with physical theory.

1. ξ is instantaneously reversible at time k.

2. It is in detailed balance: πk
i pk

ij = πk
j pk

ji for all i, j ∈ S.

3. Its instantaneous entropy production rate at time k vanishes.
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Corollary 5.1. The inhomogeneous Markov chain ξ is instantaneously reversible if and only
if each of the transition probability matrices P(n) is reversible when it is regarded as the
transition probability matrix of a homogeneous Markov chain and their reversible distributions
are the same.

Remark 5.3. The concepts of instantaneous reversibility and periodic reversibility are not
equivalent, and neither is stronger than the other.
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