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SLICES, RNP, STRONG REGULARITY, AND MARTINGALES

MARIA GIRARDI AND J.J. UHL, JR.

The usual proof that dentability implies the Radon-Nikodym property involves a
clever but rather baroque exhaustion argument. This note presents a very short
and simple proof of this implication. The techniques in this new proof are then
generalised to derive some direct proofs of recent results concerning strongly regular
operators on L\ .

The usual proof that dentability implies the Radon-Nikodym property (RNP) in-
volves a clever but rather baroque exhaustion argument [2, pp. 136-138]. The main
purpose of this note is to present a very short and simple proof of this implication.
We then generalise the techniques in this new proof to derive some direct proofs of
recent results of Ghoussoub, Godefroy, Maurey, and Schachermayer on bounded linear
operators on Li(fj.).

The idea behind our approach is to study the behavior of such an operator on
subsets of the form

(which we call A-segments). Compare this approach with the usual approach [3] that
considers subsets of the form

TA = { / 6 l , W : / > 0 M . and || / | | t l = || fXA \\Lx= 1} = co A^ .

Our approach not only provides enough information about the operator but also often
leads to simpler proofs. Our new proofs involving A-segments stem from the simple,
yet until now unnoticed, lemma in the first section.

Throughout this note, X is a Banach space, B(X ) is the closed unit ball of X , and
(H, S, fi) is a finite measure space. The subset of £ consisting of those sets of positive
/i-measure is denoted by E + . All notations and terminology, not otherwise explained,
are as in [2].
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1. RNP AND DENTABILITY

Recall that X has the RNP precisely if all bounded linear operators from L\ (//) into
X are represent able. To test the represent ability of such an operator T it is sufficient
[2, Lemma V.3.6] to find, for e > 0 and 4 i n E + , a subset B of A such that B e S +
and

diam TAB = diam { - ^ : E C B and E e E+} < e •

The usual proof that dentability implies the RNP uses a rather involved argument to
find such a subset B of A and the following definition of dentability.

DEFINITION: A subset D of X is dentable if for each e > 0 there is an x in D
such that

x i co (D \ B.{x)) .

Here we present a short proof that dentability implies the RNP by finding such a
subset B of A using the slice definition of dentability. Recall that a slice 5 of a subset
D of X is any non-empty set of the form

5 = {x 6 D : x*(x) > a}

where x* in X' and the real number a are fixed. The Hahn-Banach theorem guarantees
that a bounded subset D of 3̂  is dentable precisely if it has slices of arbitrarily small
diameter.

We now present this note's main lemma. While simple, it is very useful.

LEMMA . Let T be a bounded linear operator from Li(fi) into X . II S is a slice
of TAA for some A in E + , tiien tiiere is a subset B of A such that B £ E+ and
TAB C 5 .

PROOF: Let 5 be a slice of TAA for some A in E + . Accordingly, there is an z*
in X* and a real number a such that

• x \rtE)) > t t

Since x*Tx(.) '• E —• R is a /x-continuous measure, there is a real-valued function g

in £ i ( / i ) such that X*T\E - $B9&V- for each E in E . Set B = [g > a] 0 A. Note

that B £ E + because S is not empty. D

We now give a very short and simple proof of a twenty-year-old theorem of RiefFel

[2, pp. 136-138].
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THEOREM . If every bounded subset of X is deniable, then every bounded linear
operator from L\ into X is representable and so X has the RNP.

PROOF: Let all bounded subsets of X be dentable. Let T be a bounded linear oper-
ator from Lx into X . Fix e > 0 and A in S + . Since TAA is bounded, there is a slice 5
of TAA with diam 5 < e. By the lemma, there is a subset B of A such that B £ S +

and TAB C S, which clearly implies that diam TAB < £. D

Possibly one reason this proof is so short is that, unlike the usual proofs, it makes
use of the scalar version of the Radon-Nikodym theorem (see the proof of the lemma).

The ideas in our proof lend themselves to generalisations. We explore some of these
generalisations and their applications in the next section.

2. STRONG REGULARITY

Fix a bounded linear operator T from Li(fi) into X . Recall [3] that T is strongly
regular if for each bounded subset D of Li(fi) and e > 0 there are finitely many slices
5 i , . . . , 5 n of D such that

diam

for a suitable choice of positive real numbers ati , . . . ,an whose sum is one.
In this section, using the following variation of the lemma in section 1, we present

several new, simple, and direct proofs of theorems from [3] about strongly regular
operators.

LEMMA . If S is a slice of AA for some A in S + , tAen there is a subset B of A such
that B e E+ and AB C 5 .

PROOF: Let 5 be a slice of A A for some A in E + . Accordingly, there are a
real-valued function g in Loo(fi) and a real number a such that

X£_ . SE

Set B = [g> a }nA. D

REMARKS, (i) This lemma implies the lemma of section 1 for if one is given a slice S

of TAA I then one can find a slice 5 of A^ such that TS = 5 .
(ii) This lemma is to AA as [3, Lemma IV.1] is to TA-

Recall that the subset T*(B(X')) of £<»(/*) is a set of small oscillation with respect
to n if for each e > 0 there is a finite measurable partition TT of ft such that

sup 2] M(-^)
 O8C

T
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Using the lemma, we now give a direct proof of the following theorem [3].

THEOREM . If T is strongly regular, then T*(B(X')) is a set of small oscillation

with respect to (i.

PROOF: Let T be a strongly regular operator from Li(fi) into X . Fix e > 0.
Consider A in E + . By strong regularity there are slices S i , . . . , Sn of the A^ and real
numbers oti,... , a n whose sum is one such that

n

diam [ T (J2 OiSi)] < e.
t = l

Use the lemma of this section to find subsets B\,... , Bn of A such that Bi is in E+

and ABi C Si for each t. We now have that

n

diam f r ( V «< A B , ) I < e .
n

[ T ( Y, «• ABt ) ]
i

Set B = UJLj Bi. A moment's reflection shows that without loss of generality the sets
Bi,... ,Bn are disjoint. A second moment of reflection shows that we may chop back
the Bj's so that a,-/x(B) = fi(Bi) for each t. From this it follows that

n

iam [ T ( Y, KBi) ABi ) ] <
t=i

Since we can apply the same argument with A replaced by Q \ B, we can perform
a standard exhaustion procedure to produce a positive measurable partition n =
{Bi,... , Bn} of n such that

u

diam [ T ( Y /*(B<) A»i ) ] < e Mn) •

But since the Bi's are disjoint,
n n

diam \ T ( > M ( ^ . ) A B ) = sup > fi(Bi) osc T*x* .

Thus T*(B(X' )) is indeed a set of small oscillation.

The lemma also provides a simple proof of the following well-known fact.
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THEOREM . IfTis strongly regular, then T is Dunford-Pettis.

PROOF: Let T be a strongly regular operator from Li(fi) into X . Define the usual

"difference quotient" martingale

k
where w ranges over all finite positive measurable partitions of il. Fix e > 0. As in the

proof of the previous theorem, find a positive measurable partition n = {B\,..., Bn}

of il such that
n

diam [ T ( X] KBi) Afli ) ] < e M(n) .

If the partition r refines ir and x* G B(X*), then since the Bi's are disjoint

f n

/ I *'(/r - U) I d/x ^ V fi(Bi) diam **rABi

n

= diam [ ^
t = l

< diam [ ^ fj.{Bi) TABi

i=l

< e /x(n) .

So the martingale {/,•} is Pettis-Cauchy; hence, T is Dunford-Pettis [1]. D
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