ON THE SUM $\sum_{t<N^{1 / k}} d\left(N-t^{k}\right)$

by SEAN McDONAGH

(Received 12th July 1966)
Erdős (1) has proved the following result:
Theorem A. Every integral polynomial $g(n)$ of degree $k \geqq 3$, represents for infinitely many integers $n a(k-1)$ th power-free integer provided, in the case where k is a power of 2 , there exists an integer n such that $g(n) \neq 0\left(\bmod 2^{k-1}\right)$.

He conjectures that by similar methods it should be possible to prove that every sufficiently large integer N is representable in the form

$$
\begin{equation*}
N=t^{\kappa}+m \tag{1}
\end{equation*}
$$

where m is $(k-1)$ th power-free, that is, that the polynomial $N-t^{\kappa}$ represents, for large N and some integer $t, 1 \leqq t<N^{\omega}$, where $\omega=1 / k$, a $(k-1)$ th power-free integer. In his proof of Theorem A, Erdős uses the following theorem of Van der Corput (3).

Theorem B. If $g(n)$ is an integral polynomial, l a positive integer and $x \geqq 3$, then there exists a constant $c, c>1$, independent of x, such that

$$
\sum_{1 \leqq n \leqq x, g(n) \neq 0} d^{l}(|g(n)|) \leqq x(\log x)^{c}
$$

where $d(n)$, as usual, denotes the number of divisors of a positive integer n.
As we will now show, a similar result does hold for the divisor function of $N-t^{k}$ summed over integers t satisfying $1 \leqq t<N^{\omega}$. We let c_{1}, c_{2}, \ldots, denote positive constants independent of N. Using Van der Corput's method we prove

Theorem C. If N, k and l are positive integers, with $N \geqq 2$ then there exists c_{1} such that

$$
S=\sum_{1 \leqq t<N^{\omega}} d^{l}\left(N-t^{k}\right) \leqq N^{\omega}(\log N)^{c_{1}} .
$$

If $k=1$, the result is true since

$$
\sum_{1 \leqq t<N} d^{l}(N-t)=\sum_{t<N} d^{l}(t) \leqq N(\log N)^{2^{t-1}}
$$

Suppose $k \geqq 2$. We then define $r_{x}(v)$ to be the number of solutions of the congruence

$$
\begin{equation*}
t^{\kappa}=N(\bmod v) \tag{2}
\end{equation*}
$$

satisfying $1 \leqq t \leqq x$ and we write $r(v)=r_{v}(v)$. It is well known that $r(v)$ is a
multiplicative function of v, that is, if $\left(v_{1}, v_{2}\right)=1$, then $r\left(v_{1} v_{2}\right)=r\left(v_{1}\right) r\left(v_{2}\right)$. This is proved, for example, in Hardy and Wright (4), Theorem 122. Clearly, if $v \leqq x$, then

$$
r_{x}(v) \leqq \frac{2 x}{v} r(v) .
$$

In the proof of Theorem \mathbf{C} we need the following Lemma.
Lemma. If p denotes a prime then the function $r\left(p^{\alpha}\right)$ has the following properties:
and, if $p^{\beta} \| N, \beta \geqq 1$, then

$$
\begin{equation*}
r\left(p^{a}\right)<c_{2}, \text { if } p \nmid N \tag{3}
\end{equation*}
$$

$$
r\left(p^{\alpha}\right)\left\{\begin{array}{l}
=p^{\alpha-1}, \text { if } \alpha \leqq k \text { and } \beta \geqq \alpha, \tag{4}\\
=\mathbf{0}, \text { if } \alpha \leqq k \text { and } \beta<\alpha, \\
=\mathbf{0}, \text { if } \alpha>k, \beta<\alpha \text { and } k \nmid \beta, \\
\leqq c_{2} p^{\beta-\beta \omega}, \text { if } \alpha>k, \beta<\alpha \text { and } k \mid \beta, \\
\leqq p^{\alpha-\alpha \omega}, \text { if } \alpha>k \text { and } \beta \geqq \alpha .
\end{array}\right.
$$

Proof. (3) follows from consideration of indices. If $p \nmid N, p>2$, let ind $t, t \neq 0(\bmod p)$ denote the index of $t\left(\bmod p^{\alpha}\right)$. If $t^{k}=N\left(\bmod p^{\alpha}\right)$, then $t \not \equiv 0(\bmod p)$ and k ind $t \equiv \operatorname{ind} N\left(\bmod p^{\alpha-1}(p-1)\right)$ and so there are at most k values for ind t. Thus $r\left(p^{\alpha}\right) \leqq k$.

If $p \nmid N$ and $p=2$, (3) is obvious if $\alpha \leqq 2$. If $\alpha>2$ let $N \equiv(-1)^{y_{1} 5^{72}}\left(\bmod 2^{\alpha}\right)$.
 $\delta_{1} k=\gamma_{1}(\bmod 2)$ and $\delta_{2} k=\gamma_{2}\left(\bmod 2^{x-2}\right)$. Hence there is one possible choice for δ_{1}, and, at most, k for δ_{2}. This establishes (3).

To prove (4), we first consider the case $\alpha \leqq k$. If $t^{\kappa}=N\left(\bmod p^{\alpha}\right)$, we must have $t \equiv 0(\bmod p)$, since $N \equiv 0(\bmod p)$. Hence $t^{\kappa} \equiv 0\left(\bmod p^{\kappa}\right)$ and so $t^{\alpha} \equiv 0\left(\bmod p^{\alpha}\right)$. If $\beta \geqq \alpha$, then $N \equiv 0\left(\bmod p^{\alpha}\right)$ and $r\left(p^{\alpha}\right)$ is the number of integers t such that $1 \leqq t \leqq p^{\alpha}$ and $t \equiv 0(\bmod p)$, that is $p^{\alpha-1}$. If $\beta<\alpha$ then $r\left(p^{\alpha}\right)=0$, since $N \neq 0\left(\bmod p^{\alpha}\right)$.

When $\alpha>k$ we write $N=p^{p} N_{0}$ so that $p \nmid N_{0}$. If $\beta<\alpha$ and $k \nmid \beta$ then $t^{\kappa} \equiv p^{\beta} N_{0}\left(\bmod p^{\alpha}\right)$ cannot have a solution because p divides t^{κ} to a power which, being a multiple of k, cannot be equal to β, making an equation $t^{\kappa}=p^{\beta} N_{0}+a p^{\alpha}$ impossible for integral a. Such an equation is possible, if $\beta<\alpha$ and $k \mid \beta$, only if $p^{\beta} \| t^{\kappa}$. Writing $\beta=k \beta_{0}$ we see that if t satisfies $t^{\kappa} \equiv N\left(\bmod p^{\alpha}\right)$ then $t \equiv 0\left(\bmod p^{\beta_{0}}\right) . \quad$ Hence, if $\beta<\alpha$ and $k \mid \beta$, the integers t, $1 \leqq t \leqq p^{\alpha}$, which satisfy $t^{\kappa} \equiv N\left(\bmod p^{\alpha}\right)$ are in the form $t=p^{\beta_{0}} y$, with $1 \leqq y \leqq p^{\alpha-\beta_{0}}$ and $y^{\kappa} \equiv N_{0}\left(\bmod p^{\alpha-\beta}\right)$. By (3) there are less than

$$
c_{2} p^{\alpha-\beta_{0}} \cdot p^{-(\alpha-\beta)}=c_{2} p^{\beta-\beta \omega}
$$

such integers. Finally, if $\alpha>k$ and $\beta \geqq \alpha$, then $N \equiv 0\left(\bmod p^{\alpha}\right)$. Thus the only solutions of $t^{\alpha} \equiv N\left(\bmod p^{\alpha}\right)$ are those integers t which are divisible by $p^{z \omega}$, if $k \mid \alpha$, or $p^{[\alpha \omega]+1}$, if $k \nmid \alpha$. There are less than $p^{\alpha-\alpha \omega}$ such integers $\left(\bmod p^{\alpha}\right)$ which establishes (4).

It follows from (4) that, if $p \mid N$, we have

$$
r\left(p^{\alpha}\right) \leqq\left\{\begin{array}{l}
p^{\alpha-1}, \text { if } \alpha \leqq k \tag{5}\\
c_{2} p^{\alpha-\alpha \omega}, \text { if } \alpha>k
\end{array}\right.
$$

We write

$$
S=\sum_{t<N^{\omega}} d^{l}\left(N-t^{k}\right)=\sum_{1 \leqq y \leqq N} d^{\prime}(y) T(y)
$$

where

$$
T(y)=\left\{\begin{array}{l}
1, \text { if } y=N-t^{k} \text { for some } t, 1 \leqq t<N^{\omega} \\
0, \text { otherwise }
\end{array}\right.
$$

Hence

$$
\sum_{y<N} T(y) \leqq N^{\infty}
$$

and, if $v<N^{\omega}$ we have

$$
\sum_{y<N, y \equiv 0(\bmod v)} T(y)=r_{N \omega}(v) \leqq \frac{2 N^{\omega}}{v} r(v)
$$

Each $y, 1 \leqq y \leqq N$, is uniquely decomposed in the form

$$
y=p_{1} p_{2} \ldots p_{m} v_{1} v_{2} \ldots v_{n}
$$

where an empty product is defined to be 1 . Here, if $m \neq 0, p_{j}$ is prime and $p_{j} \geqq N^{\omega}, j=1,2, \ldots, m$, while if $n \neq 0, v_{1}$ is the largest integer less than N^{ω} which divides y, and, in general, v_{i} is the largest integer less than N^{ω} which divides $y / p_{1} p_{2} \ldots p_{m} v_{1} v_{2} \ldots v_{i-1}$. Since $y \leqq N$ we have $m \leqq k$ and since at most one of the v 's is less than $N^{\omega / 2}$ we have $n \leqq 2 k+1$. Thus

$$
d^{l}(y) \leqq 2^{m l} d^{l}\left(v_{1}\right) d^{l}\left(v_{2}\right) \ldots d^{l}\left(v_{n}\right) \leqq 2^{k l} \sum_{1 \leqq i \leqq n} d^{l(2 k+1)}\left(v_{i}\right) .
$$

We may write

$$
S=\sum_{n=0}^{2 k+1} U_{n}
$$

where U_{n} is the contribution to S of the y 's with $n v$-factors. Thus

$$
U_{0} \leqq 2^{k l} \sum_{y=1}^{N} T(y) \leqq 2^{k l} N^{\omega}
$$

If $n>0$, we have

$$
U_{n} \leqq 2^{l k} \sum_{y=1}^{N}\left(\sum_{i=1}^{n}{ }_{v_{i}=2}^{N^{\omega}} d^{l(2 k+1)}\left(v_{i}\right)\right) T(y)
$$

where the Σ^{\prime} extends over the integers $y, 1 \leqq y \leqq N$, having $n v$-factors, $v_{1}, v_{2}, \ldots, v_{n}$. Therefore

$$
U_{n} \leqq 2^{i k} \sum_{i=1}^{n} \sum_{v=2}^{N \omega} d^{l(2 k+1)}(v) \sum_{y=1}^{N} T(y)
$$

where the $\Sigma^{\prime \prime}$ extends over the integers $y, 1 \leqq y \leqq N$, having $n v$-factors and
having v as the i th v-factor. Thus

$$
\begin{aligned}
U_{n} & \leqq 2^{l k}(2 k+1) \sum_{v=2}^{N^{\omega}} d^{l(2 k+1)}(v) \sum_{\substack{y=1 \\
y=0(\bmod v)}}^{N} T(y) \\
& \leqq 2^{l k+1}(2 k+1) N^{\omega} \sum_{v=2}^{N^{\omega}} \frac{d^{l(2 k+1)}(v) r(v)}{v} \\
& \leqq 2^{l k+1}(2 k+1) N^{\omega} \prod_{p \leqq N^{\omega}}\left\{1+\sum_{\alpha=1}^{\infty} \frac{d^{l(2 k+1)}\left(p^{\alpha}\right) r\left(p^{\alpha}\right)}{p^{\alpha}}\right\}
\end{aligned}
$$

By (3), if $p \nmid N$, we have

$$
\left\{1+\sum_{\alpha=1}^{\infty} \frac{d^{(2 k+1)}\left(p^{\alpha}\right) r\left(p^{\alpha}\right)}{p^{\alpha}}\right\} \leqq\left\{1+\sum_{\alpha=1}^{\infty} \frac{(\alpha+1)^{l(2 k+1)} c_{2}}{p^{\alpha}}\right\} \leqq\left\{1+\frac{c_{3}}{p}\right\} .
$$

If $p \mid N$, we have, by (5), that

$$
\begin{aligned}
&\left\{1+\sum_{\alpha=1}^{\infty}\right.\left.\frac{d^{l(2 k+1)}\left(p^{\alpha}\right) r\left(p^{\alpha}\right)}{p^{\alpha}}\right\} \leqq\left\{1+\sum_{\alpha=1}^{k} \frac{(\alpha+1)^{l(2 k+1)}}{p}+\sum_{\alpha=k+1}^{\infty} \frac{(\alpha+1)^{l(2 k+1)} c_{2}}{p^{\alpha \omega}}\right\} \\
& \leqq\left\{1+\frac{1}{p}\left[\sum_{\alpha=1}^{k}(\alpha+1)^{l(2 k+1)}+\sum_{\alpha=1}^{\infty} \frac{(\alpha+k+1)^{l(2 k+1)} c_{2}}{2^{\alpha \omega}}\right]\right\}=\left\{1+\frac{c_{4}}{p}\right\}
\end{aligned}
$$

Let $c_{5}=\max \left(c_{3}, c_{4}\right)$. Then

$$
\begin{aligned}
U_{n} & \leqq 2^{l k+1}(2 k+1) N^{\omega} \prod_{p \leqq N^{\omega}}\left\{1+\frac{c_{5}}{p}\right\} \\
& \leqq 2^{l k+1}(2 k+1) N^{\omega} \exp \left\{c_{5} \sum_{p \leqq N^{\omega}} \frac{1}{p}\right\} \leqq 2^{l k+1}(2 k+1) N^{\omega}(\log N)^{c s} .
\end{aligned}
$$

Finally, summing over n, Theorem C follows.
In the case $l=1$, Erdős (2) has proved the following theorem which is stronger than Theorem B and which he uses to prove Theorem A.

Theorem D. If $g(n)$ is an irreducible integral polynomial and $x \geqq 2$, there exists a constant c^{\prime}, independent of x, such that

$$
\sum_{n=1}^{x} d(|g(n)|)<c^{\prime} x \log x
$$

If $\rho(u)$ denotes the number of solutions of the congruence

$$
g(n) \equiv 0(\bmod u), 1 \leqq n \leqq u
$$

then a powerful tool in the proof of Theorem D is the following relation (Erdös (2), Lemma 7),

$$
\begin{equation*}
\sum_{p \leqq x} \rho(p)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) \tag{6}
\end{equation*}
$$

(6) is a consequence of the prime ideal theorem.
In order to attempt to prove Erdös' conjecture concerning the representability of every sufficiently large integer N as in (1), it is necessary to have more
information about $\sum_{t<N^{\omega}} d\left(N-t^{k}\right), k \geqq 3$, than is contained in Theorem C. Hooley (5) has given an asymptotic formula for $\sum_{|t|<N^{1 / 2}} d\left(N-t^{2}\right)$ but a similar estimate for $\sum_{t<N^{\omega}} d\left(N-t^{k}\right), k>2$, would seem to be difficult.

Comparison of relation (6) with relations (3) and (4) would indicate that more information about $\sum_{p \leqq N^{\alpha}, p \nmid N} r(p)$ than is at present available would be necessary in order to prove the conjecture of Erdős.

REFERENCES

(1) P. Erdős, Arithmetical properties of polynomials, J. London Math. Soc. 28 (1953), 416-425.
(2) P. Erdős, On the sum $\sum_{k=1}^{x} d(f(k))$, J. London Math. Soc. 27 (1952), 7-15.
(3) J. G. van der Corput, Une inégalité relative au nombres des diviseurs, Proc. Kon. Ned. Akad. Wet. Amsterdam, 42 (1939), 547-553.
(4) G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed. (Oxford, 1960).
(5) C. Hooley, On the representation of a number as the sum of a square and a product, Math. Zeitschrift, 69 (1958), 211-227.

University College

Galway

