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1. Introduction

Self-adjoint linear Hamiltonian matrix systems arise in many dynamical problems and
have been studied by many authors (see, for example, [1–18]). In this paper, we consider
linear self-adjoint Hamiltonian matrix systems of the form

U ′(x) = A(x)U(x) + B(x)V (x),

V ′(x) = C(x)U(x) − A∗(x)V (x),

}
(1.1)

where A(x), B(x) = B∗(x) > 0 and C(x) = C∗(x) are n × n real continuous matrix
functions on the interval I = [a,∞). Here and below, the transpose of the matrix M is
denoted by M∗ and its positive definiteness is denoted by M > 0.

A solution (U(x), V (x)) of the system (1.1) is said to be non-trivial if detU(x) �= 0
for at least one x ∈ [a,∞), and a non-trivial solution (U(x), V (x)) of (1.1) is said to be
prepared or self-conjugate if

U∗(x)V (x) − V ∗(x)U(x) = 0, x � a. (1.2)
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System (1.1) is said to be oscillatory on [a,∞) if there is a non-trivial prepared solution
(U(x), V (x)) of (1.1) such that detU(x) vanishes at least once on [T, ∞) for each T � a.
Otherwise, it is said to be non-oscillatory. It is well known [14, Theorem 8.1, p. 303] that
if the system (1.1) is oscillatory, then every non-trivial prepared solution (Ū(x), V̄ (x)) of
(1.1) has the property that det Ū(x) vanishes at least once on [T, ∞) for every T > a.

Oscillatory properties of (1.1) as well as the special case

U ′(x) = A(x)U(x) + En(x)V (x),

V ′(x) = C(x)U(x) − A∗(x)V (x),

}
(1.3)

where En is the n×n identity matrix, are important in optimization of certain functionals
associated with (1.1). Therefore, such properties have been studied quite extensively. In
particular, special cases of (1.1), such as

(P (x)U ′(x))′ + Q(x)U(x) = 0 (1.4)

and

U ′′(x) + Q(x)U(x) = 0, (1.5)

have been studied and many results related to oscillation obtained (see, for example,
[1–3,5,8,11,15,18] and the references quoted therein).

To motivate what follows, let us go through some of the well-known contributions.
First of all, for the scalar equation (as a special case of (1.4)),

(p(x)y′(x))′ + q(x)y(x) = 0. (1.6)

Leighton’s criterion (see [9]) states that (1.6) is oscillatory on the interval [0,∞) if∫ ∞

0
p−1(t) dt = ∞ and

∫ ∞

0
q(t) dt = ∞.

In 1949, Wintner [16] showed that

y′′(x) + q(x)y(x) = 0 (1.7)

is oscillatory if

lim
t→∞

1
t

∫ t

0

(∫ s

0
q(u) du

)
ds = ∞.

In a different direction, in 1952 Hartman [4] showed that (1.7) is oscillatory when

−∞ < lim inf
t→∞

1
t

∫ t

0

(∫ s

0
q(u) du

)
ds < lim sup

t→∞

1
t

∫ t

0

(∫ s

0
q(u) du

)
ds � ∞.

In 1978, another important type of criterion was given by Kamenev [7], who showed
that if for some positive integer m > 2,

lim sup
t→∞

1
tm−1

∫ t

0
(t − s)m−1q(s) ds = ∞,

then Equation (1.7) is oscillatory.
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Oscillation results based on a Kamenev-type criterion for (1.7) can be found in earlier
papers of Philos [12], Li [10], Wong [17] and other references cited therein.

Kamenev’s Theorem has also been extended by Philos [13] for (1.7) using the general
means method, which was further extended to the matrix differential system (1.4) by
Erbe et al . [3] as follows.

Theorem A. Let H(t, s) and h(t, s) be continuous on D = {(t, s) | t � s � t0} such
that H(t, t) = 0 for t � t0 and H(t, s) > 0 for t > s � t0. Suppose further that the
partial derivative ∂H(t, s)/∂s is non-positive and continuous for t � s � t0, and h(t, s)
is defined by

∂H(t, s)/∂s = −h(t, s)H1/2(t, s), (t, s) ∈ D.

If

lim sup
t→∞

1
H(t, t0)

λmax

[∫ t

t0

(H(t, s)Q(s) − 1
4h2(t, s)P (s)) ds

]
= ∞,

where λmax(A) stands for the maximal eigenvalue of the matrix A, then (1.4) is oscillatory.

In 1998, Meng et al . [11] employed the idea of generalized Riccati transformation to
obtain an oscillation criterion for (1.4) and extended an earlier result of Erbe et al . [3].
Their work was subsequently generalized by Wang [15] in 2001.

In 2000, Kumari and Umamaheswaram [8] obtained oscillation theorems for (1.1) that
extend that of Wintner [16] and Kamenev [7]. Other oscillation results based on a
Wintner-type criterion for (1.1) and the special system (1.4) can also be found in a
recent paper of the first author [18] and some of the references cited therein.

There are many other oscillation criteria. In view of this fact, it is therefore of interest
to find unified results.

In § 2 we approach our goal by using monotone functionals and new generalized Ric-
cati transformations as well as considering functions H(x, s)k(s), where H(t, s) may
have non-positive partial derivatives on D0 = {(x, s) : x > s � a} with respect to
the second variable. We obtain Kamenev-type oscillation criteria (Theorems 2.2, 2.8,
Corollaries 2.4–2.7) for the system (1.1) which include results of Kumari et al . [8, The-
orems 2.3–2.7, 2.9], Meng et al . [11, Theorem 1], Erbe et al . [3, Theorems 1–7] and
Wang [15, Theorems 1–6].

In § 3 we present a set of new oscillation criteria by using positive linear functionals.
The subsequent results are generalizations of the analogous oscillation criterion of Kumari
and Umamaheswaram [8, Theorems 2.3, 2.9] for the system (1.1) and are generalizations
and improvements of Li [10], Philos [13] for the special case (1.6), and Kamenev [7]
for (1.7).

Our results obtained in the above manner extend, improve and unify a number of
existing results. In the final section, several examples that dwell upon the importance of
our results are presented.

Throughout this paper we use the notation

D0 = {(x, s) : 0 � a � s < x < ∞} and D = {(x, s) : 0 � a � s � x < ∞}.
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2. Oscillation criteria in terms of monotone functionals

Throughout this section we denote the eigenvalues of an n × n Hermitian matrix A by
λ1[A], λ2[A], . . . , λn[A], where λmin[A] = λn[A] � · · · � λ2[A] � λ1[A] = λmax[A].

In what follows, S will denote the linear space of all n × n real symmetric matrices
endowed with the usual operations.

Definition 2.1. A functional p : S → R is said to be subhomogeneous if p(λK) �
λp(K) whenever K ∈ S and λ � 0. Such a functional is said to be monotone (or non-
decreasing) if J − K � 0 implies p(J) � p(K) for J , K ∈ S.

The first part of Definition 2.1 is found in Hartman [5, p. 328]. Note that because of
the classical minimal characterization of the eigenvalues of a matrix in S, the functional
p(K) = λmax(K) is monotone and subhomogeneous and is traditionally called the ‘eigen-
value’ functional. On the other hand, it is readily verified that if P � 0 in S, then the
nonlinear functional p(K) = λmax(K +P ) is also monotone and λmax[K +P ] � λmax[K].
Furthermore, it is easy to see that the nonlinear trace functional on S defined by
p(K) = tr(K + En) is also monotone.

Theorem 2.2. Let functions H ∈ C(D; R), h ∈ C(D0; R), φ ∈ C1([a,∞); R), k and
β ∈ C1([a,∞); (0,∞)) satisfy the following conditions:

(H1) H(x, x) = 0 for x � a and H(x, s) > 0 on D0;

(H2) H has a continuous and non-positive partial derivative on D0 with respect to the
second variable;

(H3) − ∂

∂s
(H(x, s)k(s)) − H(x, s)k(s)

β′(s)
β(s)

= h(x, s) for all (x, s) ∈ D0.

Suppose there exists a monotone subhomogeneous functional p on S such that

lim sup
x→∞

1
H(x, a)

p

[∫ x

a

{H(x, s)k(s)T (s) + J0(x, s)} ds

]
= ∞, (2.1)

where

J0(x, s) = H(x, s)k(s)v(s)β(s)[φ(A + A∗) − A∗B−1A](s)

− v(s)β(s)[12h(x, s) + H(x, s)k(s)φ(s)][A∗B−1 + B−1A](s)

− v(s)β(s)[{ 1
2 [H(x, s)k(s)]−1/2h(x, s) + [H(x, s)k(s)]1/2φ(s)}B−1/2(s)

− [H(x, s)k(s)]1/2φ(s)B1/2(s)]2, (2.2)

v(x) = exp
{

−2
∫ x

a

φ(s) ds

}
(2.3)

and

T (x) = v(x)β(x)[−C − φ(A∗ + A) + φ2B − φ′En](x). (2.4)

Then the system (1.1) is oscillatory.
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Proof. Suppose to the contrary that there exists a prepared solution (U(x), V (x)) of
the system (1.1) which is not oscillatory. Without loss of generality, we may assume that
det U(x) �= 0 for x � a. Define the matrix function W (x) on [a,∞) by

W (x) = β(x)v(x)[V (x)U−1(x) + φ(x)En] = β(x)Z(x). (2.5)

From (1.2), it follows that

W ∗(x) = β(x)v(x){[U−1(x)]∗V ∗(x) + φ(x)En}
= β(x)v(x){[U∗(x)]−1U∗(x)V (x)U−1(x) + φ(x)En} = W (x),

which implies that W is Hermitian. Differentiating the Hermitian matrix (2.5) and invok-
ing (1.1), we have

W ′(x) = β′(x)Z(x) + β(x)Z ′(x)

=
(

β′

β
W

)
(x) + β(x)

{
−

[
A∗Z + ZA +

1
v
ZBZ

]
(x)

+ (φ[ZB + BZ − 2Z])(x) −
(

1
β

T

)
(x)

}

=
(

β′

β
W

)
(x) −

[
1
βv

WBW + A∗W + WA − φ(WB + BW − 2W )
]
(x) − T (x),

(2.6)

for x ∈ [a,∞), where

T (x) = β(x)v(x)(−C − φ[A + A∗] + φ2B − φ′En)(x).

Replacing x by s in (2.6) and then multiplying the subsequent equation by H(x, s)k(s)
and integrating with respect to s from a to x (x � a), and after some simple computation,
we have∫ x

a

H(x, s)k(s)v(s)T (s) ds

= −
∫ x

a

H(x, s)k(s)W ′(s) ds +
∫ x

a

H(x, s)k(s)
β′(s)
β(s)

W (s) ds

−
∫ x

a

H(x, s)k(s)
[

1
βv

WBW + A∗W + WA − φ(WB + BW − 2W )
]
(s) ds

= H(x, a)k(a)W (a) −
∫ x

a

[
− ∂

∂s
(H(x, s)k(s)) − H(x, s)k(s)

β′(s)
β(s)

]
W (s) ds

−
∫ x

a

H(x, s)k(s)
[

1
βv

WBW + A∗W + WA − φ(WB + BW − 2W )
]
(s) ds

= H(x, a)k(a)W (a) −
∫ x

a

[h(x, s) + 2φ(s)H(x, s)k(s)]W (s) ds

−
∫ x

a

H(x, s)k(s)
[

1
βv

WBW + A∗W + WA − φ(WB + BW )
]
(s) ds

= H(x, a)k(a)W (a) −
∫ x

a

R−1(s)G(x, s)R−1(s) ds, (2.7)
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where

R(x) =
[

1
β(x)v(x)

B(x)
]1/2

and

G(x, s) = H(x, s)k(s){[RWR][RWR]}(s) + [h(x, s) + 2φ(s)H(x, s)k(s)](RWR)(s)

+ H(x, s)k(s){R[A∗W + WA − φ(WB + BW )]R}(s).

Let

Q(x, s) = [H(x, s)k(s)]1/2[RW − φβvR + R−1A](s)

+ { 1
2 [H(x, s)k(s)]−1/2h(x, s) + [H(x, s)k(s)]1/2φ(s)}R−1(s).

Then

Q∗(x, s) = [H(x, s)k(s)]1/2[WR − φβvR + A∗R−1](s)

+ { 1
2 [H(x, s)k(s)]−1/2h(x, s) + [H(x, s)k(s)]1/2φ(s)}R−1(s).

Note that

[h(x, s) + 2φ(s)H(x, s)k(s)]W (s)

+ H(x, s)k(s)
[

1
βv

WBW + A∗W + WA − φ(WB + BW )
]
(s)

= R−1(s)G(x, s)R−1(s)

= (Q∗Q)(x, s) + H(x, s)k(s)v(s)β(s)[φ(A + A∗) − A∗B−1A](s)

− v(s)β(s)[12h(x, s) + H(x, s)k(s)φ(s)][A∗B−1 + B−1A](s)

− v(s)β(s)[{ 1
2 (H(x, s)k(s))−1/2h(x, s) + (H(x, s)k(s))1/2φ(s)}B−1/2(s)

− (H(x, s)k(s))1/2φ(s)B1/2(s)]2

= (Q∗Q)(x, s) + J0(x, s). (2.8)

By (2.7) and (2.8), we obtain∫ x

a

H(x, s)k(s)T (s) ds = H(x, a)k(a)W (a) −
∫ x

a

{(Q∗Q)(x, s) + J0(x, s)} ds,

which implies∫ x

a

{H(x, s)k(s)T (s) + J0(x, s)} ds = H(x, a)k(a)W (a) −
∫ x

a

(Q∗Q)(x, s) ds

� H(x, a)k(a)W (a). (2.9)

Hence, from Definition 2.1 of a monotone subhomogeneous functional p on S, we have

p

[∫ x

a

{H(x, s)k(s)T (s) + J0(x, s)} ds

]
� p[H(x, a)k(a)W (a)],
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for x > a, and

1
H(x, a)

p

[∫ x

a

{H(x, s)k(s)T (s) + J0(x, s)} ds

]
� p[k(a)W (a)] < ∞,

which is contrary to (2.1). The proof is complete. �

Remark 2.3. Assume that K, P ∈ S and P > 0. Let p(K) be λmax[K] in Theorem 2.2
with the other conditions unchanged, then the system (1.1) is oscillatory.

Furthermore, in Theorem 2.2, suppose in addition that lim inft→∞ H(t, s) � 1 for
sufficiently large s ∈ R. Let the monotone subhomogeneous functional p on S be replaced
by a monotone functional q : S → R satisfying q(λK) � λq(K) whenever K ∈ S
and λ � 1, while the other conditions of Theorem 2.2 are kept unchanged. Then the
system (1.1) is oscillatory. In fact, the proof of Theorem 2.2 may be easily modified to
yield a proof of the new statement. Note that q(K) may be chosen as λmax[K + P ] or
tr(K + En).

Let p(K) = λmax[K] and φ(t) ≡ 0 in Theorem 2.2, then the following corollary is an
extension of Theorem 2.3 of Kumari and Umamaheswaram [8], Theorem 1 of Erbe et
al . [3] and Theorem 3 of Wang [15].

Corollary 2.4. Let functions H ∈ C(D; R), h ∈ C(D0; R), k, β ∈ C1([a,∞); (0,∞))
satisfy conditions (H1)–(H3) of Theorem 2.2.

If
lim sup

x→∞

1
H(x, a)

λ1[J0(x)] = ∞, (2.10)

where

J0(x) = −
∫ x

a

β(s)
{

H(x, s)k(s)[C + A∗B−1A](s) + 1
2h(x, s)

× [A∗B−1 + B−1A](s) +
h2(x, s)

4H(x, s)k(s)
B−1(s)

}
ds, (2.11)

then the system (1.1) is oscillatory.

Corollary 2.5. Let functions H ∈ C(D; R), h ∈ C(D0; R), k, β ∈ C1([a,∞); (0,∞))
and J0(x) be as in Corollary 2.4 and let G1(x) be the matrix-valued function

G1(x) = J0(x) +
∫ x

a

h2(x, s)
4H(x, s)k(s)

β(s)B−1(s) ds.

(I) If

lim sup
x→∞

1
H(x, a)

λ1[G1(x)] = ∞ (2.12)

and

lim sup
x→∞

1
H(x, a)

λ1

[∫ x

a

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]
< ∞, (2.13)

then the system (1.1) is oscillatory on [a,∞).
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(II) If B(x) = diag(b1(x), b2(x), . . . , bn(x)), where the bi(x) are continuous and positive
for x � a and b(x) = min1�i�n bi(x), then the same conclusion as in (I) holds if
condition (2.13) is replaced by the condition

lim sup
x→∞

1
H(x, a)

∫ x

a

h2(x, s)β(s)
H(x, s)k(s)b(s)

ds < ∞. (2.14)

(III) If B(x) = En and the conditions (2.12) and (2.14) are, respectively, replaced by
the conditions

lim sup
x→∞

1
H(x, a)

λ1

[
−

∫ x

a

β(s){H(x, s)k(s)[C + A∗A](s)

+ 1
2h(x, s)[A∗ + A](s)} ds

]
= ∞

and

lim sup
x→∞

1
H(x, a)

∫ x

a

h2(x, s)
H(x, s)k(s)

β(s) ds < ∞, (2.15)

then the system (1.3) is oscillatory on [a,∞).

The next lemma is a statement of Weyl’s inequality, which appears in [6] and [8].

Lemma 2.6. Let P , Q be n × n Hermitian matrices. Then

λi[P ] + λn[Q] � λi[P + Q] � λi[P ] + λ1[Q]

for i = 1, 2, . . . , n.

Proof of Corollary 2.5. By the definition of G1(x) and Lemma 2.6, we obtain

λ1[J0(x)] � λ1[G1(x)] + λn

[
−

∫ x

a

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]

= λ1[G1(x)] − λ1

[∫ x

a

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]

� λ1[G1(x)] − lim sup
x→∞

λ1

[∫ x

a

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]
− 1

for sufficiently large x. From (2.12) and (2.13), we have

lim sup
x→∞

1
H(x, a)

λ1[J0(x)] = ∞.

Hence (1.1) is oscillatory on [a,∞).
The second and third parts are consequences of the first. The proof is complete. �

Choose p(K) = λmax[K] and β(t) ≡ 1 in Theorem 2.2, then the following corollary is
an extension of Theorem 2.9 of Kumari and Umamaheswaram [8], Theorem 1 of Meng
et al . [11], Theorem 1 of Wang [15] and Li [10].
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Corollary 2.7. Let functions H ∈ C(D; R) satisfy conditions (H1) and (H2) in
Theorem 2.2. If there exist functions φ ∈ C1([0,∞), (0,∞)), h ∈ C(D0; R), and
k ∈ C1([a,∞); (0,∞)) such that

− ∂

∂s
(H(x, s)k(s)) = h(x, s), ∀(x, s) ∈ D0,

lim sup
x→∞

1
H(x, a)

λ1

[∫ x

a

{H(x, s)k(s)T (s) + J0(x, s)} ds

]
= ∞, (2.16)

where

J0(x, s) = H(x, s)k(s)v(s)[φ(A + A∗) − A∗B−1A](s)

− v(s)[ 12h(x, s) + H(x, s)k(s)φ(s)][A∗B−1 + B−1A](s)

− v(s)[{ 1
2 [H(x, s)k(s)]−1/2h(x, s) + [H(x, s)k(s)]1/2φ(s)}B−1/2(s)

− [H(x, s)k(s)]1/2φ(s)B1/2(s)]2, (2.17)

v(x) = exp
{

−2
∫ x

a

φ(s) ds

}
,

and T (s) = v(s)[−C − φ(A∗ + A) + φ2B − φ′En](s), then the system (1.1) is oscillatory.

If h(t, s) is replaced by h(t, s)
√

H(t, s)k(s) in Theorem 2.2, we have the following
result. The proof is similar, so we omit the details.

Theorem 2.8. Let functions H ∈ C(D; R), h ∈ C(D0; R), φ ∈ C1([a,∞); R), k and
β ∈ C1([a,∞); (0,∞)) satisfy the conditions (H1) and (H2) in Theorem 2.2 and

(H3) − ∂

∂s
(H(x, s)k(s)) − H(x, s)k(s)

β′(s)
β(s)

= h(x, s)
√

H(x, s)k(s) for all (x, s) ∈ D0.

Suppose there exists a monotone subhomogeneous functional p on S such that

lim sup
x→∞

1
H(x, a)

p

[∫ x

a

{H(x, s)k(s)T (s) + J0
0 (x, s)} ds

]
= ∞, (2.18)

where

J0
0 (x, s) = H(x, s)k(s)β(s)v(s)[φ(A + A∗) − A∗B−1A](s)

− v(s)β(s)[12h(x, s)
√

H(x, s)k(s) + H(x, s)k(s)φ(s)][A∗B−1 + B−1A](s)

− v(s)β(s)[{ 1
2h(x, s) + [H(x, s)k(s)]1/2φ(s)}B−1/2(s)

− [H(x, s)k(s)]1/2φ(s)B1/2(s)]2, (2.19)

v(x) = exp
{

−2
∫ x

a

φ(s) ds

}
,

and T (x) is defined in (2.4). Then the system (1.1) is oscillatory.
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We remark that corollaries similar to Corollaries 2.4–2.7 can be obtained by replacing
h(t, s) by h(t, s)

√
H(t, s)k(s) and choosing the correct functionals in Theorem 2.8. Their

statements are skipped since no new principles are involved.

Remark 2.9. Theorem 2.2 improves and extends the criteria in Kumari and Umama-
heswaram [8, Theorem 2.3–2.9], Meng et al . [11], Erbe et al . [3] and Wang [15]. If n = 1
and A(x) = 0, the system (1.1) reduces to the scalar system (1.6). Note further that if we
take k(x) ≡ β(x) ≡ 1 and φ(x) ≡ 0, Corollaries 2.4–2.7 become Theorem 1 of Philos [12].

3. Oscillation theorems in terms of positive linear functionals

In this section, we establish several new oscillation criteria in terms of positive linear
functionals.

Definition 3.1 (see [5]). A linear functional L : S → R satisfying

L(K + J) = L(K) + L(J), L(λK) = λL(K),

for K, J ∈ S, λ ∈ R, is said to be ‘positive’ if L(K) > 0 whenever K ∈ S and K > 0.

Theorem 3.2. Let functions H ∈ C(D; R), h ∈ C(D0; R), φ ∈ C1([a,∞); R), k and
β ∈ C1([a,∞); (0,∞)) satisfy the following conditions:

(H1) H(x, x) = 0 for x � a and H(x, s) > 0 on D0;

(H2) H has a continuous and non-positive partial derivative on D0 with respect to the
second variable;

(H3) − ∂

∂s
(H(x, s)k(s)) − H(x, s)k(s)

β′(s)
β(s)

= h(x, s) for all (x, s) ∈ D0.

Suppose that there exists a linear positive functional L on S such that

lim sup
x→∞

1
H(x, a)

L
[∫ x

a

{H(x, s)k(s)T (s) + J0(x, s)} ds

]
= ∞, (3.1)

where J0(x, s), v(x) and T (s) are defined by (2.2), (2.3) and (2.4), respectively. Then the
system (1.1) is oscillatory.

Proof. Suppose to the contrary that there exists a prepared solution (U(x), V (x)) of
the system (1.1) which is not oscillatory. Without loss of generality, we may assume that
det U(x) �= 0 for x � a. Define the matrix function W (x) on [a,∞) by (2.5). As in the
proof of Theorem 2.2, we can obtain (2.6) and (2.9). Moreover, it follows from (2.9) that

L
[∫ x

a

{H(x, s)k(s)T (s) + J0(x, s)} ds

]
� L[H(x, a)k(a)W (a)], x > a,

yielding

1
H(x, a)

L
[∫ x

a

{H(x, s)k(s)T (s) + J0(x, s)} ds

]
� L[k(a)W (a)] < ∞,

which is contrary to (3.1). The proof is complete. �
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Let φ(t) ≡ 0 in Theorem 3.2, then we get the following result.

Corollary 3.3. Let functions H ∈ C(D; R), h ∈ C(D0; R), k, β ∈ C1([a,∞); (0,∞))
satisfy conditions (H1)–(H3) of Theorem 3.2.

If
lim sup

x→∞

1
H(x, a)

L[J0(x)] = ∞, (3.2)

where J0(x) is defined as in (2.11), then the system (1.1) is oscillatory.

Corollary 3.4. Let functions H ∈ C(D; R), h ∈ C(D0; R), k, β ∈ C1([a,∞); (0,∞))
and J0(x) be as in Corollary 3.3 and let G1(x) be the matrix-valued function

G1(x) = J0(x) +
∫ x

a

h2(x, s)
4H(x, s)k(s)

β(s)B−1(s) ds.

(I) If

lim sup
x→∞

1
H(x, a)

L[G1(x)] = ∞ (3.3)

and

lim sup
x→∞

1
H(x, a)

L
[∫ x

a

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]
< ∞, (3.4)

then the system (1.1) is oscillatory on [a,∞).

(II) If B(x) = diag(b1(x), b2(x), . . . , bn(x)), where the bi(x) are continuous and positive
for x � a and b(x) = min1�i�n bi(x), then the same conclusion as in (I) holds if
condition (3.4) is replaced by the condition (2.14).

(III) If B(x) = En and the conditions (3.3) and (2.14) are, respectively, replaced by the
conditions

lim sup
x→∞

1
H(x, a)

L
[
−

∫ x

a

β(s){H(x, s)k(s)[C + A∗A](s)

+ 1
2h(x, s)[A∗ + A](s)} ds

]
= ∞

and (2.15), then the system (1.3) is oscillatory on [a,∞).

Proof. By the definition of G1(x), we obtain

L[J0(x)] = L[G1(x)] + L
[
−

∫ x

a

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]

= L[G1(x)] − L
[∫ x

a

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]

� L[G1(x)] − lim sup
x→∞

L
[∫ x

a

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]
− 1
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for sufficiently large x. From (3.3) and (3.4), we have

lim sup
x→∞

1
H(x, a)

L[J0(x)] = ∞.

Hence (1.1) is oscillatory on [a,∞).
The second and third parts are consequences of the first. The proof is complete. �

Choosing β(t) ≡ 1 in Theorem 3.2, we obtain the following corollary.

Corollary 3.5. Let functions H ∈ C(D; R) satisfy conditions (H1) and (H2) in
Theorem 2.2. If there exist functions φ ∈ C1([0,∞), (0,∞)), h ∈ C(D0; R) and
k ∈ C1([a,∞); (0,∞)) such that

− ∂

∂s
(H(x, s)k(s)) = h(x, s), ∀(x, s) ∈ D0,

lim sup
x→∞

1
H(x, a)

L
[∫ x

a

{H(x, s)k(s)T (s) + J0(x, s)} ds

]
= ∞, (3.5)

where

v(x) = exp
{

−2
∫ x

a

φ(s) ds

}
, T (s) = v(s)[−C − φ(A∗ + A) + φ2B − φ′En](s)

and J0(x, s) is defined as in (2.17), then the system (1.1) is oscillatory.

Remark 3.6. If h(t, s) is replaced by h(t, s)
√

H(t, s)k(s) in Theorem 3.2 (as we did
in Theorem 2.8) and Corollaries 3.3–3.5, we can establish similar oscillation results.

Remark 3.7. Theorem 3.2 and Corollaries 3.3–3.5 are generalizations of the analo-
gous oscillation criterion of Kumari and Umamaheswaram [8, Theorems 2.3, 2.9] for the
system (1.1). If n = 1 and A(x) = 0, the system (1.1) reduces to the scalar system (1.6).
Note further that if we take k(x) ≡ β(x) ≡ 1, Theorem 3.2 and Corollaries 3.3–3.5 also
improve and generalize the results of Li [10], Philos [13] and Kamenev [7].

We remark that choices of k(s), β(s), φ(s) include 1, s, etc.; while choices of H include
H(t, s) = (t − s)λ, H(x, s) = [R(x) − R(s)]λ, H(x, s) = [log Q(x)/Q(s)]λ, or

H(x, s) =
[∫ x

s

1
w(z)

dz

]λ

,

etc., for x � s � a, where λ > 1 is a constant,

R(x) =
∫ x

a

1
u(s)

ds, Q(x) =
∫ ∞

t

1
u(s)

ds < ∞,

for x � a, and w ∈ C([t0,∞), R+), which satisfies
∫ ∞

a
ds/w(s) = ∞.

Moreover, from Theorems 2.2, 2.8, Corollaries 2.4–2.7, Theorem 3.2 and Corollar-
ies 3.3–3.5, we can present different explicit sufficient conditions for the oscillation of
(1.1) by properly choosing the functionals p, L and the functions β, φ, k. For instance,
we may choose k(x) = 1, x, etc.
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4. Examples

The following example illustrates Theorem 2.8. It is easy to see that Theorem 2.3 of [8]
is not applicable in our example. Furthermore, the results in [1–3,5,11,15] are also not
applicable since A(x) �≡ 0.

Example 4.1. Consider the system (1.1) where

A(x) =

[
0 0
1 0

]
, B(x) =

[
x 0
0 x

]
, C(x) =

[
−1/x 0

0 0

]
, x � 1.

Let p[K] = λmax[K] for K = (Kij) ∈ S, H(x, s) = (x − s)2, k(s) = s, β(s) = s2 and
φ(s) ≡ 0. Then

h(x, s) =
2(x − s)s − (x − s)2

(x − s)
√

s
− (x − s)2s

(x − s)
√

s

2s

s2 =
1√
s
(5s − 3x),

J0
1 (x, s) =

∫ x

1
β(s)H(x, s)k(s)[C + A∗B−1A](s) ds

=
∫ x

1
s2(x − s)2s ds

{[
−1/s 0

0 0

]
+

[
1/s 0
0 0

]}
=

[
0 0
0 0

]
,

J0
2 (x, s) = 1

2

∫ x

1
β(s)h(x, s)

√
H(x, s)k(s)[A∗B−1 + B−1A](s) ds

= 1
2

∫ x

1
s2 1√

s
(5s − 3x)(x − s)

√
s ds

[
0 1/s

1/s 0

]

= −1
2

∫ x

1
(3x2s − 8xs2 + 5s3) ds

[
0 1
1 0

]

= (− 1
24x4 + 3

4x2 − 4
3x + 5

8 )

[
0 1
1 0

]
,

J0
3 (x, s) = 1

4

∫ x

1
β(s)h2(x, s)B−1(s) ds = 1

4

∫ x

1
s2 1

s
(5s − 3x)2

[
1/s 0

0 1/s

]
ds

= ( 7
12x3 − 9

4x2 + 15
4 x − 25

12 )

[
1 0
0 1

]
,

and∫ x

a

{H(x, s)k(s)T (s) + J0
0 (x, s)} ds

= −J0
1 (x, s) − J0

2 (x, s) − J0
3 (x, s)

=

[
− 7

12x3 + 9
4x2 − 15

4 x + 25
12

1
24x4 − 3

4x2 + 4
3x − 5

8
1
24x4 − 3

4x2 + 4
3x − 5

8 − 7
12x3 + 9

4x2 − 15
4 x + 25

12

]
.
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Hence

lim sup
x→∞

1
H(x, a)

λmax

[∫ x

a

{H(x, s)k(s)T (s) + J0
0 (x, s)} ds

]

� lim sup
x→∞

[
1
24x2

(
x

x − 1

)2

− 7
12x

x

x − 1

]
= ∞.

Thus all the assumptions of Theorem 2.8 are satisfied. By Theorem 2.8 the system (1.1)
is oscillatory. Furthermore, this example illustrates that the assumption in Theorem 2.8
cannot be simplified by replacing k(s) by 1.

Example 4.2. Consider the system (1.1) where

A(x) =

[
0 0
1 0

]
, B(x) =

[
1 0
0 1

]
, C(x) =

[
−1 0
0 0

]
, x � 0.

Then (1.1) is oscillatory by Corollary 2.4. In fact, choose H(x, s) = (x − s)2, k(s) = 1
and β(s) = s2, we obtain

h(x, s) = 2(x − s) − (x − s)2
2s

s2 =
2
s
(x − s)(2s − x),

∫ x

0
β(s)H(x, s)k(s)[C + A∗B−1A](s) ds =

∫ x

0
s2(x − s)2 ds

{[
−1 0
0 0

]
+

[
1 0
0 0

]}

=

[
0 0
0 0

]
,

1
2

∫ x

0
β(s)h(x, s)[A∗B−1 + B−1A](s) ds = 1

2

∫ x

0
s2 2

s
(x − s)(2s − x) ds

[
0 1
1 0

]

= − 4
3x4

[
0 1
1 0

]
,

1
4

∫ x

0

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds = 1
4

∫ x

0
(2s − x)2E2 ds

= 1
3x3

[
1 0
0 1

]

and

J0(x) =

[
− 1

3x3 4
3x4

4
3x4 − 1

3x3

]
.

The eigenvalues of J0(x) are

λ1[J0(x)] = − 1
3x3 + 4

3x4, λ2[J0(x)] = − 1
3x3 − 4

3x4.
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Hence
lim sup

x→∞

1
H(x, a)

λ1[J0(x)] = lim sup
x→∞

[− 1
3x + 4

3x2] = ∞.

Thus all the assumptions of Corollary 2.4 are satisfied. However, let L[J0(x)] = tr[J0(x)],
then

lim sup
x→∞

1
H(x, a)

tr[J0(x)] = − lim sup
x→∞

2
3x = −∞.

In this case, Corollary 3.3 is not applicable.
The same conclusion can be made by noting that (U(x), V (x)), defined by

U(x) =

[
sin x sin x

− cos x sin x

]
, V (x) =

[
cos x cos x

0 0

]
,

is a non-trivial prepared solution of the system (1.1) and

det U(x) =

∣∣∣∣∣ sin x sin x

− cos x sin x

∣∣∣∣∣ = sinx(sin x + cos x)

is oscillatory on [0,∞).

The following example illustrates that the results in § 3 provide criteria different in
nature from those in § 2.

Example 4.3. Consider the system (1.1) where

A(x) =

[
0 0
0 0

]
, B(x) =

⎡
⎣2 0

0
1

1 + x

⎤
⎦ , C(x) =

[
−1 0
0 1

]
, x � 0.

Let H(x, s) = (x − s)2, k(s) = 1, β(s) = s2 and L[K] = k11, where K = (kij) ∈ S. Then
it is easy to see that

h(x, s) = 2(x − s) − (x − s)2
2s

s2 =
2
s
(x − s)(2s − x),

L[J0
1 (x)] = L

[∫ x

0
β(s)H(x, s)k(s)[C + A∗B−1A](s) ds

]

= L
{∫ x

0
s2(x − s)2

[
−1 0
0 1

]
ds

}
= − 1

30x5,

L[J0
2 (x)] = L

[
1
2

∫ x

0
β(s)h(x, s)[A∗B−1 + B−1A](s) ds

]
= 0

and

L[J0
3 (x)] = L

[
1
4

∫ x

0

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]

= L
{

1
4

∫ x

0

4
s2 (x − s)2(2s − x)2

1
(x − s)2

s2

[
1
2 0
0 s + 1

]
ds

}
= 1

6x3.
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Hence
L[J0(x)] = −{L[J0

1 (x)] + L[J0
2 (x)] + L[J0

3 (x)]} = ∞.

Thus all the assumptions of Corollary 3.3 are satisfied. By Corollary 3.3 the system (1.1)
is oscillatory. However, in this example, we have tr[C(x)] = 0.

Example 4.4. Consider the system (1.1) where

A(x) =

[
0 0
0 0

]
, B(x) =

⎡
⎣2 0

0
1

1 + x

⎤
⎦ , C(x) =

[
− 1

2 + cos x 0
0 − 1

2 − cos x

]
.

Let H(x, s) = (x− s)2, k(s) = 1, β(s) = s2 and L[K] = tr[K]. Then it is easy to see that

h(x, s) = 2(x − s) − (x − s)2
2s

s2 =
2
s
(x − s)(2s − x),

tr[J0
1 (x)] = tr

[∫ x

0
β(s)H(x, s)k(s)[C + A∗B−1A](s) ds

]

= tr

{∫ x

0
s2(x − s)2

[
− 1

2 + cos s 0
0 − 1

2 − cos s

]
ds

}
= − 1

30x5,

tr[J0
2 (x)] = tr

[
1
2

∫ x

0
β(s)h(x, s)[A∗B−1 + B−1A](s) ds

]
= 0,

and

tr[J0
3 (x)] = tr

[
1
4

∫ x

0

h2(x, s)
H(x, s)k(s)

β(s)B−1(s) ds

]

= tr

{∫ x

0
(2s − x)2

[
1
2 0
0 s + 1

]
ds

}
= x4 − 1

2x3.

Hence, the trace of J0(x) in Corollary 3.3 is

tr[J0(x)] = −{tr[J0
1 (x)] + tr[J0

2 (x)] + tr[J0
3 (x)]} = ∞.

Thus all the assumptions of Corollary 3.3 are satisfied. By Corollary 3.3 the system (1.1)
is oscillatory.
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