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A Non-zero Value Shared by an Entire
Function and its Linear Differential
Polynomials
Indrajit Lahiri and Imrul Kaish

Abstract. In this paper we study uniqueness of entire functions sharing a non-zero finite value with
linear differential polynomials and address a result of W. Wang and P. Li.

1 Introduction, Definitions, and Results

Let f be a non-constant entire function in the open complex plane C. We denote by
E(a; f ), E1)(a; f ), and E(2(a; f ) the set of all distinct a-points, simple a-points, and
distinct multiple a-points of f .

In 1986 G. Jank, E. Mues, and L. Volkmann [2] proved a uniqueness theorem for
entire functions sharing a single value with two derivatives. Their result can be stated
as follows.

Theorem A ([2]) Let f be a non-constant entire function and let a be a non-zero finite
number. If E(a; f ) = E(a; f (1)) and E(a; f ) ⊂ E(a; f (2)), then f ≡ f (1).

Theorem A has been extended to general order derivatives and linear differential
polynomials by several authors.

Throughout the paper we denote by L a non-constant linear differential polyno-
mial in f of the form

(1.1) L = a1 f (1) + a2 f (2) + · · · + an f (n),

where a1, a2, . . . , an(6= 0) are constants.
Inspired by Theorem A, P. Li [4] proved the following result.

Theorem B ([4]) Let f be a non-constant entire function and let L(6≡ 0) be given by
(1.1). If f and L(1) share a finite non-zero value a counting multiplicities, and E(a; f ) ⊂
E(a; f (1)) ∩ E(a; L), then L = L(1) and f = f (1) or f = a + 1

a L(L− a).

In 2004 W. Wang and P. Li [5] improved Theorem B and proved the following
result.

Theorem C ([5]) Let f be a non-constant entire function, a ∈ C\{0,∞}, and let
L(6≡ 0) be given by (1.1). If E(a; f ) = E(a; L(1)) and E(a; f ) ⊂ E(a; f (1)) ∩ E(a; L),
then one of the following holds:
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(i) f = f (1) = L;
(ii) L = L(1) and f = a + 1

a L(L− a);

(iii) f = a + c1e
3
2 z + c2e3z and L = −2c1e

3
2 z − 1

2 c2e3z, where 3c2
1 = 2ac2 and c1, c2 are

non-zero constants.

So far as we understand there is a major lacuna in the proof of Theorem B and
the same is carried forward to the proof of Theorem C. In fact, in [4, Lemma 4] it
is shown that φ = (L(1) − f (1))/( f − a) is a constant. To do this, Li [4] claimed the
following:

L(2) = (A(1) + ξL(2)) + (ξ(1) + ηφ)L(1) + (η(1) − ηφ)( f − a),

which is [4, (5) on p. 4]. But calculation reveals that it should be

L(2) = (A(1) + ξL(2)) + (ξ(1) + η)L(1) + (η(1) − ηφ)( f − a).

Consequently the identity a2
nφ

2n+3 + R[φ] ≡ 0, as claimed in [4, p. 4], should be
a2

nφ
2n+2 + R[φ] ≡ 0, where R[φ] is a differential polynomial in φ with degree not

greater than 2n + 2. Therefore, one cannot use Clunie’s lemma to show that φ is a
constant. In this paper we reconsider Theorem C and prove a modified version of it.

For standard definitions and notations of the value distribution theory we refer
the reader to [1]. However, we require the following definitions.

Definition 1.1 Let f and g be two non-constant meromorphic functions defined
in C. For a, b ∈ C ∪ {∞} we denote by N(r, a; f | g = b) (N(r, a; f | g = b)) the
counting function (reduced counting function) of those a-points of f that are the
b-points of g.

Definition 1.2 Let f and g be two non-constant meromorphic functions defined
in C. For a, b ∈ C ∪ {∞} we denote by N(r, a; f | g 6= b) (N(r, a; f | g 6= b)) the
counting function (reduced counting function) of those a-points of f that are not
the b -points of g.

Definition 1.3 Let f be a non-constant meromorphic function in C and a ∈ C ∪
{∞}. For A ⊂ C we denote by NA(r, a; f ) ( NA(r, a; f ) ) the counting function
(reduced counting function) of those a-points of f that belong to A.

Definition 1.4 Let f be a non-constant meromorphic function defined in C. For
a ∈ C ∪ {∞} and a positive integer k we denote by N(r, a; f |≥ k) (N(r, a; f |≤ k))
the counting function of those a-points of f whose multiplicities are not less (greater)
than k. By N(r, a; f |≥ k) and N(r, a; f |≤ k) we denote the corresponding reduced
counting functions.

Definition 1.5 Let f be a non-constant meromorphic function in C and a ∈ C ∪
{∞}. Suppose that A ⊂ C and let k be a positive number. We denote by NA(r, a; f |≥
k) ( NA(r, a; f |≥ k)) the counting function (reduced counting function) of those
a-points of f whose multiplicities are not less than k and that belong to A.

In a similar manner, we define NA(r, a; f |≤ k) and NA(r, a; f |≤ k).
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The following definition is well known.

Definition 1.6 Let f be a non-constant meromorphic function in C. Suppose that

M j[ f ] = a j( f )n0 j ( f (1))n1 j · · · ( f (p j ))np j j

is a differential monomial in f , where a j is a small function of f .

We denote by γM j =
∑p j

k=0 nk j and by ΓM j =
∑p j

k=0(1 + k)nk j the degree and
weight of M j[ f ] respectively.

The numbers γP = max1≤ j≤n γM j and ΓP = max1≤ j≤n ΓM j are respectively called
the degree and weight of the differential polynomial P[ f ] =

∑n
j=1 M j[ f ].

We now state the main result of the paper.

Theorem 1.7 Let f be a non-constant entire function of finite order, let a be a non-zero
finite number, and let L given by (1.1) be such that L(1) is non-constant and |1− a1| +
|a2| 6= 0.

Let A = E(a; f )\E(a; L(1)) and B = E(a; L(1))\{E(a; f (1)) ∩ E(a; L)}. Suppose
further that

(i) NA(r, a; f ) + NB(r, a; L(1)) = S(r, f ),
(ii) E1)(a; L(1)) ⊂ E(a; f ),
(iii) E1)(a; f ) ⊂ E(a; f (1)) ∩ E(a; L(1)), and
(iv) E(2(a; f ) ∩ E(0; L(1)) = ∅.

Then one of the following holds:

(a) f = L = αez, where α is a nonzero constant;
(b) f = a + (α2/a)e2z − αez and L = αez, where

∑n
k=1 2kak = 0,

∑n
k=1 ak = −1 and

α is a nonzero constant;
(c) f = a + c1e

3
2 z + c2e3z and L = −2c1e

3
2 z − 1

2 c2e3z, where 3c2
1 = 2ac2 and c1, c2 are

non-zero constants.

Putting A = B = ∅ we get the following corollary.

Corollary 1.8 Let f be a non-constant entire function of finite order, let a be a
non-zero finite number, and let L given by (1.1) be such that L(1) is non-constant and
|1− a1| + |a2| 6= 0. Further suppose that E(a; f ) ⊂ E(a; L(1)) ⊂ E(a; f (1)) ∩ E(a; L)
and E1)(a; L(1)) ⊂ E(a; f ). Then the conclusion of Theorem 1.7 holds.

As a consequence of Corollary 1.8 we obtain the following corollary.

Corollary 1.9 Let f be a non-constant entire function of finite order, let a be a
non-zero finite number, and let L given by (1.1) be such that L(1) is non-constant and
|1− a1| + |a2| 6= 0. If E(a; f ) = E(a; L(1)) and E(a; f ) ⊂ E(a; f (1)) ∩ E(a; L), then the
conclusion of Theorem 1.7 holds.
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2 Lemmas

In this section we present some necessary lemmas.

Lemma 2.1 Let f be a non-constant entire function and let a be a non-zero finite
complex number. Then f = L = αez, where α is a non-zero constant, provided the
following hold:

(i) m(r, a; f ) = S(r, f ),
(ii) E1)(a; f ) ⊂ E(a; f (1)),
(iii) NA(r, a; f ) = S(r, f ), where A = E(a; f )\{E(a; L) ∩ E(a; L(1)) ∩ E(a; f (1))}.

Proof Let

(2.1) λ =
f (1) − a

f − a
.

From the hypothesis we see that λ has no simple pole and T(r, λ) = S(r, f ). From
(2.1) we get

(2.2) f (1) = λ1 f + µ1,

where λ1 = λ and µ1 = a(1− λ).
Differentiating (2.2) we get f (k) = λk f + µk, where λk and µk are meromorphic

functions satisfying λk+1 = λ(1)
k + λ1λk and µk+1 = µ(1)

k + µ1λk for k = 1, 2, 3, . . . .
Also, we see that T(r, λk) + T(r, µk) = S(r, f ) for k = 1, 2, 3, . . . .

Now

(2.3) L =

( n∑
k=1

akλk

)
f +

n∑
k=1

akµk = ξ f + η, say.

Clearly T(r, ξ) + T(r, η) = S(r, f ). Differentiating (2.3) we get

(2.4) L(1) = ξ f (1) + ξ(1) f + η(1).

Let z0 6∈ A be an a-point of f . Then from (2.3) and (2.4) we get aξ(z0) +η(z0) = a
and aξ(z0) + aξ(1)(z0) + η(1)(z0) = a.

If aξ + η 6≡ a, then

N(r, a; f ) ≤ N(r, a; f |≤ 1) + NA(r, a; f ) ≤ N(r, a; aξ + η) + S(r, f ) = S(r, f ),

which is impossible because m(r, a; f ) = S(r, f ). Hence aξ + η ≡ a. Similarly aξ +
aξ(1) + η(1) ≡ a. This implies that ξ ≡ 1 and η ≡ 0. So from (2.3) we get L ≡ f .

By actual calculation we see that λ2 = λ2 + λ(1) and λ3 = λ3 + 3λλ(1) + λ(2). In
general, we now verify that

(2.5) λk = λk + Pk−1[λ],
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where Pk−1[λ] is a differential polynomial in λ with constant coefficients such that
γPk−1 ≤ k − 1 and ΓPk−1 ≤ k. Also each term of Pk−1[λ] contains some derivative
of λ.

Let (2.5) be true. Then

λk+1 = λ(1)
k + λ1λk = (λk + Pk−1[λ])(1) + λ

(
λk + Pk−1[λ]

)
= λk+1 + Pk[λ],

noting that differentiation does not increase the degree of a differential polynomial
but increases its weight by 1. So (2.5) is verified by mathematical induction.

Since ξ ≡ 1, we get from (2.5)

(2.6)
n∑

k=1

akλ
k +

n∑
k=1

akPk−1[λ] ≡ 1.

Let z0 be a pole of λ with multiplicity p(≥ 2). Then z0 is a pole of
∑n

k=1 akλ
k with

multiplicity np, and it is a pole of
∑n

k=1 akPk−1[λ] with multiplicity not exceeding
(n − 1)p + 1. Since np > (n − 1)p + 1 , it follows that z0 is a pole of the left-hand
side of (2.6) with multiplicity np, which is impossible. So λ is an entire function. If
λ is transcendental, then by Clunie’s lemma we get from (2.6) that T(r, λ) = S(r, λ),
which is a contradiction. If λ is a polynomial of degree d(≥ 1), then the left-hand
side of (2.6) is a polynomial of degree nd with leading coefficient an(6= 0), which is
also a contradiction. Therefore, λ is a constant, and so from (2.5) we get λk = λk for
k = 1, 2, 3, . . . .

Since ξ ≡ 1, we see that
∑n

k=1 akλ
k = 1. Also from (2.2), we obtain f (2) = λ f (1)

and so f (1) = αλeλz and f = αeλz + β, where α(6= 0) and β are constants.
Now L = (

∑n
k=1 akλ

k)αeλz = αeλz. Since f ≡ L, we get β = 0. Since

NA(r, a; f ) = S(r, f ) and N(r, a; f ) = T(r, f ) + S(r, f ),

we see that E(a; f ) ∩ E(a; f (1)) 6= ∅. So f (1) = λ f implies λ = 1. Hence f = αez.
This proves the lemma.

Lemma 2.2 ([3]) Let f be a non-constant entire function in C, let a be a finite non-zero
complex number, and let L given by (1.1) be such that L(1) is non-constant.

Further suppose that E1)(a; f ) ⊂ E(a; f (1)) and NA(r, a; f ) + NB(r, a; L) = S(r, f ),
where A = E(a; f ) \ E(a; L) and B = E(a; L) \ {E(a; f (1)) ∩ E(a; L(1))}. Then one of
the following cases holds:

(i) f = a + αez and L = αez, where α is a nonzero constant;
(ii) f = L = αez, where α is a nonzero constant;

(iii) f = a + α2

a e2z − αez and L = αez, where
∑n

k=1 2kak = 0,
∑n

k=1 ak = −1, and α
is a nonzero constant.

Lemma 2.3 Let f be a non-constant entire function in C, let a be a finite non-zero
complex number, and let L given by (1.1) be such that L(1) is non-constant. Let A =
E(a; f )\E(a; L(1)) and B = E(a; L(1))\{E(a; f (1)) ∩ E(a; L)}. If E(a; f ) 6= ∅ and
NA(r, a; f ) + NB(r, a; L(1)) = S(r, f ), then N(r, a; L(1) | f 6= a) = S(r, f ).
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Proof We put

C = E(a; f ) ∩ E(a; f (1)) ∩ E(a; L) ∩ E(a; L(1)),

D = {E(a; f ) ∩ E(a; L(1))}\C,

and henceforth we use these notations.
Let χ = (L− f (1))/( f − a) and φ = (L(1) − f (1))/( f − a). Then m(r, χ) +

m(r, φ) = S(r, f ) and

N(r, χ) + N(r, φ) ≤ 2{NA(r, a; f ) + ND(r, a; f )} ≤ 2(n + 1)ND(r, a; f ) + S(r, f )

= 2(n + 1)ND(r, a; L(1)) + S(r, f ) ≤ 2(n + 1)NB(r, a; L(1)) + S(r, f )

= S(r, f ).

So

(2.7) T(r, χ) + T(r, φ) = S(r, f ).

First we suppose that L 6≡ f (1). Then by the hypothesis

N(r, a; L(1)) ≤ N
(

r, 1;
L

f (1)

)
+ NB(r, a; L(1)) ≤ T

(
r,

L

f (1)

)
+ S(r, f )

= N(r,
L

f (1)
) + S(r, f ) ≤ N(r, 0; f (1)) + S(r, f ).

(2.8)

Again,

m(r, a; f ) ≤ m
(

r,
f (1)

f − a

)
+ m(r, 0; f (1)) = T(r, f (1))− N(r, 0; f (1)) + S(r, f )

≤ T(r, f )− N(r, 0; f (1)) + S(r, f )

and so

(2.9) N(r, 0; f (1)) ≤ N(r, a; f ) + S(r, f ).

From (2.8) and (2.9) we get

(2.10) N(r, a; L(1)) ≤ N(r, a; f ) + S(r, f ).

Also, we see that

ND(r, a; f ) ≤ (n + 1)ND(r, a; f ) = (n + 1)ND(r, a; L(1))

≤ (n + 1)NB(r, a; L(1)) = S(r, f ).
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Now by (2.10) we get

N(r, a; L(1) | f 6= a) = N(r, a; L(1))− NC (r, a; L(1))− ND(r, a; L(1))

≤ N(r, a; f )− NC (r, a; f )− ND(r, a; f )

= N(r, a; f )− NC (r, a; f ) + S(r, f )

= NA(r, a; f ) + ND(r, a; f ) + S(r, f ) = S(r, f ).

Next we suppose that f (1) 6≡ L(1). Then by the hypothesis

N(r, a; L(1)) ≤ N
(

r, 1;
L(1)

f (1)

)
+ NB(r, a; L(1)) ≤ T

(
r,

L(1)

f (1)

)
+ S(r, f )

= N
(

r,
L(1)

f (1)

)
+ S(r, f ) ≤ N(r, 0; f (1)) + S(r, f ),

which is (2.8). Now proceeding as above we get N(r, a; L(1) | f 6= a) = S(r, f ).
Finally we suppose that L ≡ f (1) and L(1) ≡ f (1). Then L = f + c, where c is a

constant. Hence f (1) = f + c. Since E(a; f ) 6= ∅, we see that a + c 6= 0, because on
integration we set f = −c + αez, where α is a non-zero constant. Hence N(r, a; f ) 6=
S(r, f ). Also, we see that f (1) ≡ L ≡ L(1) = αez, and since NA(r, a; f ) = S(r, f ), we
get E(a; f ) ∩ E(a; L(1)) 6= ∅. So f + c = L(1) implies that c = 0. Therefore, f = L(1)

and so N(r, a; L(1) | f 6= a) = S(r, f ). This proves the lemma.

Lemma 2.4 Let f be a non-constant entire function. Then, for a non-zero finite num-
ber a,

T(r, f ) ≤ N(r, a; f ) + N(r, a; R) + S(r, f ),

where R is a non-constant linear differential polynomial in f (1) with constant coeffi-
cients.

Proof If f is a non-constant meromorphic function and ψ is a non-constant linear
differential polynomial in f , then by [1, Theorem 3.2 on p. 57] we get

T(r, f ) ≤ N(r,∞; f ) + N(r, 0; f ) + N(r, 1;ψ) + S(r, f ).

Since f is entire and R is a linear differential polynomial in f (1), the lemma follows
from the above inequality replacing f by f − a and putting ψ = R

a . This proves the
lemma.

3 Proof of Theorem 1.7

Proof We put ψ = (L− L(1))/( f − a) and φ = (L(1) − f (1))/( f − a). Since ψ =
χ − φ, by (2.7) we get T(r, ψ) + T(r, φ) = S(r, f ). We now consider the following
cases.
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Case 1. Let ψ ≡ 1. Then

L(1) = L− ( f − a),(3.1)

L(1) = f (1) + φ( f − a).(3.2)

Differentiating (3.1) and using (3.2) we get

(3.3) L(2) = L(1) − f (1) = φ( f − a).

Differentiating (3.2) we get

(3.4) L(2) = f (2) + φ f (1) + φ(1)( f − a).

Eliminating L(2) from (3.3) and (3.4) we get

(3.5) f (2) = −φ f (1) + (φ− φ(1))( f − a).

Differentiating (3.5) and using it repeatedly we get

f (k+1) =
{

(−φ)k + Pk−1[φ]
}

f (1) +
{
φk + Qk[φ]

}
( f − a),

where Pk−1[φ], Qk[φ] are differential polynomials in φwith constant coefficients and
ΓPk−1 ≤ k, γPk−1 ≤ k− 1. Therefore

(3.6) L(1) =

n∑
k=1

ak

{
(−φ)k + Pk−1[φ]

}
f (1) +

n∑
k=1

ak

{
φk + Qk[φ]

}
( f − a).

Let E(a; f ) = ∅. Since f is of finite order, we can put f = a + ep, where p is a
polynomial with deg(p) ≥ 1. Differentiating repeatedly we get f (k) = Tkep, where Tk

is a polynomial with deg(Tk) = k(deg(p)−1). So L =
∑n

k=1 ak f (k) = Pep and L(1) =∑n
k=1 ak f (k+1) = Qep, where P, Q are polynomials with deg(P) = n(deg(p) − 1)

and deg(Q) = (n + 1)(deg(p) − 1) . From (3.1) we get P = Q + 1, which implies
deg(p) = 1. So P, Q are constants. Therefore, E1)(a; L(1)) 6= ∅ and this contradicts
the hypothesis E1)(a; L(1)) ⊂ E(a; f ). Therefore E(a; f ) 6= ∅.

Let us recall the following sets from the proof of Lemma 2.3 : C = E(a; f ) ∩
E(a; f (1))∩ E(a; L)∩ E(a; L(1)) and D = {E(a; f )∩ E(a; L(1))}\C . We now verify that

(3.7) NC (r, a; f ) 6= S(r, f ).

If NC (r, a; f ) = S(r, f ), we get

N(r, a; f ) = NA(r, a; f ) + NC (r, a; f ) + ND(r, a; f )

≤ NC (r, a; f ) + (n + 1)ND(r, a; f ) + S(r, f )

= (n + 1)ND(r, a; L(1)) + S(r, f )

≤ (n + 1)NB(r, a; L(1)) + S(r, f ) = S(r, f ).

(3.8)
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Since E(a; f ) 6= ∅, by (3.8) and Lemma 2.3 we obtain

(3.9) N(r, a; L(1)) ≤ N(r, a; f ) + N(r, a; L(1) | f 6= a) = S(r, f ).

By Lemma 2.4 we get from (3.8) and (3.9) that T(r, f ) = S(r, f ), a contradiction.
Thus (3.7) is verified. So from (3.6) we get

NC (r, a; f ) ≤ N

(
r, 1;

n∑
k=1

ak

{
(−φ)k + Pk−1[φ]

})
= S(r, f ),

which is a contradiction unless

(3.10)
n∑

k=1

ak

{
(−φ)k + Pk−1[φ]

}
≡ 1.

If φ is a polynomial of degree p(≥ 1), then the left-hand side of (3.10) is a poly-
nomial of degree np with leading coefficient (−1)nan(6= 0). This is a contradiction.

If φ is transcendental, by Clunie’s lemma we get from (3.10) that m(r, φ) = S(r, φ).
By the hypothesis we see that φ has no simple pole. Let z0 be a pole of φ with mul-
tiplicity q(≥ 2). Then z0 is a pole of an(−φ)n with multiplicity nq. Also, z0 is a pole
of

n−1∑
k=1

{
ak(−φ)k + Pk−1[φ]

}
+ anPn−1[φ]

with multiplicity at most n + (q− 1)(n− 1) = q(n− 1) + 1. Since q ≥ 2, we see that
nq > q(n− 1) + 1, and so z0 becomes a pole of the left-hand side of (3.10), which is
impossible. Therefore, φ is entire and so T(r, φ) = S(r, φ), a contradiction. Hence φ
is a constant.

So from (3.5) we get

(3.11) f (2) + φ f (1) − φ( f − a) = 0.

Solving (3.11) we obtain

f =

{
c1eλ1z + c2eλ2z + a if λ1 6= λ2,

(c1 + c2z)eλ1z + a if λ1 = λ2,

where c1, c2 are constants and λ1, λ2 are roots of the equation λ2 + φλ− φ = 0.
If λ1 = λ2, then N(r, a; f ) = N(r, 0; c1 + c2z) = S(r, f ), which contradicts (3.7).

So λ1 6= λ2, and by (3.7) we get c1c2 6= 0.
Let λ1 = α + β and λ2 = α − β, where 2α = −φ and 2β = +

√
φ2 + 4φ 6= 0.

Then
f = a + e(α−β)z

(√
c1eβz − i

√
c2

)(√
c1eβz + i

√
c2

)
.

This shows that all a-points of f are simple. Hence

E(a; f ) = E1)(a; f ) ⊂ E(a; f (1)) ∩ E(a; L(1)) ⊂ E(a; L(1)).
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From (3.3) we see that

E(2(a; L(1)) ⊂ E(0; L(2)) = E(a; f ).

Since by the hypothesis E1)(a; L(1)) ⊂ E(a; f ), we get E(a; L(1)) = E(a; f ).
Since E(a; L(1)) = E(a; f ) = E1)(a; f ) ⊂ E(a; f (1)) and from (3.3) we get L(3) =

φ f (1), each a-point of L(1) is a double a-point. Therefore,

(3.12) L(1) − a = ( f − a)2eh,

where h is an entire function.
Since the order of f is 1 and that of L(1) is at most 1, h is a polynomial of degree at

most 1. Since λ1 6= λ2, we see that φ 6= 0. Differentiating (3.12) and using (3.3) we
get

(3.13) (2λ1 + γ)c1e(λ1+γ)z + (2λ2 + γ)c2e(λ2+γ)z = φe−δ,

where we put h = γz + δ and γ, δ are constants.
We now verify that at least one of λ1 + γ and λ2 + γ is zero. Otherwise, by the

second fundamental theorem, we get

T
(

r, e(λ1+γ)z
)
≤ N

(
r,

φe−δ

(2λ1 + γ)c1
; e(λ1+γ)z

)
+ S
(

r, e(λ1+γ)z
)

= N
(

r, 0; e(λ2+γ)z
)

+ S
(

r, e(λ1+γ)z
)

= S
(

r, e(λ1+γ)z
)
,

which is a contradiction unless 2λ1 + γ = 0. So from (3.13) we get 2λ2 + γ = 0,
which is impossible, as λ1 6= λ2.

Hence we can suppose that λ2 + γ = 0. Then from (3.13) we get 2λ1 + γ = 0, and
so 2λ1 = λ2. Since λ1 and λ2 are roots of λ2 + φλ − φ = 0, we get λ1 = 3

2 , λ2 = 3
and φ = − 9

2 .

From (3.3) we get L(2) = − 9
2 (c1e

3
2 z +c2e3z), and on integration, L(1) = −3( f − a)+

3
2 c2e3z + d, where d is a constant. In view of (3.7), let z0 ∈ C . Then

3

2
c2e3z0 + d = a,(3.14)

c1e
3
2 z0 + c2e3z0 = 0.(3.15)

Since f (1) = 3
2 c1e

3
2 z + 3c2e3z, we get

(3.16)
3

2
c1e

3
2 z0 + 3c2e3z0 = a.

From (3.14), (3.15), and (3.16) we obtain d = 0. Now eliminating z0 from (3.14) and
(3.15), we get 3c2

1 = 2ac2.
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Since f = a + c1e
3
2 z + c2e3z and L(1) = −3( f − a) + 3

2 c2e3z, we get from (3.1)

L = L(1) + ( f − a) = −2c1e
3
2 z − 1

2
c2e3z.

Case 2. Let ψ 6≡ 1. Then

(3.17) N(r, a; L(1) |≥ 2) ≤ N(r, 1;ψ) = S(r, f ).

We now consider the following subcases.

Subcase 2.1. Let φ ≡ 0. Then L(1) ≡ f (1), and so L = f + d, where d is a constant.
Let E(a; f ) = ∅. Since f is of finite order, we can put f = a+ep, where p is a non-

constant polynomial. Since E1)(a; f (1)) = E1)(a; L(1)) ⊂ E(a; f ) = ∅, by (3.17) we
get N(r, a; f (1)) = S(r, f ) = S(r, f (1)). Also, N(r, 0; f (1)) = N(r, 0; p(1)) = S(r, f (1)),
and so by the second fundamental theorem T(r, f (1)) = S(r, f (1)), a contradiction.
Hence E(a; f ) 6= ∅, and so (3.7) is also valid.

Since f (1) ≡ L(1), from (3.17) we get

N(r, a; f (1) |≥ 2) ≤ (n + 1)N(r, a; f (1) |≥ 2) = S(r, f ).

Let

g1 =
L(2) − (1− ψ)L(1)

f (1) − a
and g2 =

L(2) − (1− ψ)L(1)

f − a
.

If z0 ∈ C , then clearly L(2)(z0)− (1− ψ(z0))L(1)(z0) = 0. So by Lemma 2.3 we get

N(r, g1) ≤ N(r, a; f (1) |≥ 2) + NB(r, a; f (1)) + N(r, a; f (1) | f 6= a)

≤ NB(r, a; L(1)) + (n + 1)N(r, a; f (1) | f 6= a) + S(r, f )

= (n + 1)N(r, a; L(1) | f 6= a) + S(r, f ) = S(r, f ),

and N(r, g2) ≤ NA(r, a; f ) + (n + 1)NB(r, a; L(1)) = S(r, f ). Also, m(r, g1) + m(r, g2) =
S(r, f ), and so T(r, g1) + T(r, g2) = S(r, f ).

Let L(2) − (1− ψ)L(1) 6≡ 0. Then

m
(

r,
f (1) − a

f − a

)
= m

(
r,

g2

g1

)
= S(r, f ),

and so m(r, a; f ) = S(r, f ). Therefore by Lemma 2.1 we get f = L = αez, where α is
a non-zero constant.

Next let

(3.18) L(2) − (1− ψ)L(1) ≡ 0.

We suppose that ψ 6≡ 0. Differentiating L− L(1) = ψ( f − a) we get

(3.19) L(1) − L(2) ≡ ψ(1)( f − a) + ψ f (1).
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Eliminating L(2) from (3.18) and (3.19) we obtain ψ(1)( f − a) ≡ 0. Since f is non-
constant, we obtain ψ(1) ≡ 0 and so ψ is a non-zero constant.

Let a + d = 0. Then

ψ =
L− L(1)

f − a
= 1− f (1)

f − a
,

and so f (1)/( f − a) = 1 − ψ = c, say, a non-zero constant. This implies that f =
a + Kecz, where K(6= 0) is a constant. Since L = f + d = f − a = Kecz, we get
L(1) = cKecz. Since by (3.7), C 6= ∅, there exists z0 such that L(z0) = L(1)(z0) = a
and so c = 1. This implies a contradiction, as ψ 6≡ 0. Therefore, a + d 6= 0, and so

1

f − a
=

1

a + d

( f + d

f − a
− 1
)

=
1

a + d

( L

f − a
− 1
)
,

which implies that m(r, a; f ) = S(r, f ). So by Lemma 2.1 we get f = L = αez, where
α is a non-zero constant. This implies a contradiction as ψ 6≡ 0.

Therefore indeed ψ ≡ 0. Then L(1) ≡ L and so L = αez, where α is a non-zero
constant. Since by (3.7) there exists z0 ∈ C , we get f (z0) = L(z0) = a and so d = 0.
Therefore f = L = αez.

Subcase 2.2. Let φ 6≡ 0. First we suppose that ψ ≡ 0. Then L ≡ L(1), and we can
apply Lemma 2.2. If Lemma 2.2(i) or (ii) holds, then φ ≡ 0, which is a contradiction.
Therefore Lemma 2.2(iii) holds.

Next we suppose that ψ 6≡ 0. If 1 + ( 1
φ )(1) ≡ 0, then on integration we get

φ = 1
c−z , where c is a constant. This is impossible, as the hypothesis implies that φ

has no simple pole. Hence 1 + ( 1
φ ) 6≡ 0.

Now

m(r, f ) = m
(

r, a +
L(1) − f (1)

φ

)
≤ m(r, f (1)) + S(r, f ) ≤ m(r, f ) + S(r, f ),

and so

(3.20) T(r, f ) = T(r, f (1)) + S(r, f ).

Differentiating f = a + L(1)− f (1)

φ we get

f (1)

f (1) − a
=

1

1 +
(

1
φ

) (1)

{( 1

φ

) (1) L(1)

f (1) − a
+
( 1

φ

) L(2) − f (2)

f (1) − a

}
.

This implies that m(r, f (1)/( f (1) − a)) = S(r, f ), and so m(r, a; f (1)) = S(r, f ).
From the definitions of φ and ψ we get

L− L(1) = ψ( f − a),(3.21)

L(1) − f (1) = φ( f − a).(3.22)
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Differentiating (3.21) and using (3.22) we obtain

(3.23) (1− ψ)L(1) − L(2) = (ψ(1) − φψ)( f − a).

Let ψ(1) − φψ ≡ 0. Then

(3.24) φ =
ψ(1)

ψ
.

The hypothesis implies that φ has no simple pole, and clearly ψ(1)

ψ has no multiple
pole. So from (3.24) we can infer that φ and ψ are entire functions.

Since ψ(1) − φψ ≡ 0, from (3.23) we get

(3.25) L(2) = (1− ψ)L(1).

Since ψ is entire, (3.25) implies that L(1) has no zero, and so L(1) = eh, where h is an
entire function. Since f and so L(1) is of finite order, h is a polynomial. From (3.25)
we get that ψ = 1− h(1) is also a polynomial. Since φ is entire, (3.24) implies that ψ
is a constant and so φ ≡ 0, which is a contradiction. Therefore ψ(1) − φψ 6≡ 0.

From (3.23) we get

f = a +
1− ψ

ψ(1) − φψ
L(1)
{

1− L(2)

(1− ψ)L(1)

}
,

and so

m(r, f ) ≤ m(r, L(1)) + S(r, f ) ≤ m(r, L) + S(r, f ) ≤ m(r, f ) + S(r, f ).

Therefore,

(3.26) T(r, f ) = T(r, L) + S(r, f ) = T(r, L(1)) + S(r, f ).

Eliminating f − a from (3.21) and (3.23) we get

L =
ψ(1) + ψ − ψ2 − φψ

ψ(1) − φψ
L(1) − ψ

ψ(1) − φψ
L(2).

Hence m(r, L/(L− a)) = S(r, f ) and so m(r, a; L) = S(r, f ). Since m(r, a; f (1)) +
m(r, a; L) = S(r, f ), we get from (3.20) and (3.26)

(3.27) N(r, a; f (1)) = N(r, a; L) + S(r, f ).

We now suppose that L 6≡ f (1). Then χ = L− f (1)

f−a 6≡ 0, and by (2.7) we get
T(r, χ) = S(r, f ).

First we suppose that χ 6≡ 1. Then L(1) − f (2) = χ f (1) + χ(1)( f − a). Let z0 ∈ C
be a multiple a-point of f (1) that is not a pole of χ. Then from above we see that
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χ(z0) = 1. So NC (r, a; f (1) |≥ 2) ≤ N(r, 1;χ) + N(r,∞;χ) = S(r, f ). Also in view of
(3.27) we note that N(r, a; f (1) | L 6= a) = S(r, f ).

Let E(a; f ) 6= ∅. Then by Lemma 2.3 we get N(r, a; L(1) | f 6= a) = S(r, f ). We
put X = {E(a; f (1)) ∩ E(a; L(1))}\E(a; f ). Then

NX(r, a; f (1)) ≤ (n + 1)NX(r, a; f (1)) ≤ (n + 1)N(r, a; L(1) | f 6= a) = S(r, f ).

We put Y = {E(a; L) ∩ E(a; f (1))}\E(a; f ). If z0 ∈ Y , then clearly χ(z0) = 0. So

NY (r, a; f (1)) ≤ (n + 1)NY (r, a; f (1)) ≤ (n + 1)N(r, 0;χ) = S(r, f ).

We now put Z = {E(a; f ) ∩ E(a; f (1)) ∩ E(a; L)}\E(a; L(1)). Then

NZ(r, a; f (1)) ≤ (n + 1)NZ(r, a; f (1)) ≤ (n + 1)NA(r, a; f ) = S(r, f ).

Therefore,

N(r, a; f (1) |≥ 2) ≤ NC (r, a; f (1) |≥ 2) + NX(r, a; f (1) |≥ 2) + NY (r, a; f (1) |≥ 2)

+ NZ(r, a; f (1) |≥ 2) + N(r, a; f (1) | L 6= a)

≤ (n + 1)NC (r, a; f (1) |≥ 2) + S(r, f ) = S(r, f ).

Let E(a; f ) = ∅. Since f is of finite order, we can put f = a + ep, where p is a
non-constant polynomial. Then

N(r, a; f (1) |≥ 2) ≤ 2N(r, 0; f (2)) = 2N(r, 0; (p(1))2 + p(2)) = S(r, f ).

Now we suppose that χ ≡ 1. Then

(3.28) L ≡ f (1) + f − a.

Differentiating (3.28) and using (3.22) we get

(3.29) f (2) = φ( f − a).

• Let z0 ∈ E(a; f (1)) ∩ E(a; L). Then from (3.28) we see that z0 ∈ E(a; f ). Hence
E(a; f (1)) ∩ E(a; L) ⊂ E(a; f ).

• Let z0 be a multiple a-point of f (1) and an a-point of L. Then z0 is a simple a-point
of f and so in view of (3.28) z0 is a simple a-point of L.

• Let z0 be a simple a-point of f (1) and an a-point of L. Then z0 is a simple a-point
of f , and so by hypothesis z0 is not a pole of φ. Then from (3.29) we get f (2)(z0) = 0,
which is a contradiction.

• Let z0 be a multiple a-point of L and an a-point of f (1). Then z0 is a simple a-point
of f and so by hypothesis z0 is not a pole of φ. So from (3.29) we get f (2)(z0) = 0
and z0 is a multiple a-point of f (1). Hence (3.28) implies that z0 is a multiple a-point
of f , which is a contradiction.
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Now using (3.27) we get

N(r, a; f (1)) = N(r, a; f (1) | L = a) + S(r, f ) ≥ 2N(r, a; L | f (1) = a) + S(r, f )

= 2N(r, a; L) + S(r, f ) = 2N(r, a; f (1)) + S(r, f ),

and so N(r, a; f (1)) = S(r, f ). This implies that N(r, a; f (1) |≥ 2) = S(r, f ).
Since N(r, a; f (1) |≥ 2) = S(r, f ), in view of (3.27) we obtain

N(r, a; f (1)) ≤ N
(

r, 1;
L

f (1)

)
+ S(r, f ) ≤ T

(
r,

L

f (1)

)
+ S(r, f )

= N
(

r,
L

f (1)

)
+ S(r, f ) ≤ N(r, 0; f (1)) + S(r, f ).

(3.30)

Using (3.20) we can achieve (2.9). Since m(r, a; f (1)) = S(r, f ), by (2.9), (3.20), and
(3.30), we get T(r, f ) = T(r, f (1)) + S(r, f ) ≤ N(r, a; f ) + S(r, f ), and so m(r, a; f ) =
S(r, f ). Hence by Lemma 2.1 we get f ≡ L, which is impossible as φ 6≡ 0. Therefore,
L ≡ f (1) and so L = a1L + a2L(1) · · · + anL(n−1) and L(1) = a1L(1) + a2L(2) + · · · +
anL(n). Since |1− a1| + |a2| 6= 0, we get m(r, L(1)/(L(1) − a)) = S(r, f ), which implies
m(r, a; L(1)) = S(r, f ). Since m(r, a; L) = S(r, f ), by (3.26) we get

(3.31) N(r, a; L(1)) = N(r, a; L) + S(r, f ).

In view of (3.31) we get N(r, a; L |≥ 2) ≤ N(r, a; L | L(1) 6= a) = S(r, f ), and so

N(r, a; L) ≤ N
(

r, 1;
L(1)

L

)
+ S(r, f ) ≤ T

(
r,

L(1)

L

)
+ S(r, f )

= N
(

r,
L(1)

L

)
+ S(r, f ) ≤ N(r, 0; L) + S(r, f ).

(3.32)

Also by (3.26) we get

m(r, a; f ) ≤ m
(

r,
L

f − a

)
+ m(r, 0; L)

= T(r, L)− N(r, 0; L) + S(r, f ) = T(r, f )− N(r, 0; L) + S(r, f )

and so

(3.33) N(r, 0; L) ≤ N(r, a; f ) + S(r, f ).

So using (3.26), (3.32), and (3.33) we obtain

m(r, a; f ) = T(r, f )− N(r, a; f ) + S(r, f ) = T(r, L)− N(r, a; f ) + S(r, f )

= N(r, a; L) + m(r, a; L)− N(r, a; f ) + S(r, f ) ≤ S(r, f ).

Hence by Lemma 2.1 we get f = L = αez, where α is a non-zero constant. This
contradicts the fact that φ 6≡ 0 and proves the theorem.
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