(C) Canadian Mathematical Society 2012

A Non-zero Value Shared by an Entire Function and its Linear Differential Polynomials

Indrajit Lahiri and Imrul Kaish

Abstract. In this paper we study uniqueness of entire functions sharing a non-zero finite value with linear differential polynomials and address a result of W. Wang and P. Li.

1 Introduction, Definitions, and Results

Let f be a non-constant entire function in the open complex plane $(\mathbb{C}$. We denote by $\bar{E}(a ; f), \bar{E}_{1)}(a ; f)$, and $\bar{E}_{(2}(a ; f)$ the set of all distinct a-points, simple a-points, and distinct multiple a-points of f.

In 1986 G. Jank, E. Mues, and L. Volkmann [2] proved a uniqueness theorem for entire functions sharing a single value with two derivatives. Their result can be stated as follows.

Theorem \boldsymbol{A} ([2]) Let f be a non-constant entire function and let a be a non-zero finite number. If $\bar{E}(a ; f)=\bar{E}\left(a ; f^{(1)}\right)$ and $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(2)}\right)$, then $f \equiv f^{(1)}$.

Theorem A has been extended to general order derivatives and linear differential polynomials by several authors.

Throughout the paper we denote by L a non-constant linear differential polynomial in f of the form

$$
\begin{equation*}
L=a_{1} f^{(1)}+a_{2} f^{(2)}+\cdots+a_{n} f^{(n)} \tag{1.1}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}(\neq 0)$ are constants.
Inspired by Theorem A, P. Li [4] proved the following result.
Theorem B ([4]) Let f be a non-constant entire function and let $L(\not \equiv 0)$ be given by (1.1). If f and $L^{(1)}$ share a finite non-zero value a counting multiplicities, and $\bar{E}(a ; f) \subset$ $\bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L)$, then $L=L^{(1)}$ and $f=f^{(1)}$ or $f=a+\frac{1}{a} L(L-a)$.

In 2004 W. Wang and P. Li [5] improved Theorem B and proved the following result.

Theorem C ([5]) Let f be a non-constant entire function, $a \in \mathbb{C} \backslash\{0, \infty\}$, and let $L(\not \equiv 0)$ be given by (1.1). If $\bar{E}(a ; f)=\bar{E}\left(a ; L^{(1)}\right)$ and $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L)$, then one of the following holds:

[^0](i) $f=f^{(1)}=L$;
(ii) $L=L^{(1)}$ and $f=a+\frac{1}{a} L(L-a)$;
(iii) $f=a+c_{1} e^{\frac{3}{2} z}+c_{2} e^{3 z}$ and $L=-2 c_{1} e^{\frac{3}{2} z}-\frac{1}{2} c_{2} e^{3 z}$, where $3 c_{1}^{2}=2 a c_{2}$ and c_{1}, c_{2} are non-zero constants.

So far as we understand there is a major lacuna in the proof of Theorem B and the same is carried forward to the proof of Theorem C. In fact, in [4, Lemma 4] it is shown that $\phi=\left(L^{(1)}-f^{(1)}\right) /(f-a)$ is a constant. To do this, Li [4] claimed the following:

$$
L^{(2)}=\left(A^{(1)}+\xi L^{(2)}\right)+\left(\xi^{(1)}+\eta \phi\right) L^{(1)}+\left(\eta^{(1)}-\eta \phi\right)(f-a),
$$

which is [4, (5) on p. 4]. But calculation reveals that it should be

$$
L^{(2)}=\left(A^{(1)}+\xi L^{(2)}\right)+\left(\xi^{(1)}+\eta\right) L^{(1)}+\left(\eta^{(1)}-\eta \phi\right)(f-a) .
$$

Consequently the identity $a_{n}^{2} \phi^{2 n+3}+R[\phi] \equiv 0$, as claimed in [4, p. 4], should be $a_{n}^{2} \phi^{2 n+2}+R[\phi] \equiv 0$, where $R[\phi]$ is a differential polynomial in ϕ with degree not greater than $2 n+2$. Therefore, one cannot use Clunie's lemma to show that ϕ is a constant. In this paper we reconsider Theorem C and prove a modified version of it.

For standard definitions and notations of the value distribution theory we refer the reader to [1]. However, we require the following definitions.

Definition 1.1 Let f and g be two non-constant meromorphic functions defined in \mathbb{C}. For $a, b \in \mathbb{C} \cup\{\infty\}$ we denote by $N(r, a ; f \mid g=b)(\bar{N}(r, a ; f \mid g=b))$ the counting function (reduced counting function) of those a-points of f that are the b-points of g.

Definition 1.2 Let f and g be two non-constant meromorphic functions defined in \mathbb{C}. For $a, b \in \mathbb{C} \cup\{\infty\}$ we denote by $N(r, a ; f \mid g \neq b)(\bar{N}(r, a ; f \mid g \neq b))$ the counting function (reduced counting function) of those a-points of f that are not the b-points of g.

Definition 1.3 Let f be a non-constant meromorphic function in \mathbb{C} and $a \in \mathbb{C} \cup$ $\{\infty\}$. For $A \subset \mathbb{C}$ we denote by $N_{A}(r, a ; f)\left(\bar{N}_{A}(r, a ; f)\right)$ the counting function (reduced counting function) of those a-points of f that belong to A.

Definition 1.4 Let f be a non-constant meromorphic function defined in (C. For $a \in \mathbb{C} \cup\{\infty\}$ and a positive integer k we denote by $N(r, a ; f \mid \geq k)(N(r, a ; f \mid \leq k))$ the counting function of those a-points of f whose multiplicities are not less (greater) than k. By $\bar{N}(r, a ; f \mid \geq k)$ and $\bar{N}(r, a ; f \mid \leq k)$ we denote the corresponding reduced counting functions.

Definition 1.5 Let f be a non-constant meromorphic function in \mathbb{C} and $a \in \mathbb{C} \cup$ $\{\infty\}$. Suppose that $A \subset \mathbb{C}$ and let k be a positive number. We denote by $N_{A}(r, a ; f \mid \geq$ $k)\left(\bar{N}_{A}(r, a ; f \mid \geq k)\right.$) the counting function (reduced counting function) of those a-points of f whose multiplicities are not less than k and that belong to A.

In a similar manner, we define $N_{A}(r, a ; f \mid \leq k)$ and $\bar{N}_{A}(r, a ; f \mid \leq k)$.

The following definition is well known.
Definition 1.6 Let f be a non-constant meromorphic function in (C. Suppose that

$$
M_{j}[f]=a_{j}(f)^{n_{0 j}}\left(f^{(1)}\right)^{n_{1 j}} \cdots\left(f^{\left(p_{j}\right)}\right)^{n_{p_{j} j}}
$$

is a differential monomial in f, where a_{j} is a small function of f.
We denote by $\gamma_{M_{j}}=\sum_{k=0}^{p_{j}} n_{k j}$ and by $\Gamma_{M_{j}}=\sum_{k=0}^{p_{j}}(1+k) n_{k j}$ the degree and weight of $M_{j}[f]$ respectively.

The numbers $\gamma_{P}=\max _{1 \leq j \leq n} \gamma_{M_{j}}$ and $\Gamma_{P}=\max _{1 \leq j \leq n} \Gamma_{M_{j}}$ are respectively called the degree and weight of the differential polynomial $P[f]=\sum_{j=1}^{n} M_{j}[f]$.

We now state the main result of the paper.
Theorem 1.7 Let f be a non-constant entire function of finite order, let a be a non-zero finite number, and let L given by (1.1) be such that $L^{(1)}$ is non-constant and $\left|1-a_{1}\right|+$ $\left|a_{2}\right| \neq 0$.

Let $A=\bar{E}(a ; f) \backslash \bar{E}\left(a ; L^{(1)}\right)$ and $B=\bar{E}\left(a ; L^{(1)}\right) \backslash\left\{\bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L)\right\}$. Suppose further that
(i) $\quad N_{A}(r, a ; f)+N_{B}\left(r, a ; L^{(1)}\right)=S(r, f)$,
(ii) $\bar{E}_{1)}\left(a ; L^{(1)}\right) \subset \bar{E}(a ; f)$,
(iii) $\bar{E}_{1)}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}\left(a ; L^{(1)}\right)$, and
(iv) $\bar{E}_{(2}(a ; f) \cap \bar{E}\left(0 ; L^{(1)}\right)=\varnothing$.

Then one of the following holds:
(a) $f=L=\alpha e^{z}$, where α is a nonzero constant;
(b) $f=a+\left(\alpha^{2} / a\right) e^{2 z}-\alpha e^{z}$ and $L=\alpha e^{z}$, where $\sum_{k=1}^{n} 2^{k} a_{k}=0, \sum_{k=1}^{n} a_{k}=-1$ and α is a nonzero constant;
(c) $f=a+c_{1} e^{\frac{3}{2} z}+c_{2} e^{3 z}$ and $L=-2 c_{1} e^{\frac{3}{2} z}-\frac{1}{2} c_{2} e^{3 z}$, where $3 c_{1}^{2}=2 a c_{2}$ and c_{1}, c_{2} are non-zero constants.

Putting $A=B=\varnothing$ we get the following corollary.
Corollary 1.8 Let f be a non-constant entire function of finite order, let a be a non-zero finite number, and let L given by (1.1) be such that $L^{(1)}$ is non-constant and $\left|1-a_{1}\right|+\left|a_{2}\right| \neq 0$. Further suppose that $\bar{E}(a ; f) \subset \bar{E}\left(a ; L^{(1)}\right) \subset \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L)$ and $\bar{E}_{1)}\left(a ; L^{(1)}\right) \subset \bar{E}(a ; f)$. Then the conclusion of Theorem 1.7 holds.

As a consequence of Corollary 1.8 we obtain the following corollary.
Corollary 1.9 Let f be a non-constant entire function of finite order, let a be a non-zero finite number, and let L given by (1.1) be such that $L^{(1)}$ is non-constant and $\left|1-a_{1}\right|+\left|a_{2}\right| \neq 0$. If $\bar{E}(a ; f)=\bar{E}\left(a ; L^{(1)}\right)$ and $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L)$, then the conclusion of Theorem 1.7 holds.

2 Lemmas

In this section we present some necessary lemmas.
Lemma 2.1 Let f be a non-constant entire function and let a be a non-zero finite complex number. Then $f=L=\alpha e^{z}$, where α is a non-zero constant, provided the following hold:
(i) $m(r, a ; f)=S(r, f)$,
(ii) $\bar{E}_{1)}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right)$,
(iii) $\quad N_{A}(r, a ; f)=S(r, f)$, where $A=\bar{E}(a ; f) \backslash\left\{\bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right) \cap \bar{E}\left(a ; f^{(1)}\right)\right\}$.

Proof Let

$$
\begin{equation*}
\lambda=\frac{f^{(1)}-a}{f-a} . \tag{2.1}
\end{equation*}
$$

From the hypothesis we see that λ has no simple pole and $T(r, \lambda)=S(r, f)$. From (2.1) we get

$$
\begin{equation*}
f^{(1)}=\lambda_{1} f+\mu_{1}, \tag{2.2}
\end{equation*}
$$

where $\lambda_{1}=\lambda$ and $\mu_{1}=a(1-\lambda)$.
Differentiating (2.2) we get $f^{(k)}=\lambda_{k} f+\mu_{k}$, where λ_{k} and μ_{k} are meromorphic functions satisfying $\lambda_{k+1}=\lambda_{k}^{(1)}+\lambda_{1} \lambda_{k}$ and $\mu_{k+1}=\mu_{k}^{(1)}+\mu_{1} \lambda_{k}$ for $k=1,2,3, \ldots$ Also, we see that $T\left(r, \lambda_{k}\right)+T\left(r, \mu_{k}\right)=S(r, f)$ for $k=1,2,3, \ldots$

Now

$$
\begin{equation*}
L=\left(\sum_{k=1}^{n} a_{k} \lambda_{k}\right) f+\sum_{k=1}^{n} a_{k} \mu_{k}=\xi f+\eta, \text { say } . \tag{2.3}
\end{equation*}
$$

Clearly $T(r, \xi)+T(r, \eta)=S(r, f)$. Differentiating (2.3) we get

$$
\begin{equation*}
L^{(1)}=\xi f^{(1)}+\xi^{(1)} f+\eta^{(1)} . \tag{2.4}
\end{equation*}
$$

Let $z_{0} \notin A$ be an a-point of f. Then from (2.3) and (2.4) we get $a \xi\left(z_{0}\right)+\eta\left(z_{0}\right)=a$ and $a \xi\left(z_{0}\right)+a \xi^{(1)}\left(z_{0}\right)+\eta^{(1)}\left(z_{0}\right)=a$.

If $a \xi+\eta \not \equiv a$, then

$$
N(r, a ; f) \leq N(r, a ; f \mid \leq 1)+N_{A}(r, a ; f) \leq N(r, a ; a \xi+\eta)+S(r, f)=S(r, f),
$$

which is impossible because $m(r, a ; f)=S(r, f)$. Hence $a \xi+\eta \equiv a$. Similarly $a \xi+$ $a \xi^{(1)}+\eta^{(1)} \equiv a$. This implies that $\xi \equiv 1$ and $\eta \equiv 0$. So from (2.3) we get $L \equiv f$.

By actual calculation we see that $\lambda_{2}=\lambda^{2}+\lambda^{(1)}$ and $\lambda_{3}=\lambda^{3}+3 \lambda \lambda^{(1)}+\lambda^{(2)}$. In general, we now verify that

$$
\begin{equation*}
\lambda_{k}=\lambda^{k}+P_{k-1}[\lambda] \tag{2.5}
\end{equation*}
$$

where $P_{k-1}[\lambda]$ is a differential polynomial in λ with constant coefficients such that $\gamma_{P_{k-1}} \leq k-1$ and $\Gamma_{P_{k-1}} \leq k$. Also each term of $P_{k-1}[\lambda]$ contains some derivative of λ.

Let (2.5) be true. Then

$$
\lambda_{k+1}=\lambda_{k}^{(1)}+\lambda_{1} \lambda_{k}=\left(\lambda^{k}+P_{k-1}[\lambda]\right)^{(1)}+\lambda\left(\lambda^{k}+P_{k-1}[\lambda]\right)=\lambda^{k+1}+P_{k}[\lambda]
$$

noting that differentiation does not increase the degree of a differential polynomial but increases its weight by 1 . So (2.5) is verified by mathematical induction.

Since $\xi \equiv 1$, we get from (2.5)

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} \lambda^{k}+\sum_{k=1}^{n} a_{k} P_{k-1}[\lambda] \equiv 1 . \tag{2.6}
\end{equation*}
$$

Let z_{0} be a pole of λ with multiplicity $p(\geq 2)$. Then z_{0} is a pole of $\sum_{k=1}^{n} a_{k} \lambda^{k}$ with multiplicity $n p$, and it is a pole of $\sum_{k=1}^{n} a_{k} P_{k-1}[\lambda]$ with multiplicity not exceeding $(n-1) p+1$. Since $n p>(n-1) p+1$, it follows that z_{0} is a pole of the left-hand side of (2.6) with multiplicity $n p$, which is impossible. So λ is an entire function. If λ is transcendental, then by Clunie's lemma we get from (2.6) that $T(r, \lambda)=S(r, \lambda)$, which is a contradiction. If λ is a polynomial of degree $d(\geq 1)$, then the left-hand side of (2.6) is a polynomial of degree $n d$ with leading coefficient $a_{n}(\neq 0)$, which is also a contradiction. Therefore, λ is a constant, and so from (2.5) we get $\lambda_{k}=\lambda^{k}$ for $k=1,2,3, \ldots$.

Since $\xi \equiv 1$, we see that $\sum_{k=1}^{n} a_{k} \lambda^{k}=1$. Also from (2.2), we obtain $f^{(2)}=\lambda f^{(1)}$ and so $f^{(1)}=\alpha \lambda e^{\lambda z}$ and $f=\alpha e^{\lambda z}+\beta$, where $\alpha(\neq 0)$ and β are constants.

Now $L=\left(\sum_{k=1}^{n} a_{k} \lambda^{k}\right) \alpha e^{\lambda z}=\alpha e^{\lambda z}$. Since $f \equiv L$, we get $\beta=0$. Since

$$
N_{A}(r, a ; f)=S(r, f) \quad \text { and } \quad N(r, a ; f)=T(r, f)+S(r, f),
$$

we see that $\bar{E}(a ; f) \cap \bar{E}\left(a ; f^{(1)}\right) \neq \varnothing$. So $f^{(1)}=\lambda f$ implies $\lambda=1$. Hence $f=\alpha e^{z}$. This proves the lemma.

Lemma 2.2 ([3]) Let fbe a non-constant entire function in \mathbb{C}, let a be a finite non-zero complex number, and let L given by (1.1) be such that $L^{(1)}$ is non-constant.

Further suppose that $E_{1)}(a ; f) \subset E\left(a ; f^{(1)}\right)$ and $N_{A}(r, a ; f)+N_{B}(r, a ; L)=S(r, f)$, where $A=E(a ; f) \backslash E(a ; L)$ and $B=E(a ; L) \backslash\left\{E\left(a ; f^{(1)}\right) \cap E\left(a ; L^{(1)}\right)\right\}$. Then one of the following cases holds:
(i) $f=a+\alpha e^{z}$ and $L=\alpha e^{z}$, where α is a nonzero constant;
(ii) $f=L=\alpha e^{z}$, where α is a nonzero constant;
(iii) $f=a+\frac{\alpha^{2}}{a} e^{2 z}-\alpha e^{z}$ and $L=\alpha e^{z}$, where $\sum_{k=1}^{n} 2^{k} a_{k}=0, \sum_{k=1}^{n} a_{k}=-1$, and α is a nonzero constant.

Lemma 2.3 Let f be a non-constant entire function in \mathbb{C}, let a be a finite non-zero complex number, and let L given by (1.1) be such that $L^{(1)}$ is non-constant. Let $A=$ $\bar{E}(a ; f) \backslash \bar{E}\left(a ; L^{(1)}\right)$ and $B=\bar{E}\left(a ; L^{(1)}\right) \backslash\left\{\bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L)\right\}$. If $\bar{E}(a ; f) \neq \varnothing$ and $N_{A}(r, a ; f)+N_{B}\left(r, a ; L^{(1)}\right)=S(r, f)$, then $\bar{N}\left(r, a ; L^{(1)} \mid f \neq a\right)=S(r, f)$.

Proof We put

$$
\begin{aligned}
& C=\bar{E}(a ; f) \cap \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right) \\
& D=\left\{\bar{E}(a ; f) \cap \bar{E}\left(a ; L^{(1)}\right)\right\} \backslash C
\end{aligned}
$$

and henceforth we use these notations.
Let $\chi=\left(L-f^{(1)}\right) /(f-a)$ and $\phi=\left(L^{(1)}-f^{(1)}\right) /(f-a)$. Then $m(r, \chi)+$ $m(r, \phi)=S(r, f)$ and

$$
\begin{aligned}
N(r, \chi)+N(r, \phi) & \leq 2\left\{N_{A}(r, a ; f)+N_{D}(r, a ; f)\right\} \leq 2(n+1) \bar{N}_{D}(r, a ; f)+S(r, f) \\
& =2(n+1) N_{D}\left(r, a ; L^{(1)}\right)+S(r, f) \leq 2(n+1) N_{B}\left(r, a ; L^{(1)}\right)+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

So

$$
\begin{equation*}
T(r, \chi)+T(r, \phi)=S(r, f) \tag{2.7}
\end{equation*}
$$

First we suppose that $L \not \equiv f^{(1)}$. Then by the hypothesis

$$
\begin{align*}
\bar{N}\left(r, a ; L^{(1)}\right) & \leq N\left(r, 1 ; \frac{L}{f^{(1)}}\right)+N_{B}\left(r, a ; L^{(1)}\right) \leq T\left(r, \frac{L}{f^{(1)}}\right)+S(r, f) \tag{2.8}\\
& =N\left(r, \frac{L}{f^{(1)}}\right)+S(r, f) \leq N\left(r, 0 ; f^{(1)}\right)+S(r, f)
\end{align*}
$$

Again,

$$
\begin{aligned}
m(r, a ; f) & \leq m\left(r, \frac{f^{(1)}}{f-a}\right)+m\left(r, 0 ; f^{(1)}\right)=T\left(r, f^{(1)}\right)-N\left(r, 0 ; f^{(1)}\right)+S(r, f) \\
& \leq T(r, f)-N\left(r, 0 ; f^{(1)}\right)+S(r, f)
\end{aligned}
$$

and so

$$
\begin{equation*}
N\left(r, 0 ; f^{(1)}\right) \leq N(r, a ; f)+S(r, f) \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9) we get

$$
\begin{equation*}
\bar{N}\left(r, a ; L^{(1)}\right) \leq N(r, a ; f)+S(r, f) \tag{2.10}
\end{equation*}
$$

Also, we see that

$$
\begin{aligned}
N_{D}(r, a ; f) & \leq(n+1) \bar{N}_{D}(r, a ; f)=(n+1) \bar{N}_{D}\left(r, a ; L^{(1)}\right) \\
& \leq(n+1) N_{B}\left(r, a ; L^{(1)}\right)=S(r, f)
\end{aligned}
$$

Now by (2.10) we get

$$
\begin{aligned}
\bar{N}\left(r, a ; L^{(1)} \mid f \neq a\right) & =\bar{N}\left(r, a ; L^{(1)}\right)-\bar{N}_{C}\left(r, a ; L^{(1)}\right)-N_{D}\left(r, a ; L^{(1)}\right) \\
& \leq N(r, a ; f)-\bar{N}_{C}(r, a ; f)-\bar{N}_{D}(r, a ; f) \\
& =N(r, a ; f)-N_{C}(r, a ; f)+S(r, f) \\
& =N_{A}(r, a ; f)+N_{D}(r, a ; f)+S(r, f)=S(r, f)
\end{aligned}
$$

Next we suppose that $f^{(1)} \not \equiv L^{(1)}$. Then by the hypothesis

$$
\begin{aligned}
\bar{N}\left(r, a ; L^{(1)}\right) & \leq N\left(r, 1 ; \frac{L^{(1)}}{f^{(1)}}\right)+N_{B}\left(r, a ; L^{(1)}\right) \leq T\left(r, \frac{L^{(1)}}{f^{(1)}}\right)+S(r, f) \\
& =N\left(r, \frac{L^{(1)}}{f^{(1)}}\right)+S(r, f) \leq N\left(r, 0 ; f^{(1)}\right)+S(r, f)
\end{aligned}
$$

which is (2.8). Now proceeding as above we get $\bar{N}\left(r, a ; L^{(1)} \mid f \neq a\right)=S(r, f)$.
Finally we suppose that $L \equiv f^{(1)}$ and $L^{(1)} \equiv f^{(1)}$. Then $L=f+c$, where c is a constant. Hence $f^{(1)}=f+c$. Since $\bar{E}(a ; f) \neq \varnothing$, we see that $a+c \neq 0$, because on integration we set $f=-c+\alpha e^{z}$, where α is a non-zero constant. Hence $N(r, a ; f) \neq$ $S(r, f)$. Also, we see that $f^{(1)} \equiv L \equiv L^{(1)}=\alpha e^{z}$, and since $N_{A}(r, a ; f)=S(r, f)$, we get $\bar{E}(a ; f) \cap \bar{E}\left(a ; L^{(1)}\right) \neq \varnothing$. So $f+c=L^{(1)}$ implies that $c=0$. Therefore, $f=L^{(1)}$ and so $\bar{N}\left(r, a ; L^{(1)} \mid f \neq a\right)=S(r, f)$. This proves the lemma.

Lemma 2.4 Let f be a non-constant entire function. Then, for a non-zero finite number a,

$$
T(r, f) \leq N(r, a ; f)+\bar{N}(r, a ; R)+S(r, f)
$$

where R is a non-constant linear differential polynomial in $f^{(1)}$ with constant coefficients.

Proof If f is a non-constant meromorphic function and ψ is a non-constant linear differential polynomial in f, then by [1, Theorem 3.2 on p. 57] we get

$$
T(r, f) \leq \bar{N}(r, \infty ; f)+N(r, 0 ; f)+\bar{N}(r, 1 ; \psi)+S(r, f)
$$

Since f is entire and R is a linear differential polynomial in $f^{(1)}$, the lemma follows from the above inequality replacing f by $f-a$ and putting $\psi=\frac{R}{a}$. This proves the lemma.

3 Proof of Theorem 1.7

Proof We put $\psi=\left(L-L^{(1)}\right) /(f-a)$ and $\phi=\left(L^{(1)}-f^{(1)}\right) /(f-a)$. Since $\psi=$ $\chi-\phi$, by (2.7) we get $T(r, \psi)+T(r, \phi)=S(r, f)$. We now consider the following cases.

Case 1. Let $\psi \equiv 1$. Then

$$
\begin{align*}
& L^{(1)}=L-(f-a), \tag{3.1}\\
& L^{(1)}=f^{(1)}+\phi(f-a) . \tag{3.2}
\end{align*}
$$

Differentiating (3.1) and using (3.2) we get

$$
\begin{equation*}
L^{(2)}=L^{(1)}-f^{(1)}=\phi(f-a) . \tag{3.3}
\end{equation*}
$$

Differentiating (3.2) we get

$$
\begin{equation*}
L^{(2)}=f^{(2)}+\phi f^{(1)}+\phi^{(1)}(f-a) . \tag{3.4}
\end{equation*}
$$

Eliminating $L^{(2)}$ from (3.3) and (3.4) we get

$$
\begin{equation*}
f^{(2)}=-\phi f^{(1)}+\left(\phi-\phi^{(1)}\right)(f-a) . \tag{3.5}
\end{equation*}
$$

Differentiating (3.5) and using it repeatedly we get

$$
f^{(k+1)}=\left\{(-\phi)^{k}+P_{k-1}[\phi]\right\} f^{(1)}+\left\{\phi^{k}+Q_{k}[\phi]\right\}(f-a),
$$

where $P_{k-1}[\phi], Q_{k}[\phi]$ are differential polynomials in ϕ with constant coefficients and $\Gamma_{P_{k-1}} \leq k, \gamma_{P_{k-1}} \leq k-1$. Therefore

$$
\begin{equation*}
L^{(1)}=\sum_{k=1}^{n} a_{k}\left\{(-\phi)^{k}+P_{k-1}[\phi]\right\} f^{(1)}+\sum_{k=1}^{n} a_{k}\left\{\phi^{k}+Q_{k}[\phi]\right\}(f-a) . \tag{3.6}
\end{equation*}
$$

Let $\bar{E}(a ; f)=\varnothing$. Since f is of finite order, we can put $f=a+e^{p}$, where p is a polynomial with $\operatorname{deg}(p) \geq 1$. Differentiating repeatedly we get $f^{(k)}=T_{k} e^{p}$, where T_{k} is a polynomial with $\operatorname{deg}\left(T_{k}\right)=k(\operatorname{deg}(p)-1)$. So $L=\sum_{k=1}^{n} a_{k} f^{(k)}=P e^{p}$ and $L^{(1)}=$ $\sum_{k=1}^{n} a_{k} f^{(k+1)}=Q e^{p}$, where P, Q are polynomials with $\operatorname{deg}(P)=n(\operatorname{deg}(p)-1)$ and $\operatorname{deg}(Q)=(n+1)(\operatorname{deg}(p)-1)$. From (3.1) we get $P=Q+1$, which implies $\operatorname{deg}(p)=1$. So P, Q are constants. Therefore, $\bar{E}_{1)}\left(a ; L^{(1)}\right) \neq \varnothing$ and this contradicts the hypothesis $\bar{E}_{1)}\left(a ; L^{(1)}\right) \subset \bar{E}(a ; f)$. Therefore $\bar{E}(a ; f) \neq \varnothing$.

Let us recall the following sets from the proof of Lemma $2.3: C=\bar{E}(a ; f) \cap$ $\bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)$ and $D=\left\{\bar{E}(a ; f) \cap \bar{E}\left(a ; L^{(1)}\right)\right\} \backslash C$. We now verify that

$$
\begin{equation*}
\bar{N}_{C}(r, a ; f) \neq S(r, f) \tag{3.7}
\end{equation*}
$$

If $\bar{N}_{C}(r, a ; f)=S(r, f)$, we get

$$
\begin{align*}
N(r, a ; f) & =N_{A}(r, a ; f)+N_{C}(r, a ; f)+N_{D}(r, a ; f) \tag{3.8}\\
& \leq \bar{N}_{C}(r, a ; f)+(n+1) \bar{N}_{D}(r, a ; f)+S(r, f) \\
& =(n+1) N_{D}\left(r, a ; L^{(1)}\right)+S(r, f) \\
& \leq(n+1) N_{B}\left(r, a ; L^{(1)}\right)+S(r, f)=S(r, f) .
\end{align*}
$$

Since $\bar{E}(a ; f) \neq \varnothing$, by (3.8) and Lemma 2.3 we obtain

$$
\begin{equation*}
\bar{N}\left(r, a ; L^{(1)}\right) \leq \bar{N}(r, a ; f)+\bar{N}\left(r, a ; L^{(1)} \mid f \neq a\right)=S(r, f) \tag{3.9}
\end{equation*}
$$

By Lemma 2.4 we get from (3.8) and (3.9) that $T(r, f)=S(r, f)$, a contradiction. Thus (3.7) is verified. So from (3.6) we get

$$
\bar{N}_{C}(r, a ; f) \leq N\left(r, 1 ; \sum_{k=1}^{n} a_{k}\left\{(-\phi)^{k}+P_{k-1}[\phi]\right\}\right)=S(r, f)
$$

which is a contradiction unless

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k}\left\{(-\phi)^{k}+P_{k-1}[\phi]\right\} \equiv 1 \tag{3.10}
\end{equation*}
$$

If ϕ is a polynomial of degree $p(\geq 1)$, then the left-hand side of (3.10) is a polynomial of degree $n p$ with leading coefficient $(-1)^{n} a_{n}(\neq 0)$. This is a contradiction.

If ϕ is transcendental, by Clunie's lemma we get from (3.10) that $m(r, \phi)=S(r, \phi)$. By the hypothesis we see that ϕ has no simple pole. Let z_{0} be a pole of ϕ with multiplicity $q(\geq 2)$. Then z_{0} is a pole of $a_{n}(-\phi)^{n}$ with multiplicity $n q$. Also, z_{0} is a pole of

$$
\sum_{k=1}^{n-1}\left\{a_{k}(-\phi)^{k}+P_{k-1}[\phi]\right\}+a_{n} P_{n-1}[\phi]
$$

with multiplicity at most $n+(q-1)(n-1)=q(n-1)+1$. Since $q \geq 2$, we see that $n q>q(n-1)+1$, and so z_{0} becomes a pole of the left-hand side of (3.10), which is impossible. Therefore, ϕ is entire and so $T(r, \phi)=S(r, \phi)$, a contradiction. Hence ϕ is a constant.

So from (3.5) we get

$$
\begin{equation*}
f^{(2)}+\phi f^{(1)}-\phi(f-a)=0 \tag{3.11}
\end{equation*}
$$

Solving (3.11) we obtain

$$
f= \begin{cases}c_{1} e^{\lambda_{1} z}+c_{2} e^{\lambda_{2} z}+a & \text { if } \lambda_{1} \neq \lambda_{2} \\ \left(c_{1}+c_{2} z\right) e^{\lambda_{1} z}+a & \text { if } \lambda_{1}=\lambda_{2}\end{cases}
$$

where c_{1}, c_{2} are constants and λ_{1}, λ_{2} are roots of the equation $\lambda^{2}+\phi \lambda-\phi=0$.
If $\lambda_{1}=\lambda_{2}$, then $N(r, a ; f)=N\left(r, 0 ; c_{1}+c_{2} z\right)=S(r, f)$, which contradicts (3.7). So $\lambda_{1} \neq \lambda_{2}$, and by (3.7) we get $c_{1} c_{2} \neq 0$.

Let $\lambda_{1}=\alpha+\beta$ and $\lambda_{2}=\alpha-\beta$, where $2 \alpha=-\phi$ and $2 \beta=+\sqrt{\phi^{2}+4 \phi} \neq 0$. Then

$$
f=a+e^{(\alpha-\beta) z}\left(\sqrt{c_{1}} e^{\beta z}-i \sqrt{c_{2}}\right)\left(\sqrt{c_{1}} e^{\beta z}+i \sqrt{c_{2}}\right)
$$

This shows that all a-points of f are simple. Hence

$$
\bar{E}(a ; f)=\bar{E}_{1)}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}\left(a ; L^{(1)}\right) \subset \bar{E}\left(a ; L^{(1)}\right)
$$

From (3.3) we see that

$$
\bar{E}_{(2}\left(a ; L^{(1)}\right) \subset \bar{E}\left(0 ; L^{(2)}\right)=\bar{E}(a ; f) .
$$

Since by the hypothesis $\bar{E}_{1)}\left(a ; L^{(1)}\right) \subset \bar{E}(a ; f)$, we get $\bar{E}\left(a ; L^{(1)}\right)=\bar{E}(a ; f)$.
Since $\bar{E}\left(a ; L^{(1)}\right)=\bar{E}(a ; f)=\bar{E}_{1)}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right)$ and from (3.3) we get $L^{(3)}=$ $\phi f^{(1)}$, each a-point of $L^{(1)}$ is a double a-point. Therefore,

$$
\begin{equation*}
L^{(1)}-a=(f-a)^{2} e^{h}, \tag{3.12}
\end{equation*}
$$

where h is an entire function.
Since the order of f is 1 and that of $L^{(1)}$ is at most $1, h$ is a polynomial of degree at most 1 . Since $\lambda_{1} \neq \lambda_{2}$, we see that $\phi \neq 0$. Differentiating (3.12) and using (3.3) we get

$$
\begin{equation*}
\left(2 \lambda_{1}+\gamma\right) c_{1} e^{\left(\lambda_{1}+\gamma\right) z}+\left(2 \lambda_{2}+\gamma\right) c_{2} e^{\left(\lambda_{2}+\gamma\right) z}=\phi e^{-\delta} \tag{3.13}
\end{equation*}
$$

where we put $h=\gamma z+\delta$ and γ, δ are constants.
We now verify that at least one of $\lambda_{1}+\gamma$ and $\lambda_{2}+\gamma$ is zero. Otherwise, by the second fundamental theorem, we get

$$
\begin{aligned}
T\left(r, e^{\left(\lambda_{1}+\gamma\right) z}\right) & \leq N\left(r, \frac{\phi e^{-\delta}}{\left(2 \lambda_{1}+\gamma\right) c_{1}} ; e^{\left(\lambda_{1}+\gamma\right) z}\right)+S\left(r, e^{\left(\lambda_{1}+\gamma\right) z}\right) \\
& =N\left(r, 0 ; e^{\left(\lambda_{2}+\gamma\right) z}\right)+S\left(r, e^{\left(\lambda_{1}+\gamma\right) z}\right)=S\left(r, e^{\left(\lambda_{1}+\gamma\right) z}\right)
\end{aligned}
$$

which is a contradiction unless $2 \lambda_{1}+\gamma=0$. So from (3.13) we get $2 \lambda_{2}+\gamma=0$, which is impossible, as $\lambda_{1} \neq \lambda_{2}$.

Hence we can suppose that $\lambda_{2}+\gamma=0$. Then from (3.13) we get $2 \lambda_{1}+\gamma=0$, and so $2 \lambda_{1}=\lambda_{2}$. Since λ_{1} and λ_{2} are roots of $\lambda^{2}+\phi \lambda-\phi=0$, we get $\lambda_{1}=\frac{3}{2}, \lambda_{2}=3$ and $\phi=-\frac{9}{2}$.

From (3.3) we get $L^{(2)}=-\frac{9}{2}\left(c_{1} e^{\frac{3}{2} z}+c_{2} e^{3 z}\right)$, and on integration, $L^{(1)}=-3(f-a)+$ $\frac{3}{2} c_{2} e^{3 z}+d$, where d is a constant. In view of (3.7), let $z_{0} \in C$. Then

$$
\begin{gather*}
\frac{3}{2} c_{2} e^{3 z_{0}}+d=a, \tag{3.14}\\
c_{1} e^{\frac{3}{2} z_{0}}+c_{2} e^{3 z_{0}}=0 . \tag{3.15}
\end{gather*}
$$

Since $f^{(1)}=\frac{3}{2} c_{1} e^{\frac{3}{2} z}+3 c_{2} e^{3 z}$, we get

$$
\begin{equation*}
\frac{3}{2} c_{1} e^{\frac{3}{2} z_{0}}+3 c_{2} e^{3 z_{0}}=a \tag{3.16}
\end{equation*}
$$

From (3.14), (3.15), and (3.16) we obtain $d=0$. Now eliminating z_{0} from (3.14) and (3.15), we get $3 c_{1}^{2}=2 a c_{2}$.

Since $f=a+c_{1} e^{\frac{3}{2} z}+c_{2} e^{3 z}$ and $L^{(1)}=-3(f-a)+\frac{3}{2} c_{2} e^{3 z}$, we get from (3.1)

$$
L=L^{(1)}+(f-a)=-2 c_{1} e^{\frac{3}{2} z}-\frac{1}{2} c_{2} e^{3 z} .
$$

Case 2. Let $\psi \not \equiv 1$. Then

$$
\begin{equation*}
\bar{N}\left(r, a ; L^{(1)} \mid \geq 2\right) \leq N(r, 1 ; \psi)=S(r, f) \tag{3.17}
\end{equation*}
$$

We now consider the following subcases.
Subcase 2.1. Let $\phi \equiv 0$. Then $L^{(1)} \equiv f^{(1)}$, and so $L=f+d$, where d is a constant.
Let $\bar{E}(a ; f)=\varnothing$. Since f is of finite order, we can put $f=a+e^{p}$, where p is a nonconstant polynomial. Since $\bar{E}_{1)}\left(a ; f^{(1)}\right)=\bar{E}_{1)}\left(a ; L^{(1)}\right) \subset \bar{E}(a ; f)=\varnothing$, by (3.17) we get $\bar{N}\left(r, a ; f^{(1)}\right)=S(r, f)=S\left(r, f^{(1)}\right)$. Also, $\bar{N}\left(r, 0 ; f^{(1)}\right)=\bar{N}\left(r, 0 ; p^{(1)}\right)=S\left(r, f^{(1)}\right)$, and so by the second fundamental theorem $T\left(r, f^{(1)}\right)=S\left(r, f^{(1)}\right)$, a contradiction. Hence $\bar{E}(a ; f) \neq \varnothing$, and so (3.7) is also valid.

Since $f^{(1)} \equiv L^{(1)}$, from (3.17) we get

$$
N\left(r, a ; f^{(1)} \mid \geq 2\right) \leq(n+1) \bar{N}\left(r, a ; f^{(1)} \mid \geq 2\right)=S(r, f)
$$

Let

$$
g_{1}=\frac{L^{(2)}-(1-\psi) L^{(1)}}{f^{(1)}-a} \quad \text { and } \quad g_{2}=\frac{L^{(2)}-(1-\psi) L^{(1)}}{f-a} .
$$

If $z_{0} \in C$, then clearly $L^{(2)}\left(z_{0}\right)-\left(1-\psi\left(z_{0}\right)\right) L^{(1)}\left(z_{0}\right)=0$. So by Lemma 2.3 we get

$$
\begin{aligned}
N\left(r, g_{1}\right) & \leq N\left(r, a ; f^{(1)} \mid \geq 2\right)+N_{B}\left(r, a ; f^{(1)}\right)+N\left(r, a ; f^{(1)} \mid f \neq a\right) \\
& \leq N_{B}\left(r, a ; L^{(1)}\right)+(n+1) \bar{N}\left(r, a ; f^{(1)} \mid f \neq a\right)+S(r, f) \\
& =(n+1) \bar{N}\left(r, a ; L^{(1)} \mid f \neq a\right)+S(r, f)=S(r, f),
\end{aligned}
$$

and $N\left(r, g_{2}\right) \leq N_{A}(r, a ; f)+(n+1) N_{B}\left(r, a ; L^{(1)}\right)=S(r, f)$. Also, $m\left(r, g_{1}\right)+m\left(r, g_{2}\right)=$ $S(r, f)$, and so $T\left(r, g_{1}\right)+T\left(r, g_{2}\right)=S(r, f)$.

Let $L^{(2)}-(1-\psi) L^{(1)} \not \equiv 0$. Then

$$
m\left(r, \frac{f^{(1)}-a}{f-a}\right)=m\left(r, \frac{g_{2}}{g_{1}}\right)=S(r, f),
$$

and so $m(r, a ; f)=S(r, f)$. Therefore by Lemma 2.1 we get $f=L=\alpha e^{z}$, where α is a non-zero constant.

Next let

$$
\begin{equation*}
L^{(2)}-(1-\psi) L^{(1)} \equiv 0 \tag{3.18}
\end{equation*}
$$

We suppose that $\psi \not \equiv 0$. Differentiating $L-L^{(1)}=\psi(f-a)$ we get

$$
\begin{equation*}
L^{(1)}-L^{(2)} \equiv \psi^{(1)}(f-a)+\psi f^{(1)} \tag{3.19}
\end{equation*}
$$

Eliminating $L^{(2)}$ from (3.18) and (3.19) we obtain $\psi^{(1)}(f-a) \equiv 0$. Since f is nonconstant, we obtain $\psi^{(1)} \equiv 0$ and so ψ is a non-zero constant.

Let $a+d=0$. Then

$$
\psi=\frac{L-L^{(1)}}{f-a}=1-\frac{f^{(1)}}{f-a}
$$

and so $f^{(1)} /(f-a)=1-\psi=c$, say, a non-zero constant. This implies that $f=$ $a+K e^{c z}$, where $K(\neq 0)$ is a constant. Since $L=f+d=f-a=K e^{c z}$, we get $L^{(1)}=c K e^{c z}$. Since by (3.7), $C \neq \varnothing$, there exists z_{0} such that $L\left(z_{0}\right)=L^{(1)}\left(z_{0}\right)=a$ and so $c=1$. This implies a contradiction, as $\psi \not \equiv 0$. Therefore, $a+d \neq 0$, and so

$$
\frac{1}{f-a}=\frac{1}{a+d}\left(\frac{f+d}{f-a}-1\right)=\frac{1}{a+d}\left(\frac{L}{f-a}-1\right)
$$

which implies that $m(r, a ; f)=S(r, f)$. So by Lemma 2.1 we get $f=L=\alpha e^{z}$, where α is a non-zero constant. This implies a contradiction as $\psi \not \equiv 0$.

Therefore indeed $\psi \equiv 0$. Then $L^{(1)} \equiv L$ and so $L=\alpha e^{z}$, where α is a non-zero constant. Since by (3.7) there exists $z_{0} \in C$, we get $f\left(z_{0}\right)=L\left(z_{0}\right)=a$ and so $d=0$. Therefore $f=L=\alpha e^{z}$.
Subcase 2.2. Let $\phi \not \equiv 0$. First we suppose that $\psi \equiv 0$. Then $L \equiv L^{(1)}$, and we can apply Lemma 2.2. If Lemma 2.2(i) or (ii) holds, then $\phi \equiv 0$, which is a contradiction. Therefore Lemma 2.2(iii) holds.

Next we suppose that $\psi \not \equiv 0$. If $1+\left(\frac{1}{\phi}\right)^{(1)} \equiv 0$, then on integration we get $\phi=\frac{1}{c-z}$, where c is a constant. This is impossible, as the hypothesis implies that ϕ has no simple pole. Hence $1+\left(\frac{1}{\phi}\right) \not \equiv 0$.

Now

$$
m(r, f)=m\left(r, a+\frac{L^{(1)}-f^{(1)}}{\phi}\right) \leq m\left(r, f^{(1)}\right)+S(r, f) \leq m(r, f)+S(r, f)
$$

and so

$$
\begin{equation*}
T(r, f)=T\left(r, f^{(1)}\right)+S(r, f) \tag{3.20}
\end{equation*}
$$

Differentiating $f=a+\frac{L^{(1)}-f^{(1)}}{\phi}$ we get

$$
\frac{f^{(1)}}{f^{(1)}-a}=\frac{1}{1+\left(\frac{1}{\phi}\right)^{(1)}}\left\{\left(\frac{1}{\phi}\right)^{(1)} \frac{L^{(1)}}{f^{(1)}-a}+\left(\frac{1}{\phi}\right) \frac{L^{(2)}-f^{(2)}}{f^{(1)}-a}\right\}
$$

This implies that $m\left(r, f^{(1)} /\left(f^{(1)}-a\right)\right)=S(r, f)$, and so $m\left(r, a ; f^{(1)}\right)=S(r, f)$.
From the definitions of ϕ and ψ we get

$$
\begin{align*}
L-L^{(1)} & =\psi(f-a) \tag{3.21}\\
L^{(1)}-f^{(1)} & =\phi(f-a) \tag{3.22}
\end{align*}
$$

Differentiating (3.21) and using (3.22) we obtain

$$
\begin{equation*}
(1-\psi) L^{(1)}-L^{(2)}=\left(\psi^{(1)}-\phi \psi\right)(f-a) \tag{3.23}
\end{equation*}
$$

Let $\psi^{(1)}-\phi \psi \equiv 0$. Then

$$
\begin{equation*}
\phi=\frac{\psi^{(1)}}{\psi} \tag{3.24}
\end{equation*}
$$

The hypothesis implies that ϕ has no simple pole, and clearly $\frac{\psi^{(1)}}{\psi}$ has no multiple pole. So from (3.24) we can infer that ϕ and ψ are entire functions.

Since $\psi^{(1)}-\phi \psi \equiv 0$, from (3.23) we get

$$
\begin{equation*}
L^{(2)}=(1-\psi) L^{(1)} \tag{3.25}
\end{equation*}
$$

Since ψ is entire, (3.25) implies that $L^{(1)}$ has no zero, and so $L^{(1)}=e^{h}$, where h is an entire function. Since f and so $L^{(1)}$ is of finite order, h is a polynomial. From (3.25) we get that $\psi=1-h^{(1)}$ is also a polynomial. Since ϕ is entire, (3.24) implies that ψ is a constant and so $\phi \equiv 0$, which is a contradiction. Therefore $\psi^{(1)}-\phi \psi \not \equiv 0$.

From (3.23) we get

$$
f=a+\frac{1-\psi}{\psi^{(1)}-\phi \psi} L^{(1)}\left\{1-\frac{L^{(2)}}{(1-\psi) L^{(1)}}\right\}
$$

and so

$$
m(r, f) \leq m\left(r, L^{(1)}\right)+S(r, f) \leq m(r, L)+S(r, f) \leq m(r, f)+S(r, f)
$$

Therefore,

$$
\begin{equation*}
T(r, f)=T(r, L)+S(r, f)=T\left(r, L^{(1)}\right)+S(r, f) \tag{3.26}
\end{equation*}
$$

Eliminating $f-a$ from (3.21) and (3.23) we get

$$
L=\frac{\psi^{(1)}+\psi-\psi^{2}-\phi \psi}{\psi^{(1)}-\phi \psi} L^{(1)}-\frac{\psi}{\psi^{(1)}-\phi \psi} L^{(2)}
$$

Hence $m(r, L /(L-a))=S(r, f)$ and so $m(r, a ; L)=S(r, f)$. Since $m\left(r, a ; f^{(1)}\right)+$ $m(r, a ; L)=S(r, f)$, we get from (3.20) and (3.26)

$$
\begin{equation*}
N\left(r, a ; f^{(1)}\right)=N(r, a ; L)+S(r, f) \tag{3.27}
\end{equation*}
$$

We now suppose that $L \not \equiv f^{(1)}$. Then $\chi=\frac{L-f^{(1)}}{f-a} \not \equiv 0$, and by (2.7) we get $T(r, \chi)=S(r, f)$.

First we suppose that $\chi \not \equiv 1$. Then $L^{(1)}-f^{(2)}=\chi f^{(1)}+\chi^{(1)}(f-a)$. Let $z_{0} \in C$ be a multiple a-point of $f^{(1)}$ that is not a pole of χ. Then from above we see that
$\chi\left(z_{0}\right)=1$. So $\bar{N}_{C}\left(r, a ; f^{(1)} \mid \geq 2\right) \leq N(r, 1 ; \chi)+N(r, \infty ; \chi)=S(r, f)$. Also in view of (3.27) we note that $N\left(r, a ; f^{(1)} \mid L \neq a\right)=S(r, f)$.

Let $\bar{E}(a ; f) \neq \varnothing$. Then by Lemma 2.3 we get $\bar{N}\left(r, a ; L^{(1)} \mid f \neq a\right)=S(r, f)$. We put $X=\left\{\bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}\left(a ; L^{(1)}\right)\right\} \backslash \bar{E}(a ; f)$. Then

$$
N_{X}\left(r, a ; f^{(1)}\right) \leq(n+1) \bar{N}_{X}\left(r, a ; f^{(1)}\right) \leq(n+1) N\left(r, a ; L^{(1)} \mid f \neq a\right)=S(r, f)
$$

We put $Y=\left\{\bar{E}(a ; L) \cap \bar{E}\left(a ; f^{(1)}\right)\right\} \backslash \bar{E}(a ; f)$. If $z_{0} \in Y$, then clearly $\chi\left(z_{0}\right)=0$. So

$$
N_{Y}\left(r, a ; f^{(1)}\right) \leq(n+1) \bar{N}_{Y}\left(r, a ; f^{(1)}\right) \leq(n+1) N(r, 0 ; \chi)=S(r, f)
$$

We now put $Z=\left\{\bar{E}(a ; f) \cap \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L)\right\} \backslash \bar{E}\left(a ; L^{(1)}\right)$. Then

$$
N_{Z}\left(r, a ; f^{(1)}\right) \leq(n+1) \bar{N}_{Z}\left(r, a ; f^{(1)}\right) \leq(n+1) N_{A}(r, a ; f)=S(r, f)
$$

Therefore,

$$
\begin{aligned}
N\left(r, a ; f^{(1)} \mid \geq 2\right) \leq & N_{C}\left(r, a ; f^{(1)} \mid \geq 2\right)+N_{X}\left(r, a ; f^{(1)} \mid \geq 2\right)+N_{Y}\left(r, a ; f^{(1)} \mid \geq 2\right) \\
& +N_{Z}\left(r, a ; f^{(1)} \mid \geq 2\right)+N\left(r, a ; f^{(1)} \mid L \neq a\right) \\
\leq & (n+1) \bar{N}_{C}\left(r, a ; f^{(1)} \mid \geq 2\right)+S(r, f)=S(r, f)
\end{aligned}
$$

Let $\bar{E}(a ; f)=\varnothing$. Since f is of finite order, we can put $f=a+e^{p}$, where p is a non-constant polynomial. Then

$$
N\left(r, a ; f^{(1)} \mid \geq 2\right) \leq 2 N\left(r, 0 ; f^{(2)}\right)=2 N\left(r, 0 ;\left(p^{(1)}\right)^{2}+p^{(2)}\right)=S(r, f)
$$

Now we suppose that $\chi \equiv 1$. Then

$$
\begin{equation*}
L \equiv f^{(1)}+f-a \tag{3.28}
\end{equation*}
$$

Differentiating (3.28) and using (3.22) we get

$$
\begin{equation*}
f^{(2)}=\phi(f-a) \tag{3.29}
\end{equation*}
$$

- Let $z_{0} \in \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L)$. Then from (3.28) we see that $z_{0} \in \bar{E}(a ; f)$. Hence $\bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L) \subset \bar{E}(a ; f)$.
- Let z_{0} be a multiple a-point of $f^{(1)}$ and an a-point of L. Then z_{0} is a simple a-point of f and so in view of (3.28) z_{0} is a simple a-point of L.
- Let z_{0} be a simple a-point of $f^{(1)}$ and an a-point of L. Then z_{0} is a simple a-point of f, and so by hypothesis z_{0} is not a pole of ϕ. Then from (3.29) we get $f^{(2)}\left(z_{0}\right)=0$, which is a contradiction.
- Let z_{0} be a multiple a-point of L and an a-point of $f^{(1)}$. Then z_{0} is a simple a-point of f and so by hypothesis z_{0} is not a pole of ϕ. So from (3.29) we get $f^{(2)}\left(z_{0}\right)=0$ and z_{0} is a multiple a-point of $f^{(1)}$. Hence (3.28) implies that z_{0} is a multiple a-point of f, which is a contradiction.

Now using (3.27) we get

$$
\begin{aligned}
N\left(r, a ; f^{(1)}\right) & =N\left(r, a ; f^{(1)} \mid L=a\right)+S(r, f) \geq 2 N\left(r, a ; L \mid f^{(1)}=a\right)+S(r, f) \\
& =2 N(r, a ; L)+S(r, f)=2 N\left(r, a ; f^{(1)}\right)+S(r, f)
\end{aligned}
$$

and so $N\left(r, a ; f^{(1)}\right)=S(r, f)$. This implies that $N\left(r, a ; f^{(1)} \mid \geq 2\right)=S(r, f)$.
Since $N\left(r, a ; f^{(1)} \mid \geq 2\right)=S(r, f)$, in view of (3.27) we obtain

$$
\begin{align*}
N\left(r, a ; f^{(1)}\right) & \leq N\left(r, 1 ; \frac{L}{f^{(1)}}\right)+S(r, f) \leq T\left(r, \frac{L}{f^{(1)}}\right)+S(r, f) \tag{3.30}\\
& =N\left(r, \frac{L}{f^{(1)}}\right)+S(r, f) \leq N\left(r, 0 ; f^{(1)}\right)+S(r, f)
\end{align*}
$$

Using (3.20) we can achieve (2.9). Since $m\left(r, a ; f^{(1)}\right)=S(r, f)$, by (2.9), (3.20), and (3.30), we get $T(r, f)=T\left(r, f^{(1)}\right)+S(r, f) \leq N(r, a ; f)+S(r, f)$, and so $m(r, a ; f)=$ $S(r, f)$. Hence by Lemma 2.1 we get $f \equiv L$, which is impossible as $\phi \not \equiv 0$. Therefore, $L \equiv f^{(1)}$ and so $L=a_{1} L+a_{2} L^{(1)} \cdots+a_{n} L^{(n-1)}$ and $L^{(1)}=a_{1} L^{(1)}+a_{2} L^{(2)}+\cdots+$ $a_{n} L^{(n)}$. Since $\left|1-a_{1}\right|+\left|a_{2}\right| \neq 0$, we get $m\left(r, L^{(1)} /\left(L^{(1)}-a\right)\right)=S(r, f)$, which implies $m\left(r, a ; L^{(1)}\right)=S(r, f)$. Since $m(r, a ; L)=S(r, f)$, by (3.26) we get

$$
\begin{equation*}
N\left(r, a ; L^{(1)}\right)=N(r, a ; L)+S(r, f) \tag{3.31}
\end{equation*}
$$

In view of (3.31) we get $N(r, a ; L \mid \geq 2) \leq N\left(r, a ; L \mid L^{(1)} \neq a\right)=S(r, f)$, and so

$$
\begin{align*}
N(r, a ; L) & \leq N\left(r, 1 ; \frac{L^{(1)}}{L}\right)+S(r, f) \leq T\left(r, \frac{L^{(1)}}{L}\right)+S(r, f) \tag{3.32}\\
& =N\left(r, \frac{L^{(1)}}{L}\right)+S(r, f) \leq N(r, 0 ; L)+S(r, f)
\end{align*}
$$

Also by (3.26) we get

$$
\begin{aligned}
m(r, a ; f) & \leq m\left(r, \frac{L}{f-a}\right)+m(r, 0 ; L) \\
& =T(r, L)-N(r, 0 ; L)+S(r, f)=T(r, f)-N(r, 0 ; L)+S(r, f)
\end{aligned}
$$

and so

$$
\begin{equation*}
N(r, 0 ; L) \leq N(r, a ; f)+S(r, f) \tag{3.33}
\end{equation*}
$$

So using (3.26), (3.32), and (3.33) we obtain

$$
\begin{aligned}
m(r, a ; f) & =T(r, f)-N(r, a ; f)+S(r, f)=T(r, L)-N(r, a ; f)+S(r, f) \\
& =N(r, a ; L)+m(r, a ; L)-N(r, a ; f)+S(r, f) \leq S(r, f)
\end{aligned}
$$

Hence by Lemma 2.1 we get $f=L=\alpha e^{z}$, where α is a non-zero constant. This contradicts the fact that $\phi \not \equiv 0$ and proves the theorem.
Acknowledgment The authors are thankful to the referee for carefully reading the manuscript and giving valuable suggestions towards improvement of the paper.

References

[1] W. K.Hayman, Meromorphic functions. Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[2] G. Jank, E. Mues, and L. Volkmann, Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen wert teilen. Complex Variables Theory Appl. 6(1986), no. 1, 51-71.
[3] I. Lahiri and G. K. Ghosh, Entire functions sharing one value with linear differential polynomials. Analysis (Munich) 31(2011), no. 4, 331-340. http://dx.doi.org/10.1524/anly.2011.1125
[4] P. Li, Value sharing on entire functions and their linear differential polynomials. J. Univ. Sci. Technol. China 29(1999), no. 4, 387-393.
[5] W. Wang and P. Li, Unicity of entire functions and their linear differential polynomials. Complex Var. Theory Appl. 49(2004), no. 11, 821-832. http://dx.doi.org/10.1080/02781070412331298552
University of Kalyani, Department of Mathematics, West Bengal 741235, INDIA
e-mail: ilahiri@hotmail.com
Baharampur College, Department of Mathematics, Gupta Para, Baharampur, West Bengal 742101, INDIA e-mail: imrulksh3@gmail.com

[^0]: Received by the editors August 19, 2011; revised November 24, 2011.
 Published electronically February 3, 2012.
 AMS subject classification: 30D35.
 Keywords: entire function, linear differential polynomial, value sharing.

