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Transition and flow development in a separation bubble formed on an airfoil are
studied experimentally. The effects of tonal and broadband acoustic excitation are
considered since such acoustic emissions commonly result from airfoil self-noise
and can influence flow development via a feedback loop. This interdependence
is decoupled, and the problem is studied in a controlled manner through the use
of an external acoustic source. The flow field is assessed using time-resolved,
two-component particle image velocimetry, the results of which show that, for
equivalent energy input levels, tonal and broadband excitation can produce equivalent
changes in the mean separation bubble topology. These changes in topology result
from the influence of excitation on transition and the subsequent development of
coherent structures in the bubble. Both tonal and broadband excitation lead to
earlier shear layer roll-up and thus reduce the bubble size and advance mean
reattachment upstream, while the shed vortices tend to persist farther downstream
of mean reattachment in the case of tonal excitation. Through a cross-examination
of linear stability theory (LST) predictions and measured disturbance characteristics,
nonlinear disturbance interactions are shown to play a crucial role in the transition
process, leading to significantly different disturbance development for the tonal and
broadband excited flows. Specifically, tonal excitation results in transition being
dominated by the excited mode, which grows in strong accordance with linear theory
and damps the growth of all other disturbances. On the other hand, disturbance
amplitudes are more moderate for the natural and broadband excited flows, and so
all unstable disturbances initially grow in accordance with LST. For all cases, a
rapid redistribution of perturbation energy to a broad range of frequencies follows,
with the phenomenon occurring earliest for the broadband excitation case. By taking
nonlinear effects into consideration, important ramifications are made clear in regards
to comparing LST predictions and experimental or numerical results, thus explaining
the trends reported in recent investigations. These findings offer new insights into the
influence of tonal and broadband noise emissions, resulting from airfoil self-noise or
otherwise, on transition and flow development within a separation bubble.
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1. Introduction

Flow separation on lifting surfaces operating at low Reynolds numbers, Re.5×105,
is common due to the inherently poor ability of laminar boundary layers to endure
adverse pressure gradients, encountered primarily on the suction side of lift-generating
surfaces. Common applications operating in this Reynolds number domain include
gliders, unmanned aerial vehicles and small-to-medium scale turbo-machinery (Mueller
& DeLaurier 2003; Hodson & Howell 2005), where flow separation typically leads
to undesirable effects, including loss of lift, increase in drag, unsteady loading
and/or noise emissions (Carmichael 1981; Arcondoulis et al. 2010). Airfoil self-noise
emissions can manifest in this flow regime (Brooks, Pope & Marcolini 1989) and
can either be tonal or broadband (e.g. Amiet 1976; Brooks & Hodgson 1981; Nash,
Lowson & McAlpine 1999; Pröbsting, Serpieri & Scarano 2014). While characteristics
of the acoustic perturbations depend significantly on boundary layer development
over the airfoil, the resulting noise emissions can influence flow development via a
feedback loop (e.g. Pröbsting & Yarusevych 2015). The present work is therefore
focused on evaluating the effect of tonal and broadband acoustic forcing on flow
over an airfoil operating at a low Reynolds number. The inherent complexity of the
aeroacoustic problem is simplified by providing acoustic forcing from a controlled
source, allowing for a detailed evaluation of the induced effect on the flow field.

A typical progression of the flow development over the suction side of a lifting
surface operating in the low Reynolds number regime is illustrated in figure 1. A
laminar separated shear layer forms as a result of boundary layer separation and
undergoes transition to turbulence. Depending on flow conditions and geometry
of the surface, shear layer transition can lead to flow reattachment in the mean
sense, forming a closed region of recirculating fluid referred to as a laminar
separation bubble (LSB). The development of LSBs on airfoils, as well as flat
plates subjected to adverse pressure gradients, have been examined in a number
of previous investigations, with recent detailed literature reviews found in Marxen
& Henningson (2011) and Boutilier & Yarusevych (2012c). The transition process
within the separated shear layer involves selective amplification of small-amplitude
disturbances developing upstream of the separation point, which serve as the initial
condition for the instabilities within the LSB (Diwan & Ramesh 2009; Michelis,
Kotsonis & Yarusevych 2018). Within the fore portion of the bubble, the initial
stage of transition has been found to be well modelled by LST and the primary
amplification of perturbations is attributed to an inviscid Kelvin–Helmholtz instability
(Häggmark, Hildings & Henningson 2001; Rist & Maucher 2002; Marxen et al.
2003; Boutilier & Yarusevych 2012c). However, an absolute instability can also
manifest in LSBs when reverse flow velocities reach approximately 15–20 % of the
free-stream velocity (e.g. Alam & Sandham 2000; Rist & Maucher 2002). This has
been explored recently using global stability analysis by Rodríguez & Theofilis (2010)
and Rodríguez, Gennaro & Juniper (2013), showing that stationary three-dimensional
instability modes can be observed at lower reverse flow velocities (e.g. 7 % of the
free-stream velocity).

The growth of unstable disturbances in the shear layer eventually leads to shear
layer roll-up in the aft portion of the bubble (figure 1), where quasi-periodic vortex
shedding occurs (e.g. Watmuff 1999; Lang, Rist & Wagner 2004; Yarusevych, Sullivan
& Kawall 2009; Serna & Lázaro 2014). The formed structures dominate the flow
development in the aft portion of the bubble (Lengani et al. 2014, 2017) and have
been argued to be responsible for inducing mean reattachment (e.g. Marxen &
Henningson 2011; Yarusevych & Kotsonis 2017a). At roll-up, the shear layer vortices
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FIGURE 1. Time-averaged (grey lines) and unsteady features of a separation bubble.

have been found to be largely spanwise uniform, but quickly undergo significant
three-dimensional deformations prior to the breakdown to turbulence (Jones, Sandberg
& Sandham 2008; Marxen, Lang & Rist 2013; Nati et al. 2015; Kurelek, Lambert
& Yarusevych 2016; Kirk & Yarusevych 2017). In contrast, other investigators have
reported highly deformed and spanwise non-uniform vortical structures at formation
(Burgmann & Schröder 2008; Hain, Kähler & Radespiel 2009; Wolf et al. 2011).
Michelis et al. (2018) have recently proposed a theory that unifies these disparate
descriptions, as they note that the degree to which deformations occur in the vortex
filaments depends on the relative amplitude between the primary Kelvin–Helmholtz
perturbation and any oblique modes which may be active in the flow upstream of
separation.

The discussed aspects of separated shear layer development and laminar-to-turbulent
transition are also directly related to airfoil self-noise, in particular, tonal and
broadband noise generated at the trailing edge (e.g. Brooks et al. 1989). Strong
acoustic tones are commonly observed on airfoils operating in the low Reynolds
number domain (Paterson et al. 1973; Nash et al. 1999; Pröbsting et al. 2014). This
occurs when laminar boundary layer separation or LSB formation occurs close to the
trailing edge, leading to the strongly coherent perturbations amplified in the separated
shear layer producing tones when scattered at the airfoil trailing edge (e.g. Arbey
& Bataille 1983; Desquesnes, Terracol & Sagaut 2007; Pröbsting, Scarano & Morris
2015). In contrast, when the LSB is located closer to the leading edge and a turbulent
boundary layer forms over the aft portion of the airfoil, broadband noise emissions
are produced at the trailing edge (Amiet 1976; Brooks & Hodgson 1981).

The occurrence of such noise emissions is expected to have notable effect on
the flow development over an airfoil, as laminar-to-turbulent transition is inherently
sensitive to various free-stream disturbances. Indeed, in aeroacoustic investigations, the
upstream propagation of tonal noise has been shown to establish an acoustic feedback
loop (Arbey & Bataille 1983; Atassi 1984; Jones & Sandberg 2011; Plogmann,
Herrig & Würz 2013), thus affecting the development of shear layer perturbations
responsible for the noise emissions. Pröbsting & Yarusevych (2015) demonstrate
that such a feedback loop, dictated by either suction or pressure side events, can
alter LSB characteristics. In fact, many previous investigations have used controlled
periodic forcing to gain insight into transition within LSBs. This type of forcing has
been introduced in experimental and numerical studies by various means, including
wall oscillations (Alam & Sandham 2000; Lang et al. 2004; Marxen & Rist 2010),
external acoustic excitation (Jones, Sandberg & Sandham 2010) and wall-mounted
plasma actuators (Yarusevych & Kotsonis 2017a,b). The sensitivity of the LSB to
periodic forcing has also been explored for flow control purposes aimed at stall
control and improvement of airfoil performance at pre-stall conditions, for example,
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using synthetic jets (Amitay & Glezer 2002; Glezer, Amitay & Honohan 2005) and
external acoustic excitation (Zaman, Bar-Sever & Mangalam 1987; Nishioka, Asai &
Yoshida 1990; Yarusevych, Sullivan & Kawall 2007).

Several investigators have linked the optimal excitation frequency to the frequency
of the most amplified disturbances in the natural flow (Yarusevych et al. 2007;
Marxen et al. 2015; Yarusevych & Kotsonis 2017b), showing that inducing flow
reattachment on a stalled airfoil through the formation of an LSB or reducing the
size of an existing LSB is most effective when the excitation frequency targets the
Kelvin–Helmholtz instability and the associated vortex shedding process. Yarusevych
& Kotsonis (2017a) demonstrate that forcing at this ‘fundamental’ frequency has a
significant impact on the ensuing vortex dynamics, as the shedding process locks on
to the excitation frequency and the coherence of the structures is increased. They
related this to a higher entrainment of momentum from the outer flow to the surface
and thus an upstream advancement in the mean reattachment location. Increases to
the excitation amplitude at these conditions lead to further upstream advances in the
vortex roll-up and mean reattachment locations and thus further reductions in the
LSB size. Such changes in the mean flow, however, lead to changes in flow stability
characteristics, which Marxen & Henningson (2011) and Marxen et al. (2015) refer
to as the mean flow deformation. They note that, as the bubble size is reduced with
increasing input perturbation amplitude, the spatial growth rates and frequency of
most amplified disturbances are reduced. These effects on stability have since been
experimentally supported and quantified by Yarusevych & Kotsonis (2017b).

The foregoing discussion indicates that airfoil self-noise emissions, either tonal
or broadband, are expected to influence flow over an airfoil, in general, and LSB
characteristics, in particular. However, the inherent coupling between these two
phenomena makes it difficult to assess the effect of airfoil self-noise emissions on
LSB development. Furthermore, a cross-examination between the effects of tonal and
broadband noise emissions on LSB dynamics has yet to be done in a controlled
environment. Such an investigation has merit since the transition process within a
laminar separation bubble is broadband in nature (e.g. Boiko et al. 2002), i.e. the
flow is unstable to disturbances over a range of frequencies. Thus, the nonlinear
mechanisms by which amplified perturbations interact in separation bubble flows are
hypothesized to have significant impacts on flow development, since such mechanisms
play key roles in the later stages of the transition processes in other canonical flows.
In the case of the laminar boundary layer, the growth and interaction of instability
modes leads to nonlinear and triadic resonance mechanisms (Craik 1971; Herbert
1988) which have been experimentally linked to the generation of coherent structures
and the cascade to turbulence (Klebanoff, Tidstrom & Sargent 1962; Kachanov &
Levchenko 1984; Saric & Thomas 1984). Furthermore, Boiko et al. (2002) note
that the interaction of waves with similar but slightly detuned frequencies are
important. In evaluating the results of Kachanov, Kozlov & Levchenko (1982),
they note that the continued growth of two Tollmien–Schlichting (TS) waves with
close but distinct frequencies incites the growth of fluctuations at not only their own
frequencies and harmonics, but also at the sum and difference frequencies and their
harmonics. All of these waves grow, interact and generate further harmonics, thus
quickly realizing a broadband spectra of fluctuations. Similar observations have been
made in investigations of free shear layers excited at multiple frequencies (Miksad
1972, 1973; Wygnanksi & Petersen 1987; Mankbadi 1991; Raman & Rice 1991).
By exciting two distinct frequencies acoustically, Miksad (1973) found the same
generation of fluctuations at sum and difference frequencies, in addition to harmonics
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Tonal and broadband excited transition in separation bubbles 5

and subharmonics. Moreover, nonlinear mode competition between disturbances was
found to be important, as the two excited modes suppressed each other’s growth,
with a tendency for fluctuating energy to become distributed among a broad range
of frequencies. Thus, it was necessary to employ a disturbance growth model that
took nonlinear effects into account to accurately describe the transition process.
A simple empirical-based Landau type model (Stuart 1962; Landau & Lifschitz
1987) was shown to perform adequately, while more sophisticated methods, such as
the nonlinear extension of the parabolized stability equations (Herbert 1997), have
emerged since.

The present investigation is carried out to determine the effects of tonal and
broadband acoustic excitation on flow development and transition in a laminar
separation bubble. Disturbances are introduced in a controlled manner from an
external source, so as to decouple the interdependence of flow development and
acoustic emissions due to airfoil self-noise production. In addition to the unperturbed
case, where broadband disturbances present in the environment serve as input to
the unstable flow, two excitation cases are considered: (i) tonal excitation at the
frequency of the most amplified disturbances in the natural flow, and (ii) broadband
excitation: white noise band-pass filtered to the unstable frequency range of the natural
flow. The aim is then to cross-examine these cases and elucidate any underlying
physical differences in the transition processes and the associated changes in flow
development. The flow field is assessed via time-resolved, two-component particle
image velocimetry (PIV). Two separate experimental configurations are employed
to characterize streamwise and spanwise aspects of the flow development. The
time-resolved nature of the measurements allows for characterization across the entire
range of relevant time scales. The experimental results are complemented by LST
analysis, and the elucidated differences in the evolution of perturbations are related
to changes in vortex dynamics and mean topological features of the bubble.

2. Experimental set-up

Experiments were conducted in the closed-loop wind tunnel located at the
University of Waterloo’s Fluid Mechanics Research Laboratory. The tunnel test
section is 0.61× 0.61 m in cross-section, 2.44 m long and features full optical access.
The tunnel has a 9 : 1 contraction ratio, upstream of which the flow is conditioned
by a honeycomb insert and a set of five screens, resulting in a free-stream turbulence
intensity less than 0.1 % and an integral length scale of 0.2c, where c is the airfoil
chord length, with velocity signals low-pass filtered at 10 kHz (St = 208). Here, the
Strouhal number is defined as St= fc/U0, where f and U0 denote frequency and the
free-stream velocity, respectively. Furthermore, the free-stream velocity was verified
to have no significant spectral content within the frequency range of interest to this
investigation, 1006 f 6 2000 Hz (26 St6 42). The test section free-stream uniformity
was verified to be within ±0.5 %. The free-stream velocity was set based on the
contraction static pressure drop calibrated against a Pitot-static tube in the empty test
section, with the associated uncertainty in the free-stream velocity estimated to be
less than 2 %.

Tests were performed using an aluminium NACA 0018 airfoil model with a chord
length and span of 0.2 and 0.61 m, respectively. A diagram of the model is shown
in figure 2, where the surface-attached coordinate system (x, y, z) is defined. The
model has 95 static pressure taps of 0.4 mm diameter distributed over the suction
and pressure surfaces, 65 of which are located at the mid-span plane. Mean surface
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xy

z

Static pressure taps

AOA

Surface embedded microphones

FIGURE 2. Airfoil model. Surface-attached coordinate system shown, with x and z
measured along the surface from the leading edge and mid-span, and y measured normal
to the surface.

pressure measurements were conducted by multiplexing the pressure taps through
a mechanical Scanivalve unit to Setra 239 differential pressure transducers, whose
full range is 500 Pa. The measurements were taken relative to the free-stream
static pressure, measured via a pressure tap installed in the test section wall two
chord lengths upstream of the airfoil leading edge. The uncertainty in the mean
surface pressure measurements is estimated to be 2 % of the free-stream dynamic
pressure. The model is also equipped with 25 Panasonic WM-62C back electret
condenser microphones installed under 0.8 mm diameter ports, twenty two of which
are distributed along the chord in a staggered row located at z/c≈−0.2, as shown in
figure 2. Each microphone was calibrated in the airfoil model relative to a reference
4189 Brüel and Kjær microphone. All microphones have a flat response (±1 dB) in
the range 1006 f 6 2000 Hz (26 St6 42). For all acoustic measurements, up to eight
microphones were sampled simultaneously at 40 kHz for a total of 222 samples using
a National Instruments PCI-4472 data acquisition card, which applies a hardware
low-pass filter at the Nyquist limit to all sampled signals.

All tests were performed at an angle of attack (AOA) of 4◦ and a free-stream
velocity of 9.6 m s−1, corresponding to a chord-based Reynolds number of Re =
U0c/ν = 125 000. The solid blockage ratio at the investigated angle of attack is
6.1 %, and no blockage corrections were applied to the measured surface pressure
distributions (Boutilier & Yarusevych 2012a). The angle of attack was set using a
digital protractor with a resolution of 0.1◦. For the given flow conditions, separation
bubbles form on both the suction and pressure surfaces, with the latter forming close
to the trailing edge. To avoid the establishment of a feedback loop between the
suction side transition process and tonal noise emissions due to the pressure side
LSB (Pröbsting & Yarusevych 2015), the pressure side boundary layer was tripped at
x/c= 0.4 by a 10 mm wide strip of randomly distributed three-dimensional roughness
elements. The effectiveness of the trip in suppressing tonal noise due to pressure side
separation was verified via microphone measurements.

Time-resolved, two-component PIV was employed in two separate planes to
characterize spatio-temporal flow development in the separation bubble and the effect
of acoustic excitation. The tests were performed in the two configurations depicted in
figure 3. The flow was seeded using a glycol–water-based fog with a mean particle
diameter of the order of 1 µm, whose characteristic response frequency (Melling
1997; Raffel et al. 2007) is above the Nyquist limit of the PIV sampling frequencies.
The flow was illuminated by a laser sheet produced by a Photonics DM20-527
high-repetition rate Nd:YLF pulsed laser. The laser beam was introduced through
the side wall of the test section and conditioned into a sheet approximately 1 mm
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FIGURE 3. (a) Side-view and (b) top-view experimental configurations for PIV
measurements. 1 High-speed cameras; 2 laser with focusing optics; 3 field of view; 4
speaker; 5 side view sheet optics located 3c downstream of airfoil trailing edge; 6 top
view sheet optics; 7 Scheimpflug adapter.

thick. For the side-view configuration (figure 3a), the sheet was oriented parallel to
the airfoil cross-section and passed through the mid-span plane. Introducing the laser
sheet tangent to the airfoil surface effectively mitigated surface reflections. For the
top view (figure 3b), the sheet was oriented parallel to the airfoil surface within the
investigated field of view (FOV). For both configurations, images were captured by
two Photron SA4 high-speed cameras synchronized with the laser via a LaVision
timing unit controlled through LaVision’s DaVis 8 software.

Table 1 provides an overview of the parameters for the PIV experiments. For the
side-view configuration (figure 3a), the high-speed cameras were fitted with Nikon
200 mm fixed focal length macro lenses set to an aperture number ( f#) of 4. The
cameras’ sensors were cropped to 1024× 512 px and the fields of view were adjusted
to maximize the spatial resolution in the aft portion of the separation bubble, while
maintaining equal magnification factors of 0.67 for both cameras. The fields of
view were overlapped by 10 % and images were acquired in double-frame mode at
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Parameter Side view Top view Unit

Laser Photonics DM20-527
Cameras Photron SA4
Lens focal length 200 105 mm
Lens f# 4 2.8
Magnification factor 0.67 0.33
Sensor resolution 1024× 512 1024× 1024 px
Total field of view 54× 12.5 54× 102 mm
PIV mode Double-frame
Sampling rate 3.8 1.95 kHz
Frame separation time 40 60 µs
Outer flow displacement 17 9 px
Number of samples 5456 2728
Window size 16× 16 px
Vector pitch 0.12 0.24 mm

TABLE 1. PIV parameters.

a sampling rate of 3.8 kHz. For the top-view PIV measurements (figure 3b), the
cameras were fitted with Nikon 105 mm fixed focal length macro lenses set to
f# = 2.8. The streamwise extent of the FOV was set to match that of the combined
FOV for the side-view configuration. The second camera was employed to extend
the FOV in the spanwise direction, while maintaining an overlap of 10 %. For both
cameras, the full sensor resolution of 1024× 1024 px and equal magnification factors
of 0.33 were used. Images were acquired in double-frame mode at a rate of 1.95 kHz.
In this configuration, one camera was set normal to the field of view and the second
camera had to be tilted (figure 3b). Thus, to maintain the entire field of view in
focus, the second camera was equipped with a Scheimpflug adapter.

For both PIV configurations, the focus was adjusted to produce particle images
approximately 2–3 px in diameter. An iterative multi-grid cross-correlation scheme
with window deformation (Scarano & Riethmuller 2000) was used to compute
velocity fields. A final interrogation window size of 16 × 16 px with 75 % overlap
was selected, with each window containing, on average, 14 particles. As a result, the
vector pitches in the PIV data are 0.12 mm and 0.24 mm for the side and top-view
configurations, respectively. The results were post-processed using the universal outlier
detection algorithm (Westerweel & Scarano 2005). Once the respective vector fields
were calculated, the mean velocity fields for each camera were cross-correlated in
the overlap region to align the FOVs. The vector fields were then interpolated onto
the surface-attached coordinate system with a cosine weighted blending function
employed in the overlap region. The random errors in the PIV measurements were
evaluated using the correlation statistics method (Wieneke 2015). The associated
average uncertainties within the region of the separated shear layer are estimated to be
less than 6 % and 6.5 % of U0 for the side and top-view configurations, respectively,
while higher uncertainties (approximately 10 % of U0) are present near the wall.
Comparable uncertainties for the two configurations were achieved by minimizing the
out-of-plane loss of particles for the top view by selecting a shorter frame separation
time (table 1). Uncertainty estimates for all critical quantities derived from the PIV
measurements were obtained through uncertainty propagation (Moffat 1988).

Sound excitation was provided by a Pyramid WH88 sub-woofer placed within
the test section on an vibration isolating pad, 6c downstream of the airfoil trailing
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Tonal and broadband excited transition in separation bubbles 9

Case SPL (dB)

Natural 88.9 — — — —
Tone (T) — 89.5 90.4 92.7 94.9
Broadband (B) — 89.5 90.4 92.7 94.9

TABLE 2. Investigated sound pressure levels. All SPLs calculated within 10.46 St 6 20.8.

edge. The presence of the speaker and the PIV sheet forming optics within the
test section (figure 3) were confirmed via mean surface pressure measurements
to have no measurable influence on mean LSB characteristics. The speaker was
driven by an amplifier, with the excitation signal supplied by a National Instruments
USB-6259 data acquisition unit. A 4189 Brüel and Kjær microphone was used to
quantify the background noise level in the test section at Re = 125 000, as well as
sound excitation at the airfoil suction surface in quiescent conditions. Based on the
instrument’s accuracy for a frequency range of 40–1000 Hz, the uncertainty in the
measured sound pressure levels (SPLs) is estimated to be ±0.2 dB. In addition, the
amplitude of the sound excitation was verified to be uniform over the chordwise and
spanwise extents of the investigated areas, as SPLs varied within ±0.6 dB.

In addition to the naturally developing flow, two types of excitation are investigated:
(i) tonal excitation at the frequency of the most amplified disturbances in the
unperturbed flow, i.e. the fundamental frequency, St0 = 15.6, and (ii) broadband:
white noise band-pass filtered to the unstable frequency band of the unperturbed flow,
10.4 6 St 6 20.8. Spectra of fluctuating surface pressure near the natural separation
point for all the investigated cases are presented in figure 4. For the natural case,
a broad elevated energy content is seen in the spectrum around the fundamental
frequency (St0= 15.6) and is attributed to natural transition occurring in the separated
shear layer downstream of the measurement location. As expected for unforced
transition in a low disturbance environment, the natural spectrum is devoid of any
significant peaks, save for the relatively broadband acoustic activity centred at St=5.6,
which is due to acoustic standing waves that establish in all hard walled test sections
(Parker 1966, 1967; Nash et al. 1999; Atobe, Tuinstra & Takagi 2009). However, this
activity is sufficiently removed from the fundamental frequency and the associated
unstable band, thus ensuring negligible influence on the shear layer transition process.
Figure 4 shows the spectra for the tonal and broadband excitation cases for the
investigated and quiescent flow conditions. The results demonstrate that any given
excitation is composed of only its intended frequencies and do not excite any resonant
modes in the test facility. In order to facilitate proper comparison between tonal and
broadband excitation cases, care was taken to ensure equivalent acoustic energy levels
within the unstable frequency band of the natural flow, 10.4 6 St 6 20.8. A measure
of such energy is the SPL for a given case computed within the unstable frequency
band. For both excitation types considered, the same excitation amplitudes, in terms
of SPL, were investigated: 89.5, 90.4, 97.2 and 94.9 dB. The cases studied and their
characteristic SPLs are summarized in table 2.

3. Results
The results presented herein pertain to experiments performed on a NACA 0018

airfoil at an angle of attack of 4◦ and a chord Reynolds number of 125 000. For these
conditions, the effects of tonal and broadband acoustic excitation on the transition
process within a separation bubble are considered.
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FIGURE 4. Spectra of fluctuating surface pressure (Φp′p′) measured near the natural
separation point for (a) tonal and (b) broadband excitation in the investigated and
quiescent flow conditions. St for quiescent condition computed using U0 corresponding
to Re= 125 000.

3.1. Time-averaged flow field
Mean surface pressure distributions are plotted in figure 5 and analysed to identify the
presence and extent of the separation bubble. Surface pressure is presented in terms of
a pressure coefficient, CP= (P−P0)/[(1/2)ρU0

2
], where P0 and ρ are the free-stream

static pressure and density, respectively. For all cases, following the point of minimum
pressure, the region of nearly constant pressure marks the presence of boundary layer
separation (Tani 1964; O’Meara & Mueller 1987). Using the methodology described
by Boutilier & Yarusevych (2012b) (cf. their figure 5), the mean separation (xS),
transition (xT) and reattachment (xR) points can be estimated using the changes in
slope in the pressure plateau and recovery regions, with the associated uncertainty
dependent upon the spatial resolution of the pressure taps. Using this technique, the
separation point is found to be xS/c= 0.37± 0.03 for all cases. It is in the pressure
recovery region, 0.466 x/c6 0.68, where the effect of excitation is most pronounced,
as the introduction of disturbances and subsequent increase in excitation amplitude
leads to a decreasing rate of pressure recovery within 0.53 6 x/c 6 0.68. The results
indicate that excitation likely causes the aft portion of the separation bubble to
move upstream. In addition, the small yet discernible change in the slope of the
pressure plateau within 0.37 6 x/c 6 0.48 suggests that this may be accompanied by
a delay in separation, which is less significant compared to the changes in the aft
portion of the bubble. The associated variations in the estimated locations of mean
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FIGURE 5. Effect of (a) tonal and (b) broadband excitation on mean suction surface
pressure. Black dotted lines in magnified plots indicate uncertainty for the natural case.

separation, transition and reattachment fall within the spatial resolution limits of the
measurements, and therefore cannot be quantified precisely based on these results.

Figure 6 depicts the effect of excitation of the time-averaged velocity field
characteristics of the separation bubble. The mean outline of the separation bubble is
identified using the locus of zero streamwise velocity points (Fitzgerald & Mueller
1990), and is used to estimate the separation and reattachment points, in addition to
the maximum bubble height (h) and its streamwise location (xh). The uncertainties in
determining xS, xh and xR from the U = 0 contour are indicated by the dotted lines
in figure 6, which are determined by propagating the PIV random error estimates
and the uncertainty in locating the airfoil surface through the determination of these
locations (Moffat 1988).

The mean streamwise velocity contours in figure 6 show the presence of a
separation bubble that extends from xS/c = 0.352 ± 0.027 to xR/c = 0.565 ± 0.009
for the natural case, with the identified locations agreeing with the mean pressure
distribution (figure 5). The bubble reaches its maximum height at xh/c=0.514±0.005,
which agrees with the onset of pressure recovery used to identify the mean transition
location (figure 5). Reverse flow is present near the airfoil surface within the
separation bubble, and the maximum reverse flow velocity across all cases examined
is 4 % of U0, thus indicating the flow is only convectively unstable (Alam & Sandham
2000; Rist & Maucher 2002; Rodríguez & Theofilis 2010; Rodríguez et al. 2013).
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FIGURE 6. Mean (U) and root-mean-square (r.m.s.) of fluctuating (u′rms, v
′

rms) velocity
contours, and Reynolds stress (u′v′) contours. Solid lines mark the U= 0 contours, whose
uncertainty limits are indicated by the dotted lines. Circle, triangle and square markers
denote mean separation, maximum bubble height and reattachment points, respectively.
Dashed lines indicate displacement thickness (δ∗).

In the presence of forcing, both tonal and broadband excitation cause the streamwise
extent and height of the bubble to decrease. In particular, boundary layer separation
is delayed, the maximum bubble height reduces and the mean reattachment point
advances upstream, as has been reported for separation bubbles subjected to locally
introduced periodic excitation (Marxen et al. 2015; Yarusevych & Kotsonis 2017a,b).
The changes in the separation point can be attributed to the mean flow deformation
effect (Marxen et al. 2015), as changes to mean topology in the aft portion of
the bubble affect the surface pressure distribution (figure 5), thereby affecting the
separation location.

Integral shear layer parameters are computed from the PIV measurements, with
normalization done with respect to the local edge velocity (i.e. mean velocity at local
boundary layer thickness), and the top of the domain serving as the upper integration
limit. These parameters are presented in figure 7, where, regardless of the excitation
type, increases in excitation amplitude lead to reductions in the displacement thickness
(δ∗). The momentum thickness (θ ) does not change appreciably in the fore portion
of the bubble, x/c . 0.5, where flow in the near-wall region is nearly stagnant. The
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FIGURE 7. Effect of excitation on integral shear layer parameters: displacement thickness
(δ∗), momentum thickness (θ ) and shape factor (H). Diamond markers denote shape factor
maxima. Grey shaded regions denote uncertainty for the natural case.

onset of the rapid increase in the momentum thickness is advanced upstream when
the excitation is applied at higher amplitudes. The observed increase in θ is due
to the later stages of flow transition in the aft portion of the bubble, and it takes
place where the growth in displacement thickness begins to saturate and, thus, the
shape factor (H = δ∗/θ ) peaks. Shape factor maxima are indicated by the diamond
markers in figure 7, whose streamwise location is denoted by xH . Good agreement
is found between xH and the estimated locations of mean transition and maximum
bubble height (figures 5 and 6, respectively). The observed trends are in agreement
with previous reports of experimentally measured integral shear layer parameters in
separation bubbles (Brendel & Mueller 1988; Yarusevych & Kotsonis 2017a).

The root-mean-square (r.m.s.) contour plots in figure 6 show the spatial amplification
of velocity fluctuations in the separation bubble. In particular, the streamwise r.m.s.
velocity field (u′rms) exhibits triple peak patterns for given wall-normal profiles,
which are consistent with those reported in previous investigations (Watmuff 1999;
Lang et al. 2004; Boutilier & Yarusevych 2012c; Yarusevych & Kotsonis 2017a).
Upstream of mean reattachment, significant amplification follows the two near-wall
peaks, indicating the growth of disturbances within the reverse flow region and the
separated shear layer, with the latter following the displacement thickness. The strong
amplification of wall-normal velocity fluctuations (v′rms) is also observed within the
separated shear layer, with maximum values attained at the wall-normal location of
the displacement thickness. In the presence of excitation, the r.m.s. contours reveal
shear layer disturbances reach higher amplitudes at earlier streamwise locations; more
clearly seen in the v′rms fields. Of particular interest is the amplitude of fluctuations
reached at the bubble maximum height location. For the exemplary cases shown in
figure 6, and all other excitation amplitudes investigated, a relatively constant value of
u′rms= v

′

rms≈ 0.06U0 is found at the maximum height location, regardless of excitation
type or amplitude. The observation is noteworthy since this location is where pressure
recovery begins, the momentum thickness begins to increase rapidly, and the H factor
reaches maximum values, indicating that time-averaged transition takes place when
velocity fluctuations in the shear layer reach comparable critical amplitudes.

As expected, the streamwise development of the Reynolds shear stress (u′v′) is
similar to that of the velocity fluctuations, with the locus of u′v′ minima following the
separated shear layer closely. Several investigators have relied on the Reynolds shear
stress as an indicator of transition onset in the separated shear layer. Specifically, Ol
et al. (2005) and Hain et al. (2009) identified xT as the point where −u′v′ exceeded

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

54
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.546


14 J. W. Kurelek, M. Kotsonis and S. Yarusevych

1

2
3

4

2

3

4

5

6

H

0.40 0.45 0.50 0.55 0.60

10–4

10–5

10–1

10–2

ex fit

10–3

FIGURE 8. Comparison of techniques in estimating the natural mean transition point. 1
Sharp increase in Reynolds shear stress growth rate (Burgmann & Schröder 2008); 2
threshold of 0.001U0

2 (Ol et al. 2005; Hain et al. 2009); 3 deviation from exponential
growth (Lang et al. 2004); 4 shape factor maximum (Brendel & Mueller 1988; McAuliffe
& Yaras 2005). Range for xT established from CP distribution (figure 5).

an arbitrary threshold of 0.001U0
2, Burgmann & Schröder (2008) used the points

where the growth rate in u′v′ sharply increased, and Lang et al. (2004) used the point
where growth deviated from a fixed exponential rate. On the other hand, Brendel &
Mueller (1988) and McAuliffe & Yaras (2005) used the streamwise maximum in
shape factor as an estimate for transition onset. A comparison of these methods,
contrasted with the estimate for xT from the surface pressure measurements, is
presented in figure 8. There is considerable variation in the results from the different
estimation techniques, with the approaches of Ol et al. (2005) and Burgmann &
Schröder (2008) producing estimates that fall outside of the expected range, which
can be attributed to the methods using an arbitrary threshold and being sensitive to
the measurement noise level, respectively. The estimates from the shape factor method
and that of Lang et al. (2004) agree with the pressure-based estimate, however the
latter method is sensitive to the parameters used to determine the exponential curve
fit and the amount by which the shear stress is allowed to deviate. Thus, utilizing the
shape factor to identify a mean transition point is viewed as a more robust approach
and is adopted in the present study.

The effects of excitation type and amplitude on the mean separation bubble
characteristics are summarized in figure 9. Regardless of the type of excitation,
increasing excitation amplitude leads to a continuous diminishment in the streamwise
and wall-normal extents of the separation bubble, however, it should be noted that
quantifying the exact changes in the separation location and maximum bubble height
is difficult due to the relatively high uncertainties associated with these quantities.
Upstream of xH , i.e. in the fore portion of the bubble, disturbance amplitudes are
relatively low (figure 6), and therefore their growth is expected to be well modelled
by LST (e.g. Häggmark et al. 2001; Boutilier & Yarusevych 2012c; Marxen et al.
2015). It can be conjectured that the upstream movement of the maximum shape
factor is due to excitation providing higher initial disturbance amplitudes to which
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FIGURE 9. Effect of excitation on (a) mean streamwise locations of separation, maximum
shape factor and reattachment, and (b) maximum bubble height. Points of equal SPL are
offset slightly in the vertical direction for clarity.

the LSB transition process is receptive. This assertion is examined in § 3.2, where
linear stability analysis is performed on the experimental data, in conjunction with an
assessment of the effects of nonlinear interactions among disturbances. Such analysis
sheds light on the differences between tonal and broadband excitation, as the results
in figure 9 give a preliminary indication that broadband excitation can be as effective
at accelerating transition as tonal excitation.

Excitation also reduces the size of the aft portion of the bubble, i.e. the region
between xH and xR. However, for all cases examined, the extent of the aft portion
relative to the total bubble length, (xR − xH)/(xR − xS), is nearly constant at
approximately 25 %. Therefore both types of acoustic excitation are effective in
proportionally decreasing both the fore and aft portion of the bubble. It is in the
aft portion where shear layer roll-up occurs and the role of coherent structures is
important (e.g. Marxen & Henningson 2011; Kurelek et al. 2016; Yarusevych &
Kotsonis 2017b). How these phenomena are affected by the forcing is examined in
detail in § 3.3.

3.2. Growth and interaction of disturbances
To study the convective streamwise amplification of disturbances, linear stability
theory is employed, which provides a model for the amplification of small-amplitude
disturbances in a parallel laminar flow (e.g. see Drazin & Reid 1981; Schlichting &
Gersten 2000). The Orr–Sommerfeld equation governs disturbance growth:

(U −Ω/α)
(

d2ṽ

dy2
− α2ṽ

)
−

d2U
dy2

ṽ =−
iUeδ

∗

αReδ∗

(
d4ṽ

dy4
− 2α2 d2ṽ

dy2
+ α4ṽ

)
, (3.1)

where ṽ is the mode of the wall-normal perturbation with angular frequency Ω
and complex wavenumber α= αr + iαi, Ue is the edge velocity, Reδ∗ is the Reynolds
number based on displacement thickness and edge velocity and i is the imaginary unit.
A spatial formulation of the problem is employed (e.g. Schmid & Henningson 2001),
where Ω is prescribed and the eigenvalue problem is solved for α, thus modelling
the convective amplification of single frequency disturbances. Equation (3.1) is
solved numerically using Chebyshev polynomial base functions and the companion
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FIGURE 10. Measured velocity profiles (markers) in the natural flow and corresponding
hyperbolic tangent fits (solid lines) used in LST calculations.

matrix technique to treat eigenvalue nonlinearity (Bridges & Morris 1984). Additional
information regarding the solution method can be found in van Ingen & Kotsonis
(2011).

Measured mean streamwise velocity profiles at given streamwise locations serve as
input to the LST calculations, therefore making the analysis local. Spatial gradients
estimated from PIV measurements often have a relatively high noise level due to the
finite spatial resolution of the measurement technique (Westerweel, Elsinga & Adrian
2013), to which LST predictions can be highly sensitive (Boutilier & Yarusevych
2013). Therefore, stability analysis is performed using hyperbolic tangent fits to the
experimental data, which have been shown to provide reasonable stability predictions
(Dini, Selig & Maughmer 1992; Boutilier & Yarusevych 2012c) that are relatively
insensitive to scatter in the data (Boutilier & Yarusevych 2013). Exemplary velocity
profiles and their corresponding fits for the natural flow conditions are shown in
figure 10.

For validation purposes, results from the LST predictions and the experimental data
are compared for the natural case in figure 11. A measure of amplitude growth is
quantified from the LST results by integrating the spatial growth rates (αi) in the
downstream direction:

A(x)= A0 exp
(∫ x

x0

−αi dx
)
, (3.2)

where the integral term represents the amplification or N factor. Here, A is the
disturbance amplitude, while A0 and x0 denote the amplitude and streamwise location
at which the disturbance first becomes unstable, respectively. The location of x0
is upstream of the PIV field of view and therefore cannot be determined directly,
however, in the fore portion of the LSB, αi may be approximated by a second-order
polynomial (e.g. Jones et al. 2010, cf. figure 11). Based on this, x0 can be estimated
by extrapolating the curve fit to αi = 0. In figure 11(a), the experimental spectrum
of wall-normal velocity fluctuations shows an amplified band of disturbances within
10 . St . 20, with the highest energy content found approximately at St = 15.6, i.e.
the fundamental frequency. The overlaid plot of N factors shows good agreement
between the LST predicted and experimental measured unstable frequency ranges,
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FIGURE 11. Validation of LST results for the natural flow. (a) LST N factors and
experimental spectrum of v′ at the streamwise location of maximum bubble height. (b)
LST and experimental N factors for St= 15.6.

with the most unstable frequency predictions differing by approximately 17 %.
Such a discrepancy has been reported in similar studies (Yarusevych, Kawall &
Sullivan 2008; Boutilier & Yarusevych 2012c), and does not significantly impact the
present investigation since here the interest lies in the relative changes in stability
characteristics when the flow is excited.

Figure 11(b) shows a comparison of LST and experimental N factors for St= 15.6,
where the measured wall-normal velocity fluctuations have been bandpass filtered to
within St = 15.6± 0.2 in order to compute amplification factors associated with this
frequency. A direct comparison of N factors is not possible since disturbances in the
experiment can only be detected well downstream of x0, where they reach measurable
amplitudes. Therefore, following Schmid & Henningson (2001), the amplification
factors are matched at a reference location where the measured disturbance amplitude
reaches A= 0.005U0 (x/c= 0.44 in figure 11b), thus allowing for an estimate of A0
for a given frequency using equation (3.2). Comparing the LST and experimental N
factors reveals that the linear growth of disturbances is accurately captured within
0.42< x/c< 0.46 in the experiment, downstream of which disturbance growth begins
to saturate and the agreement with LST deteriorates due to nonlinear effects becoming
significant. Similar results are also obtained for both the tonal and broadband excited
cases, confirming that LST reliably predicts stability characteristics in the fore portion
of the studied separation bubbles.

The changes in stability characteristics with excitation are depicted in figure 12,
where contours of the LST predicted spatial growth rates are presented. As per
the spatial formulation employed, negative values of αi correspond to convectively
amplified disturbances. For the natural case, downstream of separation (xS/c≈ 0.35),
the frequency of the maximum growth rate increases to a value of approximately
St = 13.6 at x/c = 0.45, after which the frequency decreases toward the maximum
bubble height location (xh/c ≈ 0.51). It is in this region where amplification of
disturbances is detected in the experiments and agrees well with the LST predictions
(figure 11b). For both types of excitation considered, their application leads to
significantly decreased growth rate magnitudes, as the maximum growth rate in the
natural flow, −αic ≈ 52, decreases by approximately 30 % for both excitation cases
(figure 12b,c). A less significant effect is seen on the frequency of maximum growth
rates, as both tonal and broadband excitation reduce this frequency to approximately
St = 13.1 at x/c = 0.42, i.e. a reduction of approximately 4 %. The more significant
effect of excitation on maximum growth rates than the corresponding frequency is
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FIGURE 12. Contours of LST predicted spatial growth rates (-αi). Dashed lines indicate
locus of growth rate maxima.

also reported in the works of Marxen & Henningson (2011), Marxen et al. (2015)
and Yarusevych & Kotsonis (2017b), and is attributed to the mean flow deformation
(figure 6). As excitation reduces the size of the separation bubble, the region of
instability growth (i.e. the separated shear layer) is brought closer to the wall, which
has a damping effect on shear layer disturbances (Dovgal, Kozlov & Michalke 1994;
Diwan & Ramesh 2009). However, the associated impact on the frequency of the
most amplified perturbations is minimal (figure 12).

As established throughout § 3.1, tonal and broadband excitation at equivalent
SPLs (i.e. equivalent input energy levels) produce comparable changes in the mean
flow fields (e.g. figures 6 and 9), despite tonal excitation providing a higher initial
disturbance amplitude at or close to the frequency at which the LSB is most unstable
(figure 12). One hypothesis for this result is that, as seen in figure 12, excitation
modifies the frequency of most unstable disturbances, albeit minimally, and so the
tonal excitation becomes less effective, while the broadband case is able to excite the
new most unstable frequency. This hypothesis is examined in figure 13, where LST
predicted N factors and disturbance amplitudes are compared for equivalent tonal and
broadband excitation cases.

Consistent with the closely matching spatial growth rates for the considered
excitation cases (figure 12b,c), the amplification curves in figure 13(a) show nearly
equivalent N factors for frequencies near and below the tonal excitation frequency,
St= 15.6. Using these LST N factors, the streamwise growth in disturbance amplitude
is determined using (3.2) and initial disturbance amplitudes, which are estimated by
matching LST and experimental N factors (see discussion of figure 11b). The resulting
LST predicted disturbance amplitudes (figure 13b) show, as expected, the highest
initial disturbance amplitude for tonal excitation (cf. figure 4), which, coupled with its
N factor curve, results in the tonally excited disturbance outgrowing all disturbances
in the broadband case. Thus, according to LST and the theory of transition onset
at some critical disturbance amplitude (van Ingen 1956; Smith & Gamberoni 1956),
tonal excitation should lead to earlier transition, which is clearly not the case in the
experimental data (figures 6, 7 and 9).

It is evident that the assumptions inherent to LST render the technique unable
to accurately model the entire transition process. To assess the degree to which
disturbance interaction and competition impacts the studied transition processes, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

54
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.546


Tonal and broadband excited transition in separation bubbles 19

0.35 0.40 0.45 0.50 0.55 0.35 0.40 0.45 0.50 0.55
0

1

2

3

4

5

10–4

10–1

10–2

10–3

92.7 dB (T)
92.7 dB (B)

N A

(a) (b)

FIGURE 13. Comparison of LST predicted (a) N factors and (b) disturbance amplitudes
for frequencies within the excitation bands. Initial disturbance amplitudes are estimated
through matching LST and experimental N factors (figure 11b). Curves for all broadband
excited frequencies fall within the grey shaded regions.

experimentally measured disturbances are studied via their spectra and spatial growth
rates in figure 14. The spectra are computed using Welch’s method (Welch 1967)
based on 5000 realizations and a final frequency resolution of St= 0.08. The growth
rates are estimated by integrating the spectra using a band of width St=±0.2 centred
at the desired frequency, smoothing the resulting curves using a sliding spatial kernel
with width 0.03c, and then estimating the local spatial growth rates from the curve
slopes. Based on the random error estimates in the PIV measurements, the uncertainty
in the spatial growth rates is estimated to be approximately 150 % in regions of weak
growth (x/c< 0.5), while reducing to approximately 5 % in regions of strong growth
(0.5< x/c< 0.55).

From figure 14, growth rates for the natural, tonal and broadband cases compare
favourably with the LST predictions (figure 12). For the natural case (figure 14a),
amplification of disturbances is first detected at approximately x/c = 0.41 and at
the fundamental frequency, followed by disturbances within the unstable frequency
band, 10 . St . 20, amplifying farther downstream. Near the streamwise location of
maximum shape factor, there is rapid growth at all measurable frequencies, which is
indicative of the onset of transition. A similar progression is seen for the broadband
case (figure 14c), except that earlier amplification of disturbances is detected due to
the excitation. Most notably, the rapid emergence of growth at all frequencies shifts
upstream to approximately x/c = 0.49, consistent with the location of shape factor
maximum. For the case of tonal excitation (figure 14b), a drastic change in the growth
of disturbances is observed, as excitation at St0 = 15.6 effectively confines growth
to only that frequency from the beginning of the measured domain to x/c ≈ 0.47.
Growth of disturbances over a wide band of frequencies only begins to occur at
x/c = 0.5, which is where the process takes place for the natural case, despite the
drastically different energy input levels (figure 4).

It can be concluded from figure 14(b) that the strong amplification of the tonally
excited disturbance damps growth of all other disturbances, thus affecting the
transition process. This is examined further in figure 15, where experimentally
determined perturbation modes for frequencies within the naturally unstable frequency
band are presented and compared to LST predicted growth rates. The average
uncertainty in mode amplitudes, resulting from the random errors present in the PIV
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FIGURE 14. Top row: spectra of wall-normal velocity fluctuations (Φv′v′). Bottom row:
spatial growth rates of wall-normal disturbances (−αi). All quantities are based on velocity
measurements within the separated shear layer (y = δ∗). Dashed and dotted lines denote
xH/c and xR/c, respectively.

measurements, is estimated be 8 %. For the natural case (figure 15a), good agreement
is found for frequencies St6 15.6 in the region where disturbance amplification is first
detected, 0.43. x/c. 0.46. Thus, the growth of these disturbances is independent and
is not affected by nonlinear interactions until downstream of x/c≈ 0.46. The same can
be said for the broadband excited flow (figure 15c), except here agreement with LST
is found across all frequencies within the excitation band. The improved agreement
with LST at the higher frequencies, St > 15.6, is attributed to broadband excitation
providing disturbances of significant amplitude at these frequencies for amplification,
making it possible to accurately capture the associated velocity fluctuations. When the
flow is excited tonally (figure 15b), the damping effect on the growth of disturbances
at all frequencies other than that of the excitation becomes immediately apparent,
as only the excited mode grows according to its LST predictions, while the growth
at all other frequencies is delayed until the excited mode has nearly saturated and
nonlinear effects are expected to be significant. Moreover, the agreement between
LST predictions and experimental measurements for the tonal excitation frequency
persist far downstream, where nonlinear interactions resulted in decreased growth for
the natural and broadband excitation cases.

The observed differences in the development of disturbances can be explained
through the weakly nonlinear disturbance growth model proposed by Landau (see
Landau & Lifschitz 1987) and further developed by Stuart (1962):

d |A1|
2

dx
= 2 |A1|

2

(
−αi +

n∑
j=1

`j

∣∣Aj

∣∣2) , (3.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

54
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.546


Tonal and broadband excited transition in separation bubbles 21

10–1

10–2

10–3

10–1

10–2

10–3

10–1

10–2

10–3

10–1

10–2

10–3

10–1

10–2

10–3

0.40 0.45 0.50 0.55 0.60 0.40 0.45 0.50 0.55 0.60 0.40 0.45 0.50 0.55 0.60

88.9 dB (natural) 92.7 dB (T) 92.7 dB (B)(a) (b) (c)

FIGURE 15. Growth of frequency filtered wall-normal disturbances (ṽ) within the
separated shear layer (y= δ∗). Grey lines indicate LST predicted growth rates at x/c=0.43.
Dashed and dotted lines denote xH/c and xR/c, respectively.

which describes the spatial amplification of a disturbance with amplitude A1 as
a result of its initial linear growth rate, αi, and the nonlinear effects imposed by
self-interaction ( j = 1) and interaction with disturbances of all other frequencies
( j 6= 1). The Landau coefficients (`j) describe the nature of the interactions, with `j> 0
and `j < 0 corresponding to nonlinear effects resulting in additional amplification
or damping, respectively, while linear theory is recovered when `j = 0. Drazin &
Reid (1981) note that the Landau coefficients are generally negative for external
flows over bodies, and thus nonlinear effects serve to damp disturbance growth.
This is corroborated by the present results, as all instances of good agreement
between LST and the experimental measurements are followed by a damping of
the experimentally measured disturbances, leading to growth saturation soon after
(e.g. figures 11b and 15). Moreover, cross-damping terms have been shown to be
much more significant compared to self-damping (Miksad 1973). In addition to the
Landau coefficients, equation (3.3) highlights that the degree to which disturbances
are damped depends on the amplitude of the disturbance with which the interaction is
taking place (Aj). Therefore, the presence of a relatively high amplitude disturbance
is expected to damp disturbance growth at all other frequencies. Such is the case
observed in figures 14(b) and 15(b) for the tonal excitation case, while for the
broadband case (figures 14c and 15c) perturbation amplitudes are more moderate, and
so all unstable disturbances grow initially at their LST predicted rates, followed by
nonlinear damping taking place farther downstream.
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The nonlinear interactions and their impact on transition reported here have, to the
authors’ knowledge, not been previously reported for separation bubbles. However,
similar observations have been reported for boundary layers (Kachanov et al. 1982)
and free shear layers (Miksad 1972, 1973). Specifically, Miksad (1973) notes that
when exciting free shear layers using two strong acoustic tones, the competing growth
of the two instabilities leads to reduced growth rates in comparison to the single
excitation case. Furthermore, excitation at multiple frequencies was found to promote
the redistribution of fluctuating energy to all possible frequencies, which Miksad
linked to a faster increase in the shear layer momentum thickness, and hence an
accelerated transition of the shear layer. Similar reports are made by Kachanov et al.
(1982), who excited multiple TS modes in a laminar boundary layer. In the present
investigation, tonal and broadband excitation lead to strikingly different transition
processes but can lead to very similar mean effects on the flow field (figures 6
and 9). It is shown that transition in a laminar separation bubble can be either
dominated by a large-amplitude disturbance of a single frequency which damps the
growth of all other disturbances (figures 14b and 15b), or by a band of disturbances
of moderate and equal amplitudes, that all initially grow in accordance with linear
theory (figure 15c). For both cases, a rapid redistribution of spectral energy to all
frequencies follows (figure 14b,c), with this phenomena occurring earlier for the
broadband case, despite equal energy inputs. The ‘broadband transition route’ is also
representative of the natural transition case (figures 14a and 15a).

Important ramifications regarding the comparison of LST predictions with
experimental and numerical results are made clear from the findings of this
investigations. Numerous authors have noted this agreement to be surprisingly good
(e.g. Marxen, Lang & Rist 2012; Marxen et al. 2015; Yarusevych & Kotsonis 2017b),
with the valid region extending until very close to where disturbances saturate
(Lang et al. 2004), despite the relatively large disturbance amplitudes in this region.
Furthermore, and perhaps counter-intuitively, it has been reported that agreement
improves with increasing disturbance input levels (Yarusevych & Kotsonis 2017a). In
general, these assertions are supported by the findings presented here (figure 15), with
the crucial caveat being that the degree to which LST and experimental/numerical
results agree is entirely dictated by the relative importance of nonlinear effects for
the particular disturbance mode being considered. For example, when all unstable
disturbance amplitudes are small, and thus nonlinear effects are not important,
excellent agreement is found with LST until disturbance amplitudes become more
moderate (i.e. the broadband excitation case, figure 15c). On the other hand, if
one disturbance mode is preferentially excited, then its development dominates all
others via nonlinear damping, while experiencing strong linear growth of its own
(figure 15b). Thus, it can be conjectured that if only one dominant disturbance mode
is present in the flow, then the nonlinear effects imposed by the other, relatively weak,
disturbances are not significant and so the dominant mode grows in strong accordance
with LST predictions. Miksad (1973) found as much to be true, as agreement between
his results and nonlinear theory (3.3) was only found once each Landau coefficient
was weighted according to its mode’s fractional contribution to the total perturbation
energy.

3.3. Coherent structures
Thus far, mean features and disturbance development in the separation bubble have
been characterized (§ 3.1 and 3.2, respectively). The link between these two facets of
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FIGURE 16. (Colour online) Instantaneous contours of spanwise vorticity (ω). Consecutive
frames are separated by t∗ = tU0/c= 3.8× 10−2. Black lines indicate λ2-contours (Jeong
& Hussain 1995). Black dashed lines trace the same vortices in a sequence. Grey dashed
and dotted lines denote xH/c and xR/c, respectively.

the flow is established in this section, as the coherent structures that manifest from the
disturbances are examined and their role in producing the observed mean flow field
and its statistics is elucidated.

Flow development in the aft portion of the separation bubble for the natural,
tonal and broadband cases is depicted in figure 16 using instantaneous contours of
spanwise vorticity (ω). Contours of the λ2-criterion (Jeong & Hussain 1995) are
added to aid in identifying coherent structures, in addition to dashed lines to assist
in tracking individual structures between frames. The spacing and slope of these
lines give an indication of the streamwise wavelength and convective velocity of the
structures, respectively. Animated sequences are provided as supplementary material
(movies 1a–c, available at https://doi.org/10.1017/jfm.2018.546). For all cases, the
flow development is characterized by the roll-up of the separated shear layer into
vortices upstream of the maximum shape factor location. These shear layer vortices
then convect downstream and undergo deformations within the vicinity of mean
reattachment, leading to their breakdown to smaller scales. Both the natural and
broadband excited flows are quasi-periodic (figure 14a,c), and so significant temporal
variability is expected in the flow development. An example of such an occurrence is
shown for the natural case (figure 16a), where two vortices develop with sufficiently
different convective velocities that they coalesce to form a merged structure. The
process may also occur for the broadband excited flow, however, identification
of clearly merged structure is difficult due to the earlier onset of breakdown. Vortex
merging in naturally developing separation bubbles has also been observed by Kurelek
et al. (2016) and Lambert & Yarusevych (2017).

From figure 16, it is clear that excitation significantly affects flow development,
as both tonal and broadband excitation cause vortex formation at earlier streamwise
positions, consistent with the upstream shift in xH and earlier detectable disturbance
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amplification (figure 14). Furthermore, by promoting the development of a single
harmonic disturbance (figure 15b), it is clear that tonal excitation locks the vortex
formation process to the excitation frequency, thus resulting in significantly reduced
temporal variability in both the convective velocity and streamwise wavelength of
the shed structures. As such, vortex merging is not observed throughout the entire
recorded sequence for the presented tonal excitation case. The coherence of the tonally
excited structures also appears to be increased in comparison to the broadband case,
as the structures in figure 16(b) tend to persist farther downstream than those seen
in figure 16(c). This has important ramifications regarding mean reattachment, as
previous investigators have argued that the shear layer vortices are the primary factor
responsible for mean reattachment (Marxen & Henningson 2011; Yarusevych &
Kotsonis 2017a). This assertion will be examined in detail through the analysis that
follows in this section.

The mean convective velocity and streamwise wavelength of the shear layer
vortices excited tonally (figure 16b) remain largely unchanged compared to those
of the unmerged structures in the natural and broadband excited flow (figure 16a,c),
which is attributed to the close matching of the excitation and naturally unstable
frequencies. This is verified quantitatively through the computation of two-dimensional,
frequency–wavenumber spectra, which are shown in figure 17. The spectra are
computed using the wall-normal velocity fluctuations sampled along y = δ∗, which
are divided into 211

× 29 windows in time and x, respectively, with 75 % overlap,
resulting in frequency and wavenumber (kx) resolutions of 0.04 and 20, respectively.
For all cases, spectral energy is primarily concentrated along a straight line, which is
commonly referred to as the convective ridge (e.g. Howe 1998). Along the convective
ridge, the disturbance wavenumber and frequency are related to convective velocity
through Uc = 2πf /kx. For the natural case, the non-dimensional convective velocity
is Uc/Ue = 0.56 ± 0.06, where the edge velocity is Ue = 1.2U0 (figure 6). The
obtained estimate of Uc agrees well with the range 0.3 . Uc/Ue . 0.6, observed
in previous investigations (Burgmann & Schröder 2008; Boutilier & Yarusevych
2012c; Pröbsting & Yarusevych 2015). Along the convective ridge, spectral energy
is primarily concentrated within a band centred on St = 15.6 and, as expected,
overall spectral energy levels are increased when the flow is excited. In the case
of tonal excitation (figure 17b), energy is concentrated at the excitation frequency,
St = 15.6, and the corresponding wavenumber and wavelength on the convective
ridge, kxc = 147 ± 0.5 and λx/c = 2π/kxc = 0.043 ± 7 × 10−5, respectively. This is
consistent with the reduction in temporal variability observed in the flow development
(figure 16b). For the broadband case (figure 17c), the highest energy levels are
associated with the excitation frequency band, 10.4 6 St 6 20.8. However, regardless
of the excitation type, the slope of the convective ridge remains largely unchanged,
with all convective velocities falling within 0.56 6 Uc/Ue 6 0.58 (±0.06), which is
consistent with the characteristics of the vortices observed in figure 16.

PIV measurements completed in the top-view configuration (figure 3b) allow for
quantitative assessment of both the streamwise and spanwise development of the
shear layer vortices. The measurement plane was positioned such that it passed
through the top halves of the spanwise rollers, thus allowing for their identification
as periodic spanwise bands of high streamwise velocity in the planar fields, as seen
in figure 18. Flow is from top to bottom and smoothed spline fits are added to the
centre of selected vortices to aid in tracking their development. Animated sequences
are provided as supplementary material (movies 2a–c). From figure 18, spanwise
coherent structures are first identifiable near the maximum shape factor location,
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FIGURE 17. Frequency–wavenumber spectra of wall-normal velocity fluctuations (Φv′v′)
within the separated shear layer (y= δ∗). Solid line is a linear fit estimating the convective
ridge.

consistent with where roll-up is observed in the side-view measurements (figure 16).
Shortly downstream of roll-up, the structures develop spanwise deformations within
the vicinity of the mean reattachment point. These deformations intensify as the
structures continue to convect downstream, which eventually leads to the emergence
of localized vortex breakup, i.e. the regions of low velocity fluid that appear over
the span of the vortex filaments at x/c & 0.55 throughout figure 18. The formation
of spanwise uniform shear layer vortices is consistent with the observations of
Jones et al. (2008), Marxen et al. (2013) and Nati et al. (2015), which according
to Michelis et al. (2018) is an indication of the relative dominance of normal over
oblique modes. Furthermore, the development of spanwise deformations leading to
localized regions of vortex breakup is consistent with the vortex breakup mechanism
for an LSB proposed by Kurelek et al. (2016).

While general trends in spanwise flow development are similar between the natural
and excitation cases, the upstream shift in the roll-up location due to excitation,
identified previously in the side-view measurements (figure 16), is also clearly seen
in figure 18. Furthermore, both types of excitation appear to modify the predominant
spanwise deformation wavelength(s) of the vortex filaments, as a visual comparison
between the cases presented in figure 18 suggests that spanwise deformations of
shorter wavelengths tend to initially develop when the flow is excited. To affirm
this observation, spanwise wavelength characteristics are quantified through wavelet
analysis, which is preferred over spatial Fourier analysis due to the limited spanwise
extent of the field of view. From the top-view PIV measurements, streamwise
fluctuating velocity signals are extracted at several streamwise locations, smoothed
using a spatial kernel of width 0.02c, and wavelet coefficients are calculated using the
Morlet wavelet (Daubechies 1992). Exemplary instantaneous spanwise distributions
of velocity fluctuations and their corresponding wavelet coefficients are presented in
figure 19. For a given time instant, the predominant spanwise wavelength is estimated
from the maximum wavelet coefficient, with the process repeated for all time
realizations and statistical samples obtained as a result. The data are presented using
histograms in figure 20 at three reference streamwise locations. For the natural case
(figure 20a), at xH/c the distribution of λz is nearly symmetric about a mean value
of λz/c= 0.19, with predominant wavelengths concentrated within 0.08. λz/c. 0.32,
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FIGURE 18. Instantaneous contours of streamwise velocity. Consecutive frames are
separated by t∗= 2.5× 10−2. Thick dashed lines indicate smoothed spline fits to the centre
of selected structures. Thin dashed and dotted lines denote xH/c and xR/c, respectively.

which is in good agreement with the visualized structures in figure 18. Furthermore,
comparing the predominant spanwise and streamwise wavelengths of the structures
gives a range of 2 . λz/λx . 7, which is consistent with the results of previous
investigations (Marxen et al. 2013; Kurelek et al. 2016; Michelis et al. 2018).

From figure 20(a), the mean spanwise deformation wavelength shifts to lower
values as the vortices convect from the maximum shape factor location to the mean
reattachment point and beyond it, reaching a value of λz/c = 0.11 at the furthest
downstream station. This shift is associated with the aforementioned localized vortex
breakup regions seen in figure 18(a), with the low velocity zones being separated by
a spanwise spacing of about 0.1c. In § 3.2, it was established that disturbances in
the broadband excited flow grow in an accelerated, yet similar manner to the natural
case, which is also reflected in the development of the spanwise deformations, as
figure 20(c) shows that initial deformations occur over a relatively broad range of
wavelengths centred at λz/c≈ 0.2, which shifts to λz/c≈ 0.1 as the vortices convect
downstream and begin to break down. In contrast, when the flow is subjected to tonal
excitation (figure 20b), at xH/c there is a more pronounced mean tendency in the
distribution toward λz/c= 0.1, indicating that tonal excitation promotes deformations
of this wavelength. Thus, tonal excitation is shown to organize shear layer vortex
development, not only by locking the shedding frequency and streamwise wavelength
(figures 16b and 17b), but also by reducing variability in spanwise deformations,
promoting a spanwise wavelength equal to approximately two times the streamwise
wavelength of the structures.

It was stated previously that the coherence of the spanwise vortices is of particular
interest since previous investigators have argued these structures are the primary
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FIGURE 19. Top row: exemplary fluctuating streamwise velocity sampled across the
span at xH . Bottom row: corresponding wavelet coefficient contours. Maximum wavelet
coefficient denoted by × marker.
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FIGURE 20. Spanwise wavelength probability distributions determined from spatial
wavelet analysis (figure 19). Dotted lines indicate standard deviation from the mean
(solid line).

factor responsible for mean reattachment (Marxen & Henningson 2011; Yarusevych
& Kotsonis 2017a), and so their strength should bear some effect on the mean
reattachment location for a given set of external flow conditions. This is examined in
a quantitative manner by evaluating the spanwise coherence length (lz) according to:

lz =

∫
∞

0
Ruu d1z, (3.4)

where Ruu is the correlation coefficient function of two u(t) signals measured along
a spanwise line at variable spanwise distance 1z. The difficulty in evaluating lz from
experimental data lies in integrating Ruu over a finite span when the function must
asymptotically tend to zero. To address this, it is common to apply an exponential
curve fit to the data (Norberg 2003; Palumbo 2012; Pröbsting et al. 2013):

Ruu ≈ exp
(
−
1z
lz

)
, (3.5)
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FIGURE 21. Variation of spanwise coherence length with streamwise position. Coherence
lengths normalized by maximum value of natural case (lzNat,max). Dotted lines (coloured
according to legend) denote xR/c.

which is convenient since lz arises as the curve fitting coefficient. This approach is
employed for the present analysis, with the obtained streamwise variation in coherence
length presented in figure 21. For all the cases, a maximum coherence length can be
identified, whose streamwise location approximately matches that of the maximum
shape factor (cf. figure 9). Upstream of this location, the estimates are subject to
progressively higher uncertainty due to relatively low disturbance amplitudes in this
region (figures 6 and 15), in addition to increasing deviation between the shear
layer core and the position of the laser sheet due to the airfoil surface curvature
(figure 3b). In the fore portion of the bubble, the amplified shear layer disturbances
are expected to be strongly two-dimensional (Marxen et al. 2003; Lang et al. 2004),
which suggests that the trend upstream of the maxima in lz is a result of disturbance
amplitudes progressively increasing above the noise floor. Nevertheless, several key
observations can be made from the results. Specifically, both types of excitation lead
to equivalent upstream shifts in the streamwise location of the maximum coherence
length, consistent with the upstream shift in vortex formation (figure 16) and the
changes in mean bubble topology (figures 6 and 9). Moreover, the coherence length
for the broadband excitation case peaks at a value that is essentially unchanged
compared to the natural case. Thus, broadband excitation does not increase the
spanwise coherence of the shear layer vortices, presumably because the excitation
does not specifically target any one frequency within the unstable band. In contrast,
tonal excitation leads to a marked increase in coherence length, with its peak value
being 16 % higher than that of the natural and broadband cases. Following the peak,
there is a rapid decrease in coherence for all three cases which is attributed to the
rapid development of spanwise deformations and the eventual breakup of the shear
layer vortices as they approach and pass the mean reattachment location. For all
streamwise locations, the spanwise coherence length for the tonal excitation case
exceeds that of the broadband case, confirming that the vortices in the former case
maintain stronger coherence farther downstream. However, this does not result in
earlier mean reattachment, thus indicating that moderate increases in coherence do
not substantially affect the mean reattachment location, while upstream movement in
the vortex formation region has significant influence.

To further analyse the effect of excitation on coherent structure characteristics,
proper orthogonal decomposition (POD) analysis is performed on the top-view (x–z
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FIGURE 22. (Colour online) Normalized POD spatial modes coloured by the streamwise
component (φ(n)u ). Dashed and dotted lines denote xH/c and xR/c, respectively.

plane) measurements using the snapshot method (Sirovich 1987). Figure 22 presents
the first four most energetic spatial modes coloured by the streamwise component
(φ(n)u ). From figure 22 it is clear that all modes are paired, i.e. modes 1 and 2, and
modes 3 and 4. A distinct streamwise phase offset of π/2 can be seen for each
mode pair, which is typical for a number of different flows involving propagating
coherent structures (Wee et al. 2004; van Oudheusden et al. 2005; Lengani et al.
2014; Yarusevych & Kotsonis 2017a). For all cases, the two most energetic modes
are associated with the spanwise shear layer vortices, as these modes share several
key features with previous results, namely, a consistent streamwise wavelength
(cf. figure 16), and spanwise uniform structures that form farther upstream when
excited (cf. figure 18). The associated temporal coefficients, not shown for brevity,
also feature dominant periodicity at the shedding frequency of the rollers. It is
instructive to compare the φ(1)u and φ(2)u modes for the tonal and broadband cases
in figures 22(b) and 22(c), respectively. Such a comparison reveals that while the
structures form at similar streamwise locations, they persist farther downstream in
the presence of tonal excitation, thus supporting the earlier observations made from
the coherence length estimates (figure 21). This can be further supported through the
examination of the relative (E(n)r ) and cumulative (E(n)c ) modal energy distributions,
presented in figure 23. Consistent with its excitation input spectrum (figure 4b),
broadband excitation leads to a small increase in the relative energy of the first two
modes (figure 23a), and a comparable cumulative distribution over the first twenty
modes to the natural case (figure 23b). In contrast, tonal excitation leads to an
increase of approximately 125 % in the most energetic mode pair, which is to be
expected given that tonal excitation specifically targets these modes.

Analysis of the top-view measurements revealed that spanwise deformations with a
wavelength of λz/c≈ 0.1 tend to develop in the vortex filaments in the aft portion of
the bubble and downstream of mean reattachment for all cases (figures 18 and 20).
Added insight into these deformations is provided by the POD results, as structures

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

54
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.546


30 J. W. Kurelek, M. Kotsonis and S. Yarusevych

0 5 10 15 20 0 5 10 15 20

0.02

0.01

0.03

0.04

0.05

0.05

0.10

0.15

0.20
88.9 dB (nat.)
92.7 dB (T)
92.7 dB (B)

n n

(a) (b)

FIGURE 23. Effect of excitation on POD (a) relative and (b) cumulative modal energy
distributions.
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FIGURE 24. (Colour online) Normalized POD spatial modes coloured by the spanwise
component (φ(n)w ). Dashed and dotted lines denote xH/c and xR/c, respectively.

with a corresponding spanwise wavelength are evident in the POD spatial modes
(e.g. modes 3 and 4 in figure 22). Modes 3 and 4 show temporal periodicity linked
to the fundamental frequency, but are associated with a significantly lower energy
content compared to modes 1 and 2 (figure 23a). Evidence of prominent spanwise
deformations of the main rollers is best captured in the spanwise components of the
first four modes, as illustrated in figure 24. This indicates that spanwise deformations
tend to occur repeatedly with prevalence at some spanwise locations. A similar
observation is made in the experiments of Michelis et al. (2018) (cf. their figure
3b), who studied a separation bubble formed on a flat plate. In theirs and this
experiment, careful attention was paid to the model and facility to prevent any
intentional spanwise modulation of disturbances, however, whether the occurrence of
these spanwise deformations at these preferred spanwise locations is a result of the
underlying physics or is due to some minute imperfection in the experimental set-up
is unclear. Nevertheless, it is apparent that such repeated spanwise deformations
associated with some preferential wavelength are inherent to the development and
breakup of the main shear layers rollers.

4. Concluding remarks
The present investigation examines the effects of tonal and broadband acoustic

excitation on flow development and transition in a laminar separation bubble. The
bubble is formed on the suction side of a NACA 0018 airfoil in a closed-loop
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wind tunnel facility at a Reynolds number of 125 000 and an angle of attack of
4◦. Disturbances are introduced in a controlled manner from an external source
to decouple the interdependence of flow development and acoustic emissions
inherent to airfoil self-noise production. The flow field is assessed via time-resolved,
two-component PIV. Two separate configurations are employed to evaluate streamwise
and spanwise aspects of the flow development.

The results show that, for equivalent energy input levels within the naturally
unstable frequency band, tonal and broadband excitation produce similar changes
in the mean separation bubble topology. In particular, both result in delayed
boundary layer separation, a reduction in the maximum bubble height, and upstream
advancement in the shape factor maximum and mean reattachment locations. The
location of shape factor maximum is shown to be of particular importance, since it
marks the onset of rapid pressure recovery and the beginning of the rapid increase
in momentum thickness, providing a robust integral measure for the ‘mean transition’
location. It is also shown that the velocity fluctuations in the separated shear layer
reach comparable critical amplitudes at this location, regardless of excitation type or
amplitude.

Local linear stability analysis is shown to accurately model incipient disturbance
growth for all cases examined. Consistent with previous investigations (Marxen &
Henningson 2011; Marxen et al. 2015; Yarusevych & Kotsonis 2017b), the LST
results show that excitation significantly reduces disturbance growth rates, while
only slightly modifying the frequency of the most amplified disturbances. Despite
this modification, according to the LST predictions, the most amplified mode in
the presence of tonal excitation should outgrow all individual broadband modes
and thus lead to earlier transition for the former case, which is in contradiction
with the experimental observations. This is shown to be the result of nonlinear
effects. Specifically, in the case of tonal excitation, transition is dominated by the
amplification of a single excited wave, which grows in strong accordance with linear
theory and significantly damps the growth of all other disturbances as a result of its
relatively high amplitude. In contrast, disturbance amplitudes across the entire unstable
frequency range are more moderate for the natural and broadband excited flows, and
so all unstable disturbances initially grow in accordance with LST. For all cases, a
rapid redistribution of perturbation energy to a broad range of frequencies follows,
with the phenomenon occurring earliest for the broadband case and at more or less
equivalent streamwise locations for the tonal and natural cases, despite drastically
different input energy levels.

The significance of nonlinear disturbance interactions reported herein have important
ramifications regarding the comparison of LST predictions with experimental and
numerical results. Several authors have noted this agreement to be surprisingly good
(Lang et al. 2004; Marxen et al. 2012, 2015; Yarusevych & Kotsonis 2017b) even
in flow regions where instability waves attain relatively large amplitudes. In general,
these assertions are supported, with the crucial caveat being that agreement is entirely
predicated on the relative importance of nonlinear effects for the particular disturbance
mode being considered. For example, when all unstable disturbance amplitudes are
small and thus nonlinear effects not important, excellent agreement is found with LST
until disturbance amplitudes become relatively large, as is observed for the broadband
and natural cases. On the other hand, if one disturbance mode is preferentially excited,
then its development dominates all others via nonlinear damping. As a consequence,
the nonlinear effects imposed on the dominant mode are weak, and so the dominant
mode grows in strong accordance with LST.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

54
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.546


32 J. W. Kurelek, M. Kotsonis and S. Yarusevych

Examination of the time-resolved flow development reveals that the unstable flow
disturbances produce quasi-periodic shear layer vortices, that form through the roll-up
of the separated shear layer just upstream of the maximum shape factor location. For
all cases, these structures are strongly two-dimensional and oriented in the spanwise
direction at formation, before undergoing significant spanwise deformations, ultimately
leading to their breakdown. The spanwise deformations of the shear layer rollers are
shown to fall within a range of wavelengths that covers two to seven times their
streamwise wavelength. Tonal excitation is shown to have the most distinct effect on
the development of the shear layer vortices. Specifically, it leads to earlier formation,
a fixed shedding frequency and streamwise wavelength, increased spanwise coherence,
and enhances the organization of spanwise deformations at a wavelength equal to two
times the streamwise wavelength. In contrast, while advancing the roll-up location
due to the increase in the initial amplitude of perturbations, broadband excitation does
not appreciably alter any other characteristics compared to the natural case. However,
the results suggest that the advancement of shear layer roll-up is the most significant
factor influencing separation bubble topology. In particular, for a given angle of
attack and Reynolds number, similar separation bubble topologies can be attained
with different types of external forcing that induce vortex formation at comparable
streamwise locations.
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