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Large grains can grow in circumstellar discs
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Abstract. We perform coagulation & fragmentation simulations to understand grain growth in
T Tauri & brown dwarf discs. We present a physically-motivated approach using a probability
distribution function for the collision velocities and separating the deterministic & stochastic
velocities. We find growth to larger sizes compared to other models. Furthermore, if brown dwarf
discs are scaled-down versions of T Tauri discs (in terms of stellar & disc mass, and disc radius),
growth at the same location with respect to the outer edge occurs to similar sizes in both discs.
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1. Introduction
Previous models of coagulation and fragmentation of an ensemble of dust aggregates

often assumed that a collision between particles of particular sizes occurs with a single
velocity. We develop a more physically-motivated model for the collision velocities.

2. Principles behind the new physically-motivated model
The key features are: (i) a particle’s velocity is not single-valued but is described

by a probability distribution function (PDF); (ii) a particle’s velocity in any direction
is a Gaussian with a mean given by the deterministic velocity in that direction (i.e.
radial drift, azimuthal drift or vertical settling) and a standard deviation given by the
stochastic velocities (i.e. turbulence & Brownian motion). The analytical 1D PDF of
relative velocities in each direction is produced for each pair of particles, and combined
to give a 3D collision velocity PDF.

We assume that collisions with velocities lower than the bouncing velocity, vb , lead to
growth while those higher than the fragmentation velocity, vf , break apart if their mass
ratio is smaller than the mass transfer parameter and stick if it is larger. Physically this
means that collisions between unequal-sized aggregates are likely to lead to growth while
equal-sized aggregates are likely to fragment - a result shown by experiments (e.g. Teiser
& Wurm 2009) and simulations (Meru et al. 2013b). At all other velocities the aggregates
bounce. Fig. 1 shows that the final 3D PDF may cover any of these collisional outcomes
- these are used to simulate the local size evolution of an ensemble of particles in a disc.

3. Application to T Tauri and brown dwarf discs
We simulate grain growth locally in a disc with mass Md = 0.05M� around a 0.75M�

star (see Garaud et al. 2013 for parameters) and find growth to larger sizes (Fig. 2, left).
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Figure 1. Schematic diagram showing the collisional outcomes of sticking and bouncing at low
velocities, and fragmentation and mass transfer at high velocities. The PDF has an expectation
in one zone but extends into others.

Figure 2. Surface mass density distribution of particles. Left: at 1au for a model (i) without
a velocity PDF (Model O), (ii) where the stochastic velocities dominate over the deterministic
ones (Model M), and (iii) the new model (Model N). Right: for the brown dwarf disc (solid line)
and T Tauri disc (dotted line) at 2/3 of the distance to the outer radius.

We also model growth in brown dwarf & T Tauri discs where the latter is a scaled-up
version of the former, i.e. the same disc to star mass ratio, simulated at the same location
with respect to the truncation radius, Rt , and where Md & Rt are set using the observed
relation Md ∝ R1.6

t (Andrews et al. 2010). We simulate growth at 10au in a brown dwarf
disc with Md = 4× 10−4M� and Rt = 15au around a 60MJup brown dwarf, and at 60au
in a T Tauri disc with Md = 7 × 10−3M� and Rt = 90au around a 1M� star. Fig. 2
(right) shows that growth at the equivalent location in both discs occurs to the same size
(Meru et al. 2013a).

4. Conclusions
We present a model for growth and fragmentation that considers a particle’s velocity

PDF and separates the deterministic and stochastic velocities. We find growth to large
sizes and the emergence of two particle populations. In addition if brown dwarf discs are
scaled-down versions of T Tauri discs, growth occurs to similar sizes. Our model may
potentially explain the large (≈ mm-sized) grains observed in brown dwarf discs (e.g.
Bouy et al. 2008) and the long-standing problem of grain growth in discs: growing dust
while maintaining a small-size population.

References
Andrews, S. M., et al. 2010, ApJ, 723, 1241
Bouy, H., et al. 2008, A&A, 486, 877
Garaud, P., Meru, F., Galvagni, M., & Olczak, C. 2013 ApJ, 764, 146
Meru, F. and Galvagni, M. & Olczak, C., 2013, ApJ, 774, L4
Meru F., Geretshauser R. J., Schaefer C., Speith R., & Kley W., 2013, MNRAS, 435, 2371
Teiser, J. & Wurm, G., 2009, MNRAS, 393, 1584

https://doi.org/10.1017/S1743921313008247 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921313008247

