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The role of bed separation and friction in sliding 
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ABSTRACT. The classic sliding theories usually assume that the sliding motion 
occurs frictionlessly. However, basal ice is debris-laden and friction exists between 
the substratum and rock particles embedded in the basal ice. The influence of 
debris concentration on the sliding process is investigated. The actual conditions 
where certain types of friction apply are defined, the effect for the case of bed 
separation due to a subglacial water pressure is studied and consequences for the 
sliding law are formulated. The numerical modelling of the sliding of an ice mass 
over an undulating bed, including the effect of both the subglacial water pressure 
and the friction, is done by using the finite-element method. Friction, seen as a 
reduction of the driving shear stress due to gravity, can be included in existing 
sliding laws which should contain the critical pressure as an important variable. 
An approximate functional relationship between the sliding velocity, the effective 
basal shear stress and the subglacial water pressure is given. 

LIST OF SYMBOLS p' Debris concentration 
Normal stress 

General. Symbols which are explained where they oc­
cur in the text are only listed if they appear again sub­
sequently. 
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Fr 
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gj 
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Flow-law parameter 
Amplitude of sine function 
Areal concentration of rock fragments 
Debris concentration by volume 
Contact force between rock fragment and the 
bed 
Frictional force 
Gravity acceleration 
Vector of gravity acceleration 
Glacier thickness 
Length of separated b ed a rea 
Effective pressure 
Flow-law parameter 
Unit normal vector 
Pressure (general) 
Ice-overburden pressure 
Water pressure 
Separation pressure 
Critical pressure 

Pn 
,1Pmax 
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Amplitude of normal stress 
Radius of rock particle 
Roughness of the glacier bed (= aj),.) 
Bed-separation parameter 
Stress tensor 
Stress deviator 
Second invariant of stress deviator 
Velocity vector 
Velocity-vector component 
Basal sliding velocity 
Velocity due to internal deformation 
Surface velocity 
Basal sliding velocity in the case of friction 
Basal sliding velocity in the case of bed 
separation 
Basal sliding velocity in the case of bed 
separation and friction 
Velocity at the top of the modelled section 
Velocity component normal to the sliding 
interface 
Cartesian coordinates 
Transverse coordinate describing the base 

Mean inclination angle of basal surface 
Inclination angle of basal surface 
Kronecker delta 
Strain-rate tensor 
Viscosity 

77 
https://doi.org/10.3189/S0022143000009618 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000009618


Journal of Glaciology 

). Wavelength of bed undulation 
J.L Coefficient of friction 
v Poisson's ratio 
E Coefficient of bed geometry (Hallet, 1981) 
p Mass density 
T Shear stress 
Tb Effective basal shear stress 
Tf Frictional drag 

INTRODUCTION 

Observations in accessible subglacial cavities (e.g. Viv­
ian and Bocquet, 1973) and borehole photography (En­
gelhardt and others, 1978) suggest that the classic sliding 
theories, based on the assumption of clean ice, should be 
modified to allow for the effect of basal debris. 

Detailed measurements of velocity and subglacial 
water pressure at Findelengletscher (Swiss Alps) were 
done by Iken and Bindschadler (1986). Their results 
agree qualitatively with current sliding theories. How­
ever, the measured water-pressure values are too large 
compared to the observed sliding velocities. According 
to theory, the glacier should in some cases have reached 
the state of accelerated motion (Fig.l). This, in fact, is 
not the case. It was supposed that friction between the 
dirty basal ice and the glacier bed prevents the glacier 
from slipping off. 

Only a few attempts have been made to include fric­
tion in the sliding law. Morland (1976b) studied some 
sort of Coulomb friction, but without regard to the ac­
tual physical processes at the sole. Bindschadler (1983) 
implicitly made the same assumption by defining a bed­
separation index I rv T / N which is equivalent to the 
friction coefficient. BQulton (e.g. 1974) has dealt in full 
with the problem of friction in connection with abrasion 
and erosion, especially in the case of sediment beds. He 
argued that the normal load of ice is the relevant vari­
able, an assumption probably true if the debris concen­
tration is very large. Hallet (1981) developed a physical 
model based on what really could happen at the ice- rock 
interface if the debris concentration is small. 

This study investigates the influence of debris concen­
tration in the basal ice on the sliding velocity of a glacier 
for various debris concentrations. The actual conditions 
where certain types of friction apply are defined and the 
consequences for the sliding law are formulated. The 
classic Coulomb friction is modified in accordance with 
the notion that a glacier is rubbing over its bed like a 
piece of sandpaper (Drewry, 1986). The main objective 
then is to extend Hallet's concept to the general case 
of sliding on an undeformable bed, including both debris 
friction and the effect of subglacial water pressure. Hallet 
assumed that friction occurs due to rock particles which, 
embedded in the basal ice, are pressed against the rigid, 
impermeable rock bed and dragged along. This process 
acts on the upstream side of bed undulations. As the 
frictional force depends on the local velocity field, a num­
erical approach is required. The numerical modelling of 
the sliding of an ice mass over an undulating bed, in­
cluding the effect of both the subglacial water pressure 
and the friction, is done by solving the problem by the 
finite-element method. It is not possible to give a simple 
sliding law, but the present study can provide an idea 
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of which variables are relevant a nd how they could be 
included in a realistic relation. 

BASIC MODEL 

All considerations, analytical as well as numerical, are 
based on the following glacier model with correspond­
ing assumptions and boundary conditions (e.g. Hutter, 
1983). 

Considering ice as an impermeable, viscous, isotropic, 
incompressible fluid at constant temperature results in 
the following set of equations for a mathematical ice-flow 
model: . 

Ui ,i = 0 

PUi,t = tij ,j + pgi 

f.ij = f(t;j) 

(1) 

(2) 
(3) 

expressing the mass conservation (1), the balance of 
momentum (2), and the constitutive relation between 
strain-rate tensor and deviatoric stress tensor (3). The 
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Einstein convention for vectors , tensors and deviations 
was used in the above. Stated in more detail: 

Uj Velocity vector 
p Density of ice 
tij Stress tensor 
gj Vector of external forces (gravity) 
Eij Strain-rate tensor Eij = ~(uij + Uj,i) 

t:j Deviatoric stress tensor t: j = tij + p8ij 

p Hydrostatic pressure p = -!tii 
8ij Kronecker symbol. 

The upper boundary condition (stress-free surface) is 

(4) 

The basal boundary condition for the case of no ice­
bedrock separation is either the no-slip condition 

Uj =0 (5a) 

or the perfect-slip condition 

(5b) 

where os are unit normal vectors. For the case of non­
vanishing tangential stress, this means if there is friction 
between the ice and the bed, Equation (5b) becomes 

(5c) 

where Tfi is the vector of the tangential traction or the 
frictional drag. Furthermore, no ice- bed separation and 
neglecting the process of melting and refreezing of basal 
ice implies 

Ujnj = O. (5d) 

For the case of bed separation, the boundary condition 
in the separated area is 

(5e) 

where Pw is the water pressure in the subglacial hydraulic 
system. 

A general solution to the above equations for 'any 
given glacier geometry has not yet been found because 
of the non-linearity of the constitutive relation and the 
complexity of the boundary conditions, and is probably 
not worth seeking. There are some analytical solutions 
for special conditions of the two-dimensional flow (e.g. 
Nye, 1959) and the sliding problem (e.g. Lliboutry, 1968; 
Nye, 1969; Kamb, 1970; Fowler, 1981), and a great num­
ber of numerical solutions for specific situations, some 
of which solve the sliding problem by the finite-element 
method: Iken (1981), Sikonia (1982) and Meysonnier 
(1983). 

SLIDING WITH BED SEPARATION - A 
BRIEF REVIEW 

In the classic sliding theories (Weertman, 1957; Nye, 
1969; Kamb, 1970), the sliding velocity Ub is a function of 
the basal shear stress Tb, a fixed value for a given glacier 
geometry. Effects of variable water pressure are not in-

cluded. Hence, it is impossible to interpret seasonal or 
short-term variations in the surface velocity which, as a 
matter of fact, do exist (e.g. Aellen and Iken, 1979). 

Increased velocity after heavy melting or rain suggests 
that water at the base influences the sliding velocity. 
This occurs mainly from surface meltwater penetrating 
through the glacier to the bed, and not by means of 
water originating from internal heat sources. Dye-tracer 
experiments have often shown that the water flows to the 
terminus much slower than it would be expected for flow 
through large cylindrical channels. One may therefore 
conclude that a more complex system of passageways, 
channels and connected cavities exists. Thus the water 
pressure Pw in this complex subglacial hydraulic system 
can be chosen as a further relevant variable in a realis­
tic sliding law. Since the cavities are interconnected, the 
water pressure is the same in all cavities, neglecting dif­
ferences in altitude, described by Lliboutry (1976) as an 
interconnected hydraulic regime. However, n~e hydraulic 
system itself varies, for instance, at the beginning of the 
melt season: the cavities grow, passageways between cav­
ities form and tunnels re-open. Iken (1981) and Iken and 
others (1983) calculated and observed that the sliding 
velocity is at a maximum when the cavities are growing. 
Both the water pressure and the state of the subglacial 
hydraulic system influence the sliding velocity (Kamb, 
1987). 

Lliboutry (1958) was the first to point out that, in 
addition to the two processes introduced by Weertman 
(1957), i.e. regelation and enhanced deformation, a third 
one, that is, flow with cavity formation, should be con­
sidered. Extensive studies on this problem (Lliboutry, 
1968, 1979, 1987a, b) have not yet resulted in a definitive 
sliding law. As a new variable, the effective pressure N 
given by the difference between the ice-overburden pres­
sure Po and the subglacial pressure Pw was introduced. 
The smaller the effective pressure, the more extended 
is the bed separation. Cavities in the lee of bedrock 
bumps reduce the roughness and so increase the sliding 
velocity. By introducing the effective pressure N into 
the sliding law, it seems possible to explain velocity fluc­
tuations. Kamb (1970) has already discussed important 
aspects of bed separation. Fowler (1986, 1987) reform­
ulated the problem of sliding with bed separation as a 
Hilbert problem and presented a solution for the case of 
a periodic bedrock (Fowler, 1986) and of a more gen­
eral bedrock (Fowler, 1987). He introduced the idea of 
matched asymptotic expansions, a well-known method in 
fluid-dynamic boundary-layer theory. Thus, the problem 
is split into the flow in a basal boundary layer and the 
outer large-scale or bulk glacial flow. The so-called slid­
ing law is therefore the boundary condition of the outer 
flow at the smoothed bed, and the somewhat ill-defined 
terms basal shear stress and basal velocity become clear 
when seen from this point of view. Ill-defined, because 
the real boundary condition at the ice- rock interface is 
the perfect-slip condition, thus the shear stress immed­
iately at the base equals zero. Fowler corroborated Lli­
boutry's (1979) observation that the sliding law strongly 
depends on the bedrock topography. For the particular 
case of a sinusoidal bedrock, he found the sliding law to 
be multi-valued, as the surge behaviour suggests. How­
ever, in the case of a more general bedrock the sliding law 
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is no longer multi-valued and therefore the surge phen­
omenon may be explained by the different state of the 
subglacial hydraulic system, an assumption which agrees 
with recent results of the 1982- 83 surge of Variegated 
Glacier (Kamb and others, 1985; Kamb, 1987). 

RE-CALCULATION OF BED SEPARATION 
FOR A SINUSOIDAL BED 

The sliding over a perfectly lubricated sinusoidal bed is 
a well-studied particular case of the sliding problem (e.g. 
Lliboutry, 1968). In the section below only the process 
of enhanced creep is considered; regelation is neglected. 

On a sinusoidal bed, the stress distribution normal 
to the bed can be calculated from the force balance 
(e.g. Raymond, 1980, equations 46a, 46b). The pres­
sure which the sliding ice mass exerts vertically on the 
bed is on average equal to the ice-overburden pressure 
Po = pgh cos et, but due to the undulating bed, it os­
cillates: larger than the ice-overburden pressure on the 
upstream faces of bed undulations and smaller on the 
downstream faces. In the down-glacier direction, the 
force balance requires that the sum of components in 
the x-direction of the normal stress Pn (x) is equivalent 
to the average shear stress T = pgh sin et. In detail, for a 
two-dimensional model (Fig. 2) with bed topography 

. (27rX) Yb(X) = a Sill T (6) 

The force balance requires 

_ ~ (. ()OYb(x)d 
T - A lo Pn X ox X 

(7) 

and 

1 fA ( (OYb(X))2)! Po = ~ lo Pn(x) 1 - a;;- dx. (8) 

With the approximation of small bed roughness (usually 
tacitly assumed), the oscillating normal stress can be 
given 

AT (2nx) Pn(x) = Po + na cos T . (9) 

The minimum normal stress is the separation pressure 
Ps which is well established and has been introduced in 
the classic sliding theories (Lliboutry, 1958; Nye, 1969; 
Kamb, 1970; Morland, 1976a): 

AT 
Ps=Po--· 

an 
(10) 

The water pressure at which the sliding ice mass attains 
the state of unstable motion is called critical pressure 
Pc. In general, the critical pressure is below the ice­
overburden pressure. Independent of the kind of bed pro­
file, the critical pressure can be written as (Iken, 1981) 

T 
Pc= Po--­

tan IJ 
(11) 

where IJ is the angle which the stoss faces make with 
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Fig. 2. Geomet7'Y of the model: ice-mass slid­
ing over an undulating bed. 

the mean downstream slope. For the special case of a 
sinusoidal bed, the steepest tangent of the stoss face is 

27ra 
(tanjJ)max = T 

and thus 
AT 

Pc=Po - -. 
2na 

(lla) 

This means that the critical pressure is always half-way 
between the ice-overburden and the separation pressures 

(12) 

The stress distribution (Equation (9)) which determines 
the bed separation is changes itself by the bed separation. 
Hence, the formation of water-filled cavities is distinctly 
a dynamic process. The subsequent balance consider­
ations, following partly a similar derivation by Lliboutry 
(1968), describe only a singular transient state and can 
help to understand the process of bed separation, but 
cannot fully describe the dynamics. 

It is assumed that bed separation occurs symmet­
rically around the inflection point (x = A/2) on the lee 
side of a rock bump. Real cavities are probably asym­
metrical. The length of the separated zone is 21 (see 
Fig. 3). The bed separation is described by the bed­
separation parameter s = 2l/ A, i.e. generally s gives the 
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Fig. 3. Bed geometry and stress distribution 
before Pn(x} and after P;Jx} bed separation. 
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proportion of bed separation. In contrast to the deriv­
ation by Lliboutry (1968) which assumes that the mean 
pressure over the separated area is unchanged by the 
bed separation, the separation length is determined by 
considering that the force balance has to be fulfilled in 
both directions, normal and parallel to the mean bed 
slope. With these assumptions, the stress distribution 
along one wavelength of the sinusoidal bed can be given 
as follows: 

p~(x) = pi + L1pl cos (2:X) 
p:,(x) = Pw 

A A 
for -- + l < x < - ·-l 2 --2 

A A 
for - - l < x < - + l. 2 - - 2 

The continuity at the end of the cavity requires 

I I (27r (A )) Pw = p + L1p cos >: '2 + I . 

Hence, the constant contribution pi is 

I I (27r1) P = Pw + !lp cos T 

and thus 

I ( I [(27r1) (27rX)] Pn x) = Pw+!lp cos T +cos T . (13) 

This expression reduces to Equation (9) when bed separ­
ation ceases. The amplitude of the fluctuating contrib­
ution can be determined by considering the force balance. 
In the y-direction, the mean stress perpendicular to the 
bed has to be equal to the ice-overburden pressure Po. 
As the stress distribution is symmetrical about the in­
flection point in the lee of the bed undulation, only half 
a wavelength is considered. 

PoA/2 = t, p:,(x) dx 
}>./2 

= Pw l + 1:2+1 (Pw + !lpl [cos (2~1) 
+ cos (2:X)]) dx. 

It follows that 

Po = Pw + !lpl [:; sin 7rS + cos7rs(l - S)] 

or 
!lpl = 7r(Po - Pw ) 

7r (1 - s) cos 7r S + sin 7r S • 
(14) 

An additional relation follows from the force balance in 
the x-direction 

Evaluation of the integrals gives 

T = ~ !lpl[COS 7rS sin 7rS + 7r(1 - s)]. (15) 

By combining Equations (14) and (15), one gets a func­
tional relationship between the subglacial water pressure 
and the bed separation 

_ AT (sin7rS+7r(l- S)COS7rS) 
Pw - Po - - ( ). 7r a sin 7r S cos 7r S + 7r 1 - s 

(16) 

Figure 4 shows the bed separation as a function of the 
subglacial water pressure. In contrast to the theories of 
Lliboutry (1968), Fowler (1986) and Kamb (1987), the 
ice is practically fully separated from the bed at the crit­
ical pressure which seems to be the crucial variable. Neg­
lecting the force balance in the x-direction, and assuming 
instead that the mean stress on the separated area is the 
same as before separation (an assumption which may 
hold for small separation only), leads to a much smaller 
bed separation, indicated in Figure 4 by a broken line. 
In that case, at the critical pressure the bed separation 
parameter is not S = 1 but S = 0.6 and reaches S = 1 
at the ice-overburden pressure. This misunderstanding 
may have given rise to an overrating of the effective pres­
sure N which in the authors' opinion should not appear 
in a realistic sliding law. 

A POSSIBLE SLIDING LAW 

A realistic, easy-to-use boundary condition for large­
scale motion of temperate glaciers and particularly 
warm-based ice sheets is still not in sight. Nevertheless, 
simple sliding laws are frequently used by the modellers 
(Bentley, 1987) without regard to the physical processes. 

s 
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Fig. 4. Bed separation as a f1mction of the 
subglacial water pressure for a sinusoidal bed: 
(a) without friction , (b) with sandpaper fric­
tion (J.L = 0.03, Eqnation (26)). Broken line 
indicates e7Toneons sol1dion assuming that the 
mean press1£re over the separated area is un­
changed. Normalized representation [Fw] = 
( Pw - Ps) / ( Po - Ps). 
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Commonly, they use the "generalized Weertman law" of 
the form 

'Tb = kugNfi . 

Budd and others (1979) and Bindschadler (1983) fitted 
their data to such a relation and proposed a = f3 = ~. 
Thus, the sliding law can be given in the popular form 

(17) 

Hence, no sophisticated law but a very crude relation 
between some of the relevant parameters is used. 

From the theoretical treatment of the sliding over a 
sinusoidal bed, it seems clear that one of the pertinent 
variables to introduce in a sliding law is the critical pres­
sure, more precisely the difference between the acting 
water pressure and the critical pressure. The expres­
sions proposed below are intended to give an idea how a 
possible sliding law could look 

rUb] + (Pc ~ Ps) n 

rUb] + (Pc ~ P
w 

) n for Pw > Ps 

where rUb] is a dimensionless sliding velocity. 

(18) 

Equation (18) differs substantially from Equation (17) 
particularly where Alpine valley glaciers are considered. 
In the case of ice sheets where the basal shear stress is 
small, the difference between Equations (17) and (18) 
may be small. 

ROCK-TO-ROCK FRICTION AT THE 
SLIDING INTERFACE 

In most of the theoretical work, frictionless sliding is 
assumed (Weertman, 1957; Lliboutry, 1968; Nye, 1969, 
1970; Kamb, 1970; Morland 1976a; Fowler, 1981). In re­
ality, friction plays an important role and its effects can 
be seen via erosive patterns such as grooves and striae on 
rock bumps in the forefield of glaciers. Basal ice gener­
ally contains debris in varying concentrations and sizes. 
When a glacier slides over a bed of rigid or deformable 
substrata, there is some rock-to-rock friction which slows 
down the sliding motion. There is no uniform theory of 
friction. Many findings seem to be preliminary and ex­
tremely dependent on the actual circumstances in play 
(Szeri, 1987). The experimental "laws" governing fric­
tion, namely (1) friction is proportional to the normal 
load, and (2) friction is independent of the apparent area 
of contact, are known as Coulomb friction. In the case 
of glaciers, this concept applies under special circum­
stances only. Since the basal ice is an ice- rock mixture, 
the kind of friction should depend on the concentrations 
of the components. The more rock particles there are in 
the ice, the stiffer the basal ice layer. The proportion 
of debris in the basal layer determines the kind of fric­
tion concept which applies: Coulomb, "sandpaper" or 
"Hallet" friction. 

Coulomb friction 

Coulomb friction is friction between rigid bodies. There 
is no motion at the sliding interface except if the shear 
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stress due to the weight driving the sliding mass is large 
enough to overcome the frictional drag. In general, this 
is not an appropriate model for glaciers. It may apply in 
the extreme case where a thick layer of heavily debris­
laden ice at the glacier sole is essentially undeformable. 

A rigid body with a rough surface is not entirely in 
contact with the bed, but is so only at a limited number 
of asperities. In the case where water exists at the bed, 
the pressure the ice exerts on the bed is reduced by the 
water pressure Pw and the mean normal stress is approx­
imately equal to the effective pressure N. Therefore, the 
friction law can simply be written (Boulton, 1974) as: 

Tr = p.N (19) 

where jJ, is the coefficient of friction. For realistic values 
of the friction coefficient, sliding is only possible at very 
high values of water pressure (close to the ice-overburden 
pressure) or on a steep surface slope (Fig. 5). 

Sandpaper friction 

The concept that will be referred to as sandpaper fric­
tion is based on a two-layer model consisting of a thin 
sediment layer poor in ice and a very thick layer of more 
or less clean ice. In the sediment layer, the rock part­
icles are close together; the ice can no longer flow around 
them and is simply the glue holding the clasts together, 
yet due to the ice the basal layer is deformable. Between 
the rock particles in the layer and the rock bed there is 
Coulomb friction. Hence, the basal layer rubs over the 
bedrock like a piece of sandpaper (Drewry, 1986). The 
difference between "sandpaper" and Coulomb friction is 
that the ice mass is really everywhere in contact with 
the bed, since the basal layer is deformable and adapts 
to the contours of the bed. The principal difference is 
visible and decisive if a subglacial water pressure is in 
operation. In this case, water-filled cavities form and 
cover a proportion s of the bed; friction is restricted to 
the contact area, a proportion 1 - s of the bed. If the 
bed roughness is small and bed separation not too large, 

-------. Jl 

Fig. 5. C01domb friction: dependence of slid­
ing on dimensionless water pressure [Pwj = 
Pw / Po and friction coefficient jJ,. Three cases 
are considered with different mean bed slopes: 
tana = 0.05, 0.1, 0.2. Above a line, sliding 
(for a given 1nean bed slope) is poss ible, since 
[Pwj is large eno1£gh or p. is small enough. 
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the projections of the contact areas on a plane parallel to 
the mean bed slope do not differ significantly from the 
actual contact areas. Therefore, the mean pressure Pn 

on the contact areas can be calculated readily from the 
force balance perpendicular to the mean bed slope: 

The critical pressure P: in the case of friction can be 
calculated from the force balance in the direction of the 
steepest tangent 

PO =Pn (1-s)+sPw • (20) inserting the expression for the frictional stress (Equat­
ion (23)) yields 

The frictional stress on the contact areas is 

(21) 

and hence the frictional drag, related to the whole 
glacier-bed area, is 

(22) 

The frictional drag gets smaller if water pressure is in 
operation, but is not, as usually assumed, proportional 
to the effective pressure N . The friction is not reduced 
as a consequence of a smaller effective pressure, but as 
a result of the smaller contact area. Since, in general 
s < I, the sandpaper friction is larger than the Coulomb 
friction for a given water-pressure value 

Friction along the sliding interface causes higher lim­
iting values for both the separation and the critical pres­
sure. An additional force is required to move the ice 
mass upward along the steepest tangent of the undul­
ating glacier bed. In the following derivation, a water­
pressure value near to the critical pressure is considered 
where the friction is restricted to a small contact area 
around the inflection point (Iken, 1981, fig. 1). This 
contact area does not differ significantly from its projec­
tion on to a plane parallel to the steepest tangent (cf. 
Fig. 2). The force balance normal to this plane is given 
by 

Po -->. cos ({3 - a) = P.,>.(1 - s) cos 13 + Pw>'s cos 13 . 
cos a 

The frictional force Fr opposing the motion upward along 
the steepest tangent follows as 

Fr = J.LP.,A(l - s) cos {3 

= J.L (~>. cos ({3 - a) - PwAS cos {3) 
cos a 

and hence the frictional stress is 

(23) 

Since near the critical pressure S = 1 the second term 
(T tan 13) is by far the smallest and can be neglected, 
the frictional drag can be given by Equation (22) as in 
the case of small bed roughness and not too large bed 
separation. Thus, for two extreme conditions, namely 
S ~ 0, and s ~ I, the same expression was derived. One 
may therefore suspect that Equation (22) also holds for 
intermediate values of s. 

I Tr 
Pc =Pc +-{3' tan 

(24) 

Neglecting again the smallest term in Equation (23), the 
critical pressure in the case of friction can be given as 

I T - Tf 
Pc = Po - --{3- . 

tan 
(24a) 

Replacing the driving shear stress by its effective value, 
T - Tf, the separation pressure P; in the case of friction 
can be given accordingly as 

pi _ R T - Tf 
s- 0--;:;:-' (2S) 

Before the ice separates from the bed (s = 0), the fric­
tional drag is Tf = J.LPo and hence 

(2Sa) 

The expressions for the separation and critical pressure 
(Equations (24) and (2S)) could also have been derived 
from the relation describing the dependence of the bed 
separation on the subglacial water pressure (Equation 
(16)) replacing again the driving shear stress by its ef~ 
fective value 

(R P
,)sin7rscos7l's+7r(1-S) 

T - Tr = trr 0-
w sin 7r S + 7l' (1 - s) cos 7r S 

(26) 

and evaluating the two extreme cases where S = 0 and 
S = I, respectively. The effect of friction on the bed­
separation process is shown in Figure 4 (line b) by an 
example where the friction coefficient is J.L = 0.03. That 
the friction slightly changes the stress distribution has 
been neglected. 

As can be seen in Figure 4 and by comparing the 
expressions for the separation and the critical pressure 
(Equations (24) and (2S)), the effect of friction on the 
separation pressure is much more pronounced than on 
the critical pressure since the frictional drag is reduced 
by increasing water pressure. Thus, the separation pres­
sure approaches the critical pressure for already small 
values of the friction coefficient, e.g. for a sinusoidal bed 
with rather large roughness r = 0.16; this is the case 
for J.L = 0.2 (for smaller roughness values, e.g. r = O.OS, 
the separation pressure is equal to the critical pressure 
at a friction coefficient J.L = 0.06). This means, for larger 
values of the friction coefficient, the sliding motion of an 
ice mass is constant (probably equal to zero), indepen­
dent of the water pressure, unless the critical pressure is 
exceeded. In that case, the glacier switches to the state 
of unstable motion (see Fig. 6, line c). 
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Influence on the sliding motion 

We again assume that the friction leads to a reduction 
of the driving shear stress. The resultant effective shear 
stress is called basal shear stress T~ = T - Tf. 

Accordingly, the proposed functional relationship bet­
ween su bglacial water pressure and (dimension less) slid­
ing velocity (Equation (18)) is modified 

[u~l "-J (p~ ~ P
w 

) n for Pw > P: (27) 

where primes denote variables depending on friction. 
Figure 6 shows qualitatively the effect of sandpaper fric­
tion on the sliding motion. Line (a) gives the relation 
for debris-free ice; lines (b) and (c) indicate a possible 
relation between subglacial water pressure and sliding 
velocity for debris-rich basal ice. In case (b), the sep­
aration pressure is below the critical pressure. Line (c) 
illustrates the above-mentioned "stick- slip" motion for 
large values of the friction coefficient. 

Hallet friction 

When the basal debris is rather sparse, the contact force 
F pressing the rock particles to the bed no longer dep­
ends on the ice-overburden pressure. According to Hallet 
(1979, 1981), the contact force F is proportional to the 
ice velocity Vn normal to the bed. Friction only occurs on 
surfaces along which ice converges with the bed, which 
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Fig. 6. Functional relationship between the 
water preSS1tre and the s liding velocity with­
out (aJ and with sandpaper friction (b), (c) 
(values with apostrophes). Line (c) reflects 
the f eature that for large friction the separ­
ation pressure can exceed the critical pressure. 
Thus, as long as the water pressure is below 
the critical pres.mre, the s liding motion is uni­
form. At the critical pressure the ice mass 
switches at once to the state of 1Lnstable mot­
ion. 

corresponds to positive values of vn • On the lee side of 
the bumps, Vn is negative and hence there is no friction. 

If again it is assumed that the driving shear stress 
is partly used for deformational motion and partly for 
overcoming the frictional drag, the sliding velocity Ub is 
(according to a linear sliding law): 

(28) 

where Ub is basal sliding velocity; () is a constant des­
cribing bedrock roughness and ice viscosity; T is average 
shear stress at the base (due to gravity); Tf is frictional 
drag. 

In Hallet's notation, the above equation is written as 
follows: 

1 
Ub = -(T - /1cF) 

~ry 
(29) 

where ~ is coefficient of bed geometry; T] is ice viscosity; 
/1 is coefficient of friction; c is areal concentration of rock 
particles in contact with the bed; F is contact force bet­
ween rock fragments and the bed (proportional to the 
ice velocity Vn normal to the bed). 

A weak point in Hallet's theory is that he tacitly as­
sumed that there are always rock particles available on 
the upstream side of rock bumps. Shoemaker (1988) has 
shown, based on the fundamental work of Rothlisberger 
(1968), that a rock particle embedded in the basal ice 
is able to contribute only once to friction and then is 
absorbed, if, as Hallet assumed, the melting rate is 
neglected. However, in large-scale strained areas (e.g. 
where the glacier flows over a step or a riegel) sufficient 
rock particles are transported to the bed, so that the 
Hallet friction concept applies. Since the frictional term 
in the sliding law depends itself on the sliding velocity, 
an iterative solution procedure is necessary. 

NUMERICAL SIMULATION OF SLIDING 
WITH BED SEPARATION AND FRICTION 

The problem of glacier sliding defined by Equations (1)­
(5) is solved numerically for the special case of a sin­
usoidal bed by the finite-element method using the ex­
isting two-dimensional FE-code RHEO-STAUB. The in­
fluence on the basal sliding velocity of bed topography, 
of constitutive relation, of water pressure and of friction 
(of the Hallet type) at the ice-rock interface was stud­
ied. The FE-code used in this study is based on a hybrid 
stress model for the linear elasticity equations. It was de­
veloped for rock mechanics problems at the Institut fur 
Bauplanung und Baubetrieb der ETH Zurich (IBETH) 
(Fritz, 1981; Fritz and Am, 1983) . 

General assumptions of the numerical model 

The standard assumptions are made: constant density, 
constant temperature and incompressibility of the ice. 
Two kinds of constitutive relations are considered: a 
Newtonian and a non-Newtonian called Glen's flow law. 
In terms of second deviatoric stress and strain-rate in­
variants, T{, and En, the linear relation can be given as 

. 1 I 
En = -tn 

2ry 
(30) 

where T] is the viscosity and accordingly the non-linear 
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flow law 
Ell = At;! n 

where A and n are the flow-law parameters. From a 
compilation of different flow-law parameters by Pater­
son (1986), numerical values were chosen: n = 3 and 
A = 3.5 X 10-15 kPa-3 s-1 = 0.11 bar-3 a-I correspond­
ing to a temperature close to the melting point of ice at 
atmospheric pressure. For n = 1 and T = 1.18 bar = 
118 kPa, a value for the viscosity 'T/ can be determined by 
2'T/ = 1/AT2 to 'T/ = 2.06 x 10 13 Pas. 

The glacier-sliding problem over an undulating bed 
is studied in a longitudina l section along the flow dir­
ection. The whole glacier is assumed to be 200 m thick 
and the average slope is 0.1, corresponding to an angle of 
5.7°. Our focus is on the bottom boundary condition and 
therefore on the lowest meters of a glacier or ice sheet. 
Hence, only a section of 25 m x 60 m is chosen for simul­
ation of the flow and not the entire ice mass. The bound­
ary conditions around the small section are adapted ac­
cordingly. Wavelengths of 6, 10, 20 and 30 m were con­
sidered. In addition to the wavelength, the roughness 
is varied: 0.02, 0.05, 0.10. For comparison, actual val­
ues, measured at Findelengletscher (Monte Rosa, Swiss 
Alps), are a wavelength of 20- 50 m and a bed roughness 
of about 0.02 (Schweizer, 1989). 

Three cases of bottom boundary conditions are con­
sidered: no slip (for testing), perfect slip and sliding with 
friction. It is always assumed that the ice mass rests on 
an impermeable and undeformable bed: a classic "hard 
bed" (Paterson, 1986). 

Sliding with friction between the rock bed and par­
ticles embedded in the basal ice is simulated using the 
friction model of Hallet (1981), appropriate in the case 
of sparse debris. In general, the dimensions and concen­
tration of the rock particles and the sliding velocity nor­
mal to the bed are the pertinent variables. The frictional 
drag is (Hallet, 1981, equations (1) and (2)), for R. = R: 

(31) 

where f is the factor of the viscous drag of a sphere near 
the bed, R is the radius of rock particle and R. is the 
transition radius analogous to the transition wavelength. 
The velocity Vn normal to the bed will be determined 
by the computation. The other variables are constants 
for a particular case in the numerical simulation. The 
following values are chosen: 

- -2 J1 = 1.0, f = 2.4, C = 2.5 ... 7.5 m ,R = 0.1 m. 

c = 2.5 m-2 corresponds to an areal concentration of one­
tenth of a close packing of spherical particles, i.e. in an 
area of 1 m2 , 2.5 particles of 10 cm radius are in con­
tact with the bed. Hallet defined a debris concentration 
p' = 4R2 c, where P' is the part of the bed effectively 
covered by debris. The maximum possible concentration 
(P' = 1) represents a close cube packing of spherical 
particles all in contact with the bed. The model Hal­
let developed is applicable for debris concentrations P' 
smaller than about 30%. Assuming identical layers, one 
upon another, with twice the particle radius thickness, 
the areal concentration can be related to the more usual 

concentration per volume Cv = ~7rR2C, e.g. C = 2.5m-2 

(R = 0.1 m) corresponds to Cv = 0.05. Since not all 
particles contribute with the whole cross-sectional area 
to the areal concentration, the concentration per volume 
Cv, calculated above, is a lower boundary. More realistic 
for the case considered would be Cv = 0.1, which means 
Cv = ~7rR2C. Hence, we assume that an areal concen­
tration of c = 2.5 m-2 corresponds to about 10% debris 
per volume of basal ice. 

The normal velocity Vn is determined at the centre of 
the spherical particle. As the FE-mesh is not fine enough, 
the velocity 10 cm above the bed is interpolated from 
the velocity value in the first node about the bed (about 
60 cm above). At the bottom, the normal velocity is of 
course zero, since the ice slides along the bed. Vn is partly 
positive (on the upstream side of rock bumps where the 
ice flows towards the bed), about zero (at the top of the 
bumps) and partly negative (on the leeward side where 
the ice flows away from the bed). For instance, the ver­
tical veloci ty 1 m above the bed is 50 cm a-I, if the basal 
sliding velocity is 17.3 m a-I. It is assumed that the nor­
mal velocity decreases linearly with depth. Thus, at the 
centre of the spherical rock particles (R = 10 cm), the 
normal velocity is about 5cma- 1 . Figure 7 shows some 
velocity values normal to the bed above a bump. 

By varying the amount of friction, different values of 
the concentration c are selected. In principle, the par­
ticle radius R or the friction coefficient J1 could also be 
changed with a similar effect. The friction varies as the 

y [m] 
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2 

1 

normal velocity [cm/a] 

-400-200 0 200 400 

+180 +270 -210 -130 +30 
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o 20 
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Fig. 7. Distribtdion of the s liding velocity nor­
mal to the bed some meters above a 1'Ock bump 
(for compa1'ison: Ub = 17.3 m a-I). Flow dir­
ection from right to left. "+" sign denotes 
positive values of the normal velocity (which 
means the ice flows towards the bed), "-" sign 
denotes negative valttes, respectively. 
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friction coefficient and as the square of the particle rad­
ius. This follows from Equation (31) and the assump­
tion of linearly decreasing normal velocity. Therefore, 
assuming R. = R, it does not really matter which of the 
variables, debris concentration, particle size or friction 
coefficient, are changed; the effect on the sliding can be 
the same. 

Bed separation occurs if the subglacial water pressure 
is larger than the minimal normal stress the ice exerts 
on the glacier bed. The effect of the water pressure is 
simulated by introducing a force normal to the local bed 
slope. The force corresponding to a certain given water 
pressure is basically active in all nodes where the nor­
mal stress is smaller than the water pressure. However, 
the separation area is larger than the area where the 
normal stress is smaller than the water pressure. This 
fact is known (e.g. Iken, 1981) and the separation area 
was chosen according to the relationship between water 
pressure and cavity length given above (Equation (16)). 

Test computations 

To test the model and the solution method described, 
the results of the numerical computation were compared 
with the closed-form solution of the laminar glacier-flow 
problem and the solutions of Nye (1969) and Kamb 
(1970) for sliding over a sinusoidal bed. 

For the flow of a parallel-sided slab of ice on an in­
clined plane, the calculated velocity vectors and stress 
components generally agree within 1% with theoretical 
values. Inaccuracies up to 3% exist only at the edges due 
to the fact that the nodal values are mean values. The 
typical bulging velocity profile of laminar non-Newtonian 
flow can be perfectly reproduced. In agreement with 
Glen's flow law (with n = 3), a change of the basal shear 
stress leads to a three times larger change in the surface 
velocity. 

The results of simulations of the sliding with a linear 

flow law are compared with the solution of Nye (1969). 
Nye's solution which considers a bed geometry with only 
one wavelength substantially larger than the transition 
wavelength (thus regelation can be neglected), can be 
given as 

).7), 
Ub = ---

87r3TJr 2 • 
(32) 

With the values of the model defined above (called prin­
cipal model): ). = 20m, T = 1.75 bar, r = 0.05, 
TJ = 1 X 1013 Pas, one obtains a sliding velocity of 
Ub = 17.2ma-l . 

The numerically calculated velocity is Ub = 17.3 m a -I. 
At the top of the modelled section, the velocity is Ut = 
28.4 m a -I; thus, the deformational part of the motion is 
Ud = 11.1ma- l

. 

The properties of ice as an incompressible, linear vis­
cous fluid are reflected in the feature of the flow or vel­
ocity field (Fig. 8). Figure 9 shows the stress field rep­
resented by principal stresses. At first sight, it can eas­
ily be seen that the modelled section is well balanced, 
that more or less laminar-flow conditions prevail at the 
top and that large compressive stresses exist on the up­
hill side of the bumps. A number of pertinent variables 
along the ice- rock interface are compiled in Figure 10. As 
shown above (Equation (9)), the pressure that the ice ex­
erts on the bed oscillates between 6.35 and 28.6 bar. Nye 
(1969) suggested that the basal sliding velocity varies as 
the wavelength and as the inverse of the second power 
of the roughness. This dependence and also the velocity 
values could be reproduced by the numerical comput­
ations. 

The results of the simulations of the sliding of an ice 
mass over an undulating bed, considering non-linear vis­
cous ice rheology, can be compared with the treatment 
of Kamb (1970). The numerically calculated sliding vel­
ocities were substantially smaller compared to the ones 
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determined by Kamb's solution. Since his derivation is 
based on several idealizations and approximations, we do 
not disregard our numerical model. 

Choosing the same numerical values as above, one 
arrives at a numerically calculated sliding velocity of 
Ub = 47.4 m a -I. At the top of the modelled section 
(25 m above the bed), the total motion in 1 year is Ut = 
86.2ma- l . Hence, the creep velocity is Ud = 38.8ma-1 . 

Theoretically, the creep velocity in the lowest 25 m of a 
200m thick slab of ice should be 24.3ma- l . The ad-
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deviatoT t;" nOT1nal velocity ~l I sliding vel­
ocity Ub and bed topogmphy Yb. 

ditional contribution, 18.3 m a-I, is an effect of strain 
softening. 

Table 1 provides an overview of sliding velocities cal­
culated for some models wi th different geometry. The 
sliding velocity does not vary as the inverse of the fourth 
power of the roughness. The dependence on the rough­
ness is stronger than in the linear viscous case but not 
as strong as Kamb (1970) proposed (Fig. 11). For dif­
ferent roughness values and wavelength A = 20 m, the 
effect of enhanced creep due to strain softening is stud-

Table 1. Compilation of numerically calculated velocity 
values (in ma-') compared to exact values from the Nye 
solution. To each pair of roughness and wavelength two 
values are given: the upper one originates from the closed­
form solution of Nye and the lower one is numerically 
computed 

m 

6 

10 

20 

30 

0.02 0.04 0.05 

32.33 8.08 5.17 
5.28 

53.89 13.47 8.62 
53.52 13.11 8 .76 

107.77 
112.56 

302.36 

26.94 17.24 
27.09 17 .25 

75.59 48.38 
46.36 

0.06 

3.59 

5.99 
5.79 

11.97 
11.69 

33.59 

0.08 

2.02 

3.37 
3.27 

6.74 
6.43 

18.90 

0.10 

1.29 

2.16 
2.10 

4.31 
4.06 

12.09 
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ied (Table 2). The larger the roughness, the higher the 
stress concentrations, and creep is enforced accordingly. 

Sliding with friction 

The next step in simulating the sliding of an ice mass over 
an undulating, rigid bed is to introduce a friction at the 
sliding interface due to a dirty, debris-rich basal ice layer. 
Thus, a frictional force parallel to the bedrock slowing 
down the motion is introduced, specified in accordance 
with Hallet's friction model (Equation (31)). 

For three different geometries, the effect of increasing 
debris concentration on the sliding velocity is studied. 
The results are given in Figure 12. The computed slid­
ing velocities are generally too small since the frictional 
force, proportional to the normal velocity, is calculated 
from the model without friction. Thus, to get an approp­
riate result, one is forced to use an iterative procedure. 
Convergence within three digits is reached after about 
ten steps. The iterations are done for the principal model 
(A = 20 m, r = 0.05) for two different debris concent­
rations: c = 3.75 and 6.25 m -2. The calculated sliding 
velocities are Ubf = 13.6 and 11.8ma- 1

, respectively, as 
indicated in Figure 12 by a broken line. Compared to 
the frictionless sliding, the velocities are reduced to 78 
and 67%, respectively. 

For the principal model with a debris concentration 

88 

Table 2. Sliding and deformational part of the motion (in 
ma-I) for varying roughness (wavelength A. = 20m). 
There are: Uu velociD' at the top of the modelled section; 
UbJ velocity at the bed; Ud, velociD' due to deformation; USSJ 

velocity due to strain softening. It follows: Ul = 

Ub + Ud + Uss • Ud is taken from the results of the 
model simulating the flow of the whole ice mass: 
Ud = 21.7ma-1 

u l Ub Ud + U" u" u,,/ Ub 

0.04 135 .0 86.8 48.2 26.5 0.31 
0.05 86 .2 47.4 38.8 17.1 0.36 
0.06 62.5 29.2 33.3 11.6 0.40 
0.08 41.6 13 .8 27.7 6.0 0.44 
0.10 33.1 7.9 25.2 3.5 0.45 

of c = 3.75 m -2, the normal stress along the sliding in­
terface oscillates substantially less than in the case of 
no friction. Varying between 26.5 and 9.1 bar, the amp­
litude of the stress oscillations is only Llpmax = 8.66 bar. 
The normal stress amplitude can be given (Equation (9)) 
as 

A'Tb 
Llpmax = ~ (33) 

and, inserting the shear stress T = pgh sin a = 1.75 bar, 
leads to a stress amplitude of 11.1 bar, thus larger than 
numerically calculated. The minimal normal stress, giv­
ing the onset of cavity formation, is increased from 6.4 to 
9.1 bar. As wavelength and amplitude of bed undulation 
are constant, the smaller amplitude of the normal stress 
must be due to a smaller driving shear stress reduced by 
friction . Inserting the stress amplitude of the numerical 
computation (8.66 bar) into Equation (33), a basal shear 
stress 'Tb = 1.36 bar results , only 78% of the shear stress 
due to gravity (T = pgh sin a = 1.75 bar). This reduc­
tion of the shear stress is in perfect agreement with the 
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reduction of the sliding velocity. The shear stress used 
to overcome the friction is T - Tb = Tr = 0.39 bar. 

There are some computations done for the case of a 
non-linear flow law of ice (Fig. 13). The sliding velocity 
is much more reduced than in the case of the linear flow 
law. Without iterative procedure, a debris concentration 
of c = 3.75m-2 prevents any sliding motion. Applying 
the iterative procedure to determine the frictional force, 
the large effect of friction on the sliding velocity would 
be attenuated. An estimation for that is given in Figure 
13 based on the computation for the case of a linear 
flow law. There it is shown that the reduction of the 
sliding velocity corresponds to a reduction of the driving 
shear stress, in particular for a debris concentration of 
c = 3.75 m -2 a reduction to 78% was found. Using a 
non-linear flow law such as Glen's flow law with exponent 
n = 3, it seems obvious that the sliding velocity would 
be reduced to (0.78)3 = 0.48. 

Sliding with bed separation 

Frictionless sliding with bed separation as an effect of 
subglacial water pressure has been studied in detail by 
Iken (1981). In particular, the transient stages of grow­
ing and shrinking of water-filled cavities at the ice­
bedrock interface were analysed. The introduction of 
a frictional drag at the sliding interface is the innovation 
of the present study. In this context, the effect on the 
separation and the critical pressure is of main interest. 
The present work does not extend to the point where the 
cavities reach a steady-state shape. Except for one, all 
computations are done using a linear-flow law. 

Bed separation, and hence the onset of cavity form­
ation, starts when the subglacial water pressure reaches 
the minimal normal stress, known as separation pres­
sure. In the case of the principal model (.\ = 20 m, 
r = 0.05), the separation pressure (Equation (10)) is 
given as Ps = 6.35 bar and the critical pressure (Equat­
ion (11)) as Pc = 11.91 bar. For studying the effect of the 
subglacial water pressure on the sliding velocity, eight 
different models with increasing water-pressure values 
between 6.35 and 11.64 bar were chosen. Figure 14 (up­
per left curve) contains the results of the numerical com­
putations of the corresponding sliding velocities showing 
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Fig. 14. Dependence of the basal sliding vel­
ocity Vb on both the subglacial water pre8sm 'e 
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the case of fr ictionless s liding. Two cases with 
c = 2 .5 m - 2 and c = 5.0 m - 2 are consid­
ered. H 07'izontal lines at left side represent the 
state before bed separation star·ts . Dashed ver­
tical lines (asymptotes) give the critical pres ­
sure, rising with increasing debris concentrat­
ion. L inem' flow law is used. 

-

-

-

-

the very typical relationship between the sliding velocity 
and the subglacial water pressure. For a given shear 
stress, the sliding velocity is a constant, as long as the 
water pressure is below the separation pressure. Then, 
the velocity increases progressively with increasing water 
pressure tending to infinity at the critical pressure. 

Up to this point, the two effects of bed separation 
and of friction due to debris in the basal ice were stud­
ied separately. Combining the two important variables, 
subglacial water pressure and areal basal debris concen­
tration will show, for instance, whether the friction is 
enforced if the ice is separating from the rock bed. 

Figure 15 shows that the reduction of the sliding vel­
ocity due to friction is more pronounced in the case of 
bed separation. Again, the iterative solution indicated in 
Figure 15 by the lower broken line is estimated from the 
results of the computation for the case of no bed separ­
ation. Comparing the iterative solutions, computed for 
the case of no bed separation and estimated for the case 
of separation (Pw = 10.8 bar), the friction increased by 
about 50% if a water pressure is in operation. 
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Fig. 15. Dependence of basal sliding velocity 
(nor1nalized to the corresponding case of no 
friction) on the areal debris concentration. 
Solid line gives the results in the case of bed 
separation for a water pressure Pw = 10.8 bar. 
Dashed lines show iterative solutions in the 
case of no bed separation (Pw = O) and in 
the case of bed separation (Pw = 10.8 bar) . 
Linear flow law is used. 

How the sliding velocity in the case of fricti.on is dep­
endent on the water pressure is studied for two different 
debris concentrations: c = 2.5 and 5.0 m -2. Hence, in 
contrast to the computation above, the amount of fric­
tion is constant but the separation area increases with 
increasing water pressure. The larger the debris concen­
tration, the later the separation starts. Figure 14 shows 
the results of the numerical computations of sliding with 
friction in the case of bed separation for both, varying 
debris concentration and varying water pressure. The 
typical relationship between sliding velocity and sub­
glacial water pressure remains valid , also in the case of 
friction . However, the curves are shifted to the right, to 
larger water-pressure values. This simply means separ­
ation and critical pressure are larger in the case of fric­
tion. 

The critical and the separation pressures depend on 
the normal stress amplitude .dpmax which is as shown 
above smaller in the case of friction than without. For a 
debris concentration of c = 3.75m- 2 (and the geometry 
of the principal model), a stress amplitude of .dpmax = 
8.66 bar has been calculated numerically. Based on this 
result and the fact that the normal stress amplitude 
varies as t he effective value of the driving shear stress, 
the stress amplitude for the debris concentrations c = 2.5 
and 5.0 m - 2 can be determined by a linear interpolation 
to 9.48 and 7.84 bar, respectively. These calculated val­
ues of the normal stress amplitude can be used to calcul­
ate the separation and the critical pressure in the case 
of friction. Table 3 is a compilation of calculated values 
of the separation and the criticial pressure based on the 
numerical computation of the normal stress amplitude. 
Figure 14 shows clearly that the pressure values calcul­
ated in the way described above coincide with the values 
which can be drawn from the illustration. In contrast 
to the theoretical considerations on the effect of "sand­
paper" friction, the numerical calculations showed that 
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Table 3. Separation (Ps) and critical pressure ( Pc) (in bar) 
of the principal model for different debris concentrations (c in 
m·2); ice-overburden pressure Po = 17.5 bar 

0.0 

6.35 
11.91 

2.5 

7.99 
12 .74 

5.0 

9.64 
13.56 

in the case of "Ballet" friction the critical pressure stays 
half-way between the separation and the ice-overburden 
pressure, i.e. Equation (12) remains valid. 

DISCUSSION OF ACTUAL CONDITIONS 

Based on the Ballet friction model and on the assump­
tion of a sinusoidal bedrock with unrestricted access of 
the subglacial water to all low-pressure zones at the 
glacier bed, the measured relation between water pres­
sure and sliding velocity could be qualitatively reprod­
uced. However, while this model predicts the critical 
pressure to be the arithmetic mean of separ ation pres­
sure and the overburden pressure (Equation (12)), no 
instability of the glacier was observed at water pressures 
significantly below the overburden pressure (Fig. 1). 
Several reasons for this discrepancy are conceivable: on 
a more general bed, different values of maximum slope 
of stoss faces exist. It is the obstacles with the steep­
est stoss faces which determine the critical pressure and, 
in particular, if obstacles with vertical stoss faces are 
present , the critical pressure approaches the overburden 
pressure. Steep stoss faces are, however, typically ab­
sent in the gently undulating, polished bedrock, now ex­
posed in the forefield of Findelengletscher. This bedrock 
might be more adequately described as a series of roches 
moutonnees. Obviously, Equation (12) does not hold for 
roches moutonnees which typically have steep lee faces. 
In that case, the separation pressure is much lower (Iken, 
1981), whereas, assuming that the undulations have the 
same maximum slopes of the stoss faces as the modelled 
sinusoids, the critical pressure is unchanged. Further­
more, the assumption of unrestricted access of the sub­
glacial water to all low-pressure zones is not realistic. If 
zones with insufficient water supply do exist, the growth 
of cavities and the increase in water storage, an indis­
pensible prerequisite to an acceleration at the critical 
pressure, is prohibited. Hence, these zones s low down 
the speed-up of the glacier. 

In the models considered, the debris concentration 
has been assumed as given. Actually, it is the result 
of a bal ance (or imbalance) of processes which increase 
or diminish the debris concentration at the base: large­
scale ice deformation, basal melting and plucking versus 
flushing by subglacial streams and wear-off of the abrad­
ing particles. For instance, the basal debris concentrat­
ion increases continually in a zone of large-scale vertical 
compression, e .g . the accumulation zone, where particles 
move from the surface to the base of the glacier. On the 
other hand, where an overall vertical compression is ab-
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sent, the abrading particles finally loose contact with the 
bed, in spite of local vertical compression at stoss faces of 
small-scale bed undulations. Thus, even Hallet's friction 
mechanism can only be maintained with some kind of 
particle resupply, for instance, plucking as pointed out 
by Shoemaker (1988). Where plucking occurs, simple 
Coulomb friction between newly plucked particles and 
the bed can also operate temporarily. After a certain 
time, the particles will be incorporated into the ice and 
the Coulomb friction will be replaced by Hallet friction. 
However, in zones of intensive plucking, this type of tran­
sient Coulomb friction may contribute significantly to 
abrasion as Boulton (1974) assumed without regard to 
the limited duration of the process. 

The type of frict ion acting influences the surface vel­
ocity and its variations. A few measurements of the sur­
face velocity may therefore give a hint to the actual con­
ditions at the glacier bed. This is illustrated by two ex­
amples: Findelengletscher and Unteraargletscher, both 
of which are large valley glaciers in the Swiss Alps. The 
first one is sliding all the time and a small debris concen­
tration will cause friction of the Hallet type. Unter­
aargletscher, on the other hand, is rather slow-moving 
and debris-covered in the lower part. An examination 
of the particular seasonal velocity variations shows that 
the sliding velocity is negligible, except during the melt 
season. The basal debris concentration seems to be high 
and hence sandpaper friction is acting. These two ex­
amples may be seen as representatives of two types of 
glaciers: fast-sliding, actively eroding glaciers with small 
debris concentration, and debris-rich glaciers where sub­
glacial rock deposition is a dominant process. This dis­
tinction may supplement a classification of glaciers sug­
gested by Haeberli (1986). 

CONCLUSIONS 

Based on the theory of frictionless sliding over a sin­
usoidal bed (Lliboutry, 1968; Nye, 1969; Kamb, 1970), a 
relation is developed between the subglacial water pres­
sure and the bed separation in which the critical pressure 
is a pertinent variable. This relation is of crucial impor­
tance for stud ying the effect of friction in the case of b ed 
separation . 

Two friction processes have been examined in detail: 
"sandpaper friction» and "Hallet friction». The former 
applies to large debris concentrations (>50% per vol­
ume) with particles being in close contact and is a sort of 
Coulomb friction adapted to the case of glaciers. "Hal­
let friction» is only active at small debris concentrat­
ions when particles do not contact each other. "Sand­
paper friction» decreases with increasing water pressure, 
whereas "Hallet friction» was found to be independent of 
water pressure. Both types of friction give rise to larger 
values of both the separation and the critical pressure. 
However, since the dependence of the friction on the sub­
glacial water pressure is different, the effect on the separ­
ation and the cri tical pressure also differs. In the case of 
"Hallet friction» , the critical pressure is the arithemetic 
mean of separation pressure and ice-overburden pressure, 
no matter how large the debris concentration or t he fric­
tion coefficient. In the case of "sandpaper friction», the 
separation pressure increases more strongly with the fric-

tion coefficient than the cr itical pressure and therefore 
may approach the critical pressure. 

The typical relation between sliding velocity and sub­
glacial water pressure found by Iken and Bindschadler 
(1986) could be reproduced qualitatively with the "Hal·· 
let friction» model. However, a quantitative agreement 
could not be achieved for the particular idealizations this 
study was based on. 

An approximate sliding law which makes allowance 
for the effect of friction and includes the critical pressure 
has been formulated (Equat ion (27)). 

Sliding with sandpaper friction can only take place in 
times of high subglacial water pressure; at other times 
the friction prevents any sliding motion. Therefore, 
glaciers with a sandpaper sole will only slide in the melt 
season, as long as sufficient subglacial water storage can 
be maintained. During other seasons, rock deposition 
rather than erosion occurs. In contrast, glaciers with 
small · basal debris concentration, where Hallet friction 
applies, s lide and abrade throughout the year. 
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