Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets

Kang Yao¹, Shu Guan², Tiejun Li¹, Ruilin Huang¹, Guoyao Wu¹,5,4, Zheng Ruan⁵* and Yulong Yin¹*

¹Hunan Engineering and Research Center of Animal and Poultry Science, Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
²Guelph Food Research Centre Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON, Canada N1G 5C9
³Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
⁴State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100191, China
⁵State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Jiangxi, Nanchang 330031, China

(Received 23 February 2010 – Revised 2 July 2010 – Accepted 5 July 2010 – First published online 10 January 2011)

Abstract

Oral administration of L-arginine has been reported to prevent gut disease in human infants. However, little is known about the effects of dietary arginine supplementation on intestinal development of weaned piglets. In the present study, twenty 21-d-old castrated piglets with 5·3 (SEM 0·13) kg body weight (BW) were weaned from sows, individually housed and randomly assigned to one of the two maize- and soyabean meal-based diets supplemented with 0 or 1 % L-arginine. After consuming the diets for 7 d, six pigs were randomly selected from each group to obtain various tissues. Compared with control pigs, dietary supplementation with 1 % L-arginine did not affect feed intake but enhanced (∗P<0·05) the relative weight of the small intestine (+33 %), daily BW gain (+38 %) and feed efficiency (+28 %). The villus height of the duodenum, jejunum and ileum in arginine-supplemented piglets was 21, 28 and 25 % greater (∗P<0·05) than in the non-supplemented control group. Arginine supplementation increased (∗P<0·05) protein levels for vascular endothelial growth factor (VEGF) in duodenal, jejunal and ileal mucosae by 14, 39 and 35 %, respectively. Compared with the control group, dietary supplementation with 1 % L-arginine increased (∗P<0·05) plasma concentrations of arginine and insulin (+36 %), and decreased (∗P<0·05) plasma concentrations of cortisol (−33 %), NH₃ (−21 %) and urea (−19 %). These results indicate that arginine supplementation enhances intestinal growth, development and expression of VEGF in early-weaned pigs fed a maize- and soyabean meal-based diet. The findings may have important implications for neonatal pigs under stressful or diseased conditions.

Key words: Arginine: Pigs: Growth: Intestine: Vascular endothelial growth factor

Arginine participates in multiple pathways with enormous nutritional and physiological importance, including the synthesis of protein, NO, creatine, proline, glutamate, polyamines and agmatine as well as the secretion of hormones(1–6). Increasing evidence shows that L-arginine is an essential amino acid for young mammals, particularly under conditions of severe stress(7,8). For instance, our previous studies have shown that dietary supplementation with arginine, which is 50–95 % greater than National Research Council-recommended intake, stimulates muscle growth(1,9), enhances the immune status(5) and improves microvascular development(10) in neonatal pigs weaned at 7–21 d of age. Particularly, NO (a metabolite of L-arginine) is a major vasodilator that regulates vascular tone and haemodynamics. Proline (another product of arginine catabolism) is a key component of extracellular matrix collagen that is crucial for angiogenesis and vascular remodelling(11,12). Systemic administration of L-arginine has been proposed as a safe and effective method to enhance the synthesis of NO, proline and polyamines in animals, therefore improving wound healing and microcirculation(13–15).

Weaning stress is associated with reductions in food consumption, weight gain and growth, as well as increases in the incidence of diarrhoea and disease, intestinal dysfunction and atrophy, and deaths in piglets(16–22). In response...
to weaning, the digestive system of piglets must adapt to a dry diet, which is often based primarily on plant sources of ingredients (e.g. maize and soyabean meal)\(^{(23,24)}\). In the piglet small intestine, microvessels are present mainly in the mucosa and submucosal\(^{(25,26)}\), and the optimal development of villi depends on an adequate supply of nutrients from both blood via the intestinal microvessel and enteral feeding\(^{(27)}\). Changes in gut morphology may result in microvessel injury and disorders of microcirculation\(^{(28,29)}\). Microvascular endothelial dysfunction may be a major factor contributing to impaired absorption and transport of nutrients in animals\(^{(30)}\).

Of particular interest, weaning piglets have a particularly high requirement for dietary arginine\(^{(31)}\). Due to depressed feed intake in the first week post-weaning, low arginine intake may be one of the reasons for increased intestinal epithelial damage in early-weaned pigs. Adverse effects of an L-arginine deficiency may also include abnormal gene expression in the vasculature\(^{(10,11)}\). Therefore, we hypothesised that dietary L-arginine supplementation might prevent or alleviate intestinal atrophy and microcirculation disorder by increasing the expression of vascular endothelial growth factor (VEGF) in the small intestine of weaning pigs. The present study was conducted to test this hypothesis using 21- to 28-d-old piglets.

### Materials and methods

#### Animals and feeding

We conducted the experiment in accordance with the Chinese guidelines for animal welfare, and it was approved by the Animal Welfare Committee of the Institute of Subtropical Agriculture, Chinese Academy of Sciences\(^{(32)}\).

Basal diets were formulated to meet National Research Council-recommended nutrient requirements for weaning piglets\(^{(33)}\). Two diets were formulated by supplementing the basal diet with 0 and 1 % L-arginine (free base). The diets were made isonitrogenous by the addition of L-alanine, as described by Kim & Wu\(^{(34)}\).

A total of twenty large White \(\times\) Landrace castrated piglets from five litters were weaned at 21 d of age (5.3 (SEM 1.3) kg) and assigned randomly to one of the two treatment groups (ten pigs/group), representing dietary L-arginine supplementation with 0·0 % control or 1 % L-arginine (Table 1). Piglets were individually housed in 1·3 × 1·2 m pens with slotted stainless steel floors\(^{(35)}\). Each pen was equipped with a feeder and a nipple waterer. This facility allows pigs to have free access to feed and water. The room temperature was maintained at 25–27°C\(^{(36)}\). All the piglets were fed four times per day at 07.00, 11.00, 15.00 and 19.00 hours. The feed intake was measured daily. Fresh manure samples were collected daily for the determination of moisture. Samples with moisture content higher than 70% were considered as diarrhoea. The incidence of diarrhoea for the piglets was calculated as\(^{(10)}\):

\[
\text{Incidence of diarrhoea} = \frac{\text{number of piglets with diarrhoea} \times \text{number of days of diarrhoea}}{\text{total number of piglets} \times \text{number of days of experiment}} \times 100.
\]

#### Sample collection

Following a 7 d period of arginine supplementation, all piglets were weighed, and at 1 h after the last meal, jugular venous blood samples were obtained from heparinised tubes for the analysis of hormones and metabolites, whereas six pigs from each group were randomly selected and humanely killed by a lethal intraperitoneal injection of sodium pentobarbital\(^{(37)}\). Samples of duodenum, jejunum, ileum, liver, kidney, heart, spleen and lung were obtained immediately after the abdomen was opened\(^{(37)}\).

#### Analysis of metabolites and hormones

Amino acids in plasma were analysed using a HPLC method involving precolumn derivatisation with orthophthalaldehyd\(^{(38)}\). L-Norvaline was used as an internal standard. An automated biochemistry analyzer (Synchron CX Pro; Beckman Coulter, Fullerton, CA, USA) was used to determine concentrations of urea, \(\text{NH}_3\), glucose, total protein and immune globulins in plasma, according to

### Table 1. Composition of the basal diet (as-fed basis)

<table>
<thead>
<tr>
<th>Dietary ingredients</th>
<th>Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>50.00</td>
</tr>
<tr>
<td>Soyabean meal</td>
<td>20.00</td>
</tr>
<tr>
<td>Whey</td>
<td>10.00</td>
</tr>
<tr>
<td>Fish meal</td>
<td>6.00</td>
</tr>
<tr>
<td>Soyabean oil</td>
<td>2.50</td>
</tr>
<tr>
<td>Lactose</td>
<td>2.50</td>
</tr>
<tr>
<td>Sucrose</td>
<td>2.00</td>
</tr>
<tr>
<td>Glucose</td>
<td>1.80</td>
</tr>
<tr>
<td>L-Lys.HCl</td>
<td>1.30</td>
</tr>
<tr>
<td>Salt</td>
<td>0.30</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.80</td>
</tr>
<tr>
<td>CaHPO(_4)</td>
<td>1.80</td>
</tr>
<tr>
<td>Premix*</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* Supplied per kg diet: Cu, 10 mg; Fe, 100 mg; Na, 0·30 mg; Zn, 100 mg; Mn, 10 mg; cholecalciferol, 388 IU; retinyl acetate, 3086 IU; all-rac-\(\alpha\)-tocopheryl acetate, 15·4 IU; menadione, 2·3 mg; riboflavin, 3·9 mg; D-pantothenic acid, 15·4 mg; niacin, 23 mg; choline, 77 mg; cyanocobalamin, 15·4 μg.

† Analyzed values.
commercial kits and the manufacturer’s instructions. Cortisol, insulin, growth hormone, insulin-like growth factor-1, triiodothyronine and thyroxine in plasma were determined by RIA according to reagent kits and the manufacturer’s instructions (China Institute of Atomic Energy, Beijing, China).

Histological analysis

Intestinal tissue samples were fixed as described previously. Briefly, samples were placed in 10% neutral buffered formalin and embedded in paraffin for subsequent histological measurement. Six cross-sections were obtained from each formalin-fixed segment and processed for histological examination using the standard haematoxylin and eosin method. Villus height and crypt depth were measured according to Wu et al. Histological analysis was performed by an investigator who was unaware of the origin of tissue sections.

Immunohistochemistry

Protein levels for VEGF were measured as described previously. Briefly, sections of formalin-fixed paraffin-embedded tissues were digested with 3% H2O2 for 20 min at room temperature and incubated sequentially with 10% normal rabbit serum for 20 min after microwave antigen recovery, with VEGF (1:50) at 4°C overnight and then with corresponding biotinylated secondary antibodies against rabbit and streptavidin peroxidase. Subsequently, binding of the primary antibody was detected with diaminobenzidine. Sections were counterstained with haematoxylin.

Results

Feed intake and growth performance

Daily food intake did not differ between control and arginine-supplemented piglets during a 7 d experimental period (Table 2). The initial body weight (BW) at 21 d of age did not differ between the two groups (Table 2). However, compared with the control group, dietary supplementation with L-arginine increased (P<0.05) the final BW by 9% and enhanced daily weight gain of piglets by 56%, respectively. Moreover, 1% L-arginine supplementation decreased (P<0.05) the ratio of DM intake:BW gain (g/g; an indicator of feed efficiency) by 28%. Diarrhoea incidence did not differ between the control and arginine-supplemented groups.

Plasma amino acids

Dietary supplementation with 1% L-arginine increased (P<0.05) plasma concentrations of arginine and ornithine by 33 and 30%, respectively, but had no effect on plasma concentrations of citrulline or lysine (Table 3).

Table 2. Effects of dietary L-arginine supplementation for 7 d on the growth performance and diarrhoea incidence of weaned pigs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>1 % Arg</th>
<th>Pooled SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body wt (kg)</td>
<td>5·27</td>
<td>5·33</td>
<td>0·11</td>
</tr>
<tr>
<td>Final body wt (kg)</td>
<td>6·17a</td>
<td>6·72b</td>
<td>0·19</td>
</tr>
<tr>
<td>ADG (g)</td>
<td>120a</td>
<td>187b</td>
<td>2·6</td>
</tr>
<tr>
<td>ADFI (g/d)</td>
<td>183</td>
<td>187</td>
<td>13</td>
</tr>
<tr>
<td>Feed:gain ratio</td>
<td>1·56a</td>
<td>1·12b</td>
<td>0·03</td>
</tr>
<tr>
<td>Diarrhoea incidence (%)</td>
<td>3·8</td>
<td>3·2</td>
<td>0·52</td>
</tr>
</tbody>
</table>

ADG, average daily gain; ADFI, average daily feed intake.

Table 3. Effects of dietary L-arginine supplementation for 7 d on plasma metabolites and hormones in weaned piglets

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>1 % Arg</th>
<th>Pooled SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg (μmol/l)</td>
<td>284a</td>
<td>377b</td>
<td>13</td>
</tr>
<tr>
<td>Ornithine (μmol/l)</td>
<td>102a</td>
<td>133b</td>
<td>5·9</td>
</tr>
<tr>
<td>Citrulline (μmol/l)</td>
<td>65·3</td>
<td>70·8</td>
<td>6·5</td>
</tr>
<tr>
<td>Lys (μmol/l)</td>
<td>407</td>
<td>379</td>
<td>32·3</td>
</tr>
<tr>
<td>Urea (mmol/l)</td>
<td>3·19a</td>
<td>2·60b</td>
<td>0·53</td>
</tr>
<tr>
<td>NH3 (μmol/l)</td>
<td>86·7a</td>
<td>71·6b</td>
<td>3·1</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>8·46</td>
<td>8·30</td>
<td>0·79</td>
</tr>
<tr>
<td>Total protein (g/l)</td>
<td>49·7</td>
<td>52·4</td>
<td>3·2</td>
</tr>
<tr>
<td>Total albumin (g/l)</td>
<td>27·5</td>
<td>29·1</td>
<td>2·0</td>
</tr>
<tr>
<td>Cortisol (μg/l)</td>
<td>132a</td>
<td>88·7b</td>
<td>8·1</td>
</tr>
<tr>
<td>Insulin (U/ml)</td>
<td>14·2a</td>
<td>18·1b</td>
<td>1·2</td>
</tr>
<tr>
<td>GH (U/ml)</td>
<td>0·14</td>
<td>0·19</td>
<td>0·05</td>
</tr>
<tr>
<td>IGF-1 (μg/l)</td>
<td>246</td>
<td>257</td>
<td>7·3</td>
</tr>
<tr>
<td>T3 (μg/l)</td>
<td>0·84</td>
<td>1·14</td>
<td>0·16</td>
</tr>
<tr>
<td>T4 (μg/l)</td>
<td>71·7</td>
<td>78·9</td>
<td>10</td>
</tr>
</tbody>
</table>

GH, growth hormone; IGF-1, insulin-like growth factor-1; T3, triiodothyronine; T4, thyroxine.

a,b Mean values within a row with unlike superscript letters were significantly different (P<0.05).
Plasma concentrations of histidine, asparagine, aspartate, isoleucine, leucine, methionine, phenylalanine, serine, taurine, threonine, tryptophan, tyrosine or valine did not differ between the control and arginine-supplemented groups (data not shown).

**Plasma urea, ammonia and hormones**

Dietary supplementation with 1% L-arginine decreased \( P<0.05 \) plasma concentrations of \( \text{NH}_3 \) and urea by 17 and 18%, respectively (Table 3). Plasma concentrations of glucose, total protein and total albumin were not affected by L-arginine supplementation (Table 3). Compared with control pigs, dietary supplementation with 1% L-arginine increased \( P<0.05 \) plasma concentrations of insulin by 27% and decreased \( P<0.05 \) plasma concentrations of cortisol by 33% (Table 3). Dietary supplementation with 1% L-arginine did not affect plasma concentrations of growth hormone, insulin-like growth factor-1, triiodothyronine or thyroxine (Table 3).

**Relative weight of internal organs**

The relative weights (g/kg BW) of kidney, heart, spleen and lung were not affected by L-arginine supplementation (data not shown). The relative weight of the small intestine was 33% heavier \( P<0.05 \) in arginine-supplemented pigs compared with that of the control group (73.1 v. 54.9 g/kg BW, pooled SEM = 4.4 g/kg BW).

**Small-intestinal morphology and vascular endothelial growth factor immunoreactive expression**

To determine the effect of L-arginine supplementation on intestinal development, the piglet small intestine was collected at the end of the experiment, and the villus height and crypt depth were examined (Fig. 1). Supplementation with 1% L-arginine increased \( P<0.05 \) the villus height throughout the small intestine, compared with the control group. Crypt depth was greater \( P<0.05 \) in the duodenum and jejunum of the control group than that of the arginine-supplemented pigs.

The immunoreactive VEGF protein was readily detected in the piglet small intestine (Fig. 2). Quantitatively, dietary supplementation with 1% L-arginine increased \( P<0.05 \) the integrated optical density in the duodenal submucosa, middle jejunal mucosa and submucosa, and the ileal mucosa by 14, 39 and 54%, respectively (Table 4 and Fig. 2). Correlation coefficients \( R^2 \) between villus height and VEGF protein intensity were 0.954, 0.958 and 0.956 \( P<0.01 \), respectively, for the duodenum, jejunum and ileum.

**Discussion**

Intestinal development of the piglet was greatly suppressed in the first week after weaning in association with intestinal dysfunction and atrophy, which is the major cause of reductions in nutrient absorption and utilisation as well
as increases in diarrhoea and deaths. Available evidence shows that VEGF enhances intestinal vascular development, endothelial function and epithelial cell migration while inhibiting endothelin-1 release as well as platelet aggregation and adhesion (47–50). Results of the present study indicated that dietary supplementation with 1 % L-arginine had a positive effect on increasing villus height (Fig. 1) and the expression of the VEGF protein (Table 4 and Fig. 2). Notably, increases in both relative weight and villus height of the small intestine were positively correlated with the augmented expression of VEGF (see the Results section). The findings indicate that dietary supplementation with 1 % arginine can improve the vascular development of the small intestine in weanling pigs by stimulating VEGF expression.

Elevated levels of cortisol in plasma are considered to be biomarkers for weaning stress (51). Interestingly, in the present study, we found that dietary supplementation with 1 % L-arginine decreased the circulating level of cortisol, but underlying mechanisms are unknown. Cortisol is the major glucocorticoid in pigs (52). It is synthesised in the adrenal cortex and released into the circulation in response to external and internal factors acting on the hypothalamus and pituitary glands (52). It is possible that NO or L-arginine itself attenuates the release of the adrenal corticotropic hormone from corticotroph cells and/or interferes with adrenocorticotrophic hormone’s actions on the adrenal cortex via specific receptors (e.g. type 2 melanocortin receptors). Further research is warranted to test this novel hypothesis.

Arginine plays important roles in both growth and metabolic function in piglets (53). In rodents and human subjects, L-arginine is a nutritionally essential amino acid under conditions associated with increased utilisation relative to endogenous synthesis, including growth, inflammation and tissue repair (54). In such cases, dietary supply can become rate limiting for the arginine-metabolising pathways (54). As previously reported (55), arginine is deficient in weanling piglets (Table 3). Interestingly, intestinal synthesis of citrulline and arginine from glutamine and pituitary glands (52). It is possible that NO or L-arginine itself attenuates the release of the adrenal corticotropic hormone from corticotroph cells and/or interferes with adrenocorticotrophic hormone’s actions on the adrenal cortex via specific receptors (e.g. type 2 melanocortin receptors). Further research is warranted to test this novel hypothesis.

Arginine plays important roles in both growth and metabolic function in piglets (53). In rodents and human subjects, L-arginine is a nutritionally essential amino acid under conditions associated with increased utilisation relative to endogenous synthesis, including growth, inflammation and tissue repair (54). In such cases, dietary supply can become rate limiting for the arginine-metabolising pathways (54). As previously reported (55), arginine is deficient in weanling piglets (Table 3). Interestingly, intestinal synthesis of citrulline and arginine from glutamine and glutamate decreases by 70–73 % in 7-d-old suckling pigs in comparison with newborn pigs and declines further in 14- to 21-d-old pigs (55). Thus, dietary supplementation with 0·2 and 0·4 % arginine to 7- to 21-d-old pigs (artificially reared on a milk feeding system) dose dependently enhanced plasma arginine concentrations (30 and 61 %) and reduced plasma NH3 levels (20 and 35 %) (56).

Insulin is a major regulatory hormone in glucose and fat metabolism, vascular function, inflammation, tissue remodelling and the somatotropic axis of growth (40,41). Arginine is a potent stimulator of the secretion of insulin by pancreatic β-cells and of growth hormone by the anterior pituitary gland in mammals (55), including young pigs (46). This is consistent with our finding that dietary supplementation with 1 % L-arginine increased plasma levels of insulin. Through an increase in arginine availability and the concurrent increases in plasma concentrations of anabolic hormones (Table 3), dietary arginine supplementation improved the efficiency of nutrient utilisation for enhancing tissue protein synthesis and growth performance. In support of this view, plasma concentrations of urea (the major nitrogenous product of protein and amino acid catabolism) were markedly reduced in arginine-supplemented pigs compared with control pigs (Table 3). Growth hormone is another important hormone in growth regulation, which plays a role in the secretion of thyroid hormone (mainly produced in the liver). However, L-arginine supplementation did not affect circulating levels of growth hormone or thyroid hormones (Table 3).

In keeping with the previous report (11), dietary supplementation with 1 % arginine markedly enhanced daily weight gain in weaning piglets (Table 2), indicating that arginine deficiency is a major factor limiting their maximum growth performance. It is noteworthy that experimental conditions differed greatly between the present study and the work of Zhan et al. (10). For instance, the initial age (21 d) and initial mean BW (5·3 kg) of piglets in the present study were greater than those of the piglets used by Zhan et al. (14 d and 5·0 kg, respectively). Additionally, food intake of piglets was lower in the Zhan et al.’s experiment (140 g/d) compared with the present one (185 g/d) (Table 2). Furthermore, the doses of supplemental arginine (0·7 v. 1 %) differed between the two investigations. Regardless of the low feed intake, 0·7 % arginine supplementation may not be sufficient to meet the requirement of weanling piglets for maximal growth, whereas 1·2 % arginine supplementation caused severe diarrhoea (11). Clearly, proper supplementation of arginine is critical for experiment design.

Another significant finding from the present study is that dietary supplementation with 1 % L-arginine increased the weight of the small intestine (see the Results section), which is consistent with the observation that arginine can increase protein synthesis (57), inhibit protein degradation and enhance the proliferation of intestinal epithelial cells (58). It is now known that arginine activates the mammalian target of rapamycin signalling in the intestine (59), therefore promoting the initiation of polypeptide formation. These findings provide a molecular basis for our observation that L-arginine supplementation can improve the feed efficiency and growth performance of weanling

<table>
<thead>
<tr>
<th>Intestine</th>
<th>Control</th>
<th>1 % L-Arg</th>
<th>Pooled SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duodenum</td>
<td>981a</td>
<td>1121b</td>
<td>53</td>
</tr>
<tr>
<td>Jejunum</td>
<td>893a</td>
<td>1244b</td>
<td>76</td>
</tr>
<tr>
<td>Ileum</td>
<td>715a</td>
<td>1098b</td>
<td>85</td>
</tr>
</tbody>
</table>

a,b Mean values within a row with unlike superscript letters were significantly different (P<0·05).
piglets. Because preterm infants are deficient in arginine and exhibit intestinal dysfunction\(^\text{50}\), the present results may have important implications for managing this compromised population of neonates.

In conclusion, dietary supplementation with 1% L-arginine stimulates intestinal VEGF expression and development in weanling piglets, thereby contributing to improved vascular function and growth performance. Adequate provision of l-arginine in the weaning diet may be an effective means of ameliorating microvessel injury and enhancing the absorption of nutrients in the small intestine.

**Acknowledgements**

The present research was jointly supported by grants from the Chinese Academy of Sciences and Knowledge Innovation Project (Kscx2-Yw-N-051 and Y022042020) National 863 Program of China (2008AA10Z316), Research Program of State Key Laboratory of Food Science and Technology, Nanchang University (project no. SKLF-TS-200817), National Basic Research Program of China (2009CB118806), NSFC (30901040, 30901041, 30828025 and 30771558), National Scientific and Technological Supporting Project (2006BAD12B02-5-2 and 2006BAD12B02-5-2), the Program for Ganjiang Scholars and Innovative Research Team in Nanchang University (IRT0540), the CAS/SAFEA Program for Ganjiang Scholars and Innovative Research Project (2006BAD12B02-5-2 and 2006BAD12B02-5-2), the National Basic Research Program of China (2009CB118806), and the Technology, Nanchang University (project no. SKLF-TS-200817), Program of State Key Laboratory of Food Science and Technology, Nanchang University (project no. SKLF-TS-200817), National Basic Research Program of China (2009CB118806), NSFC (30901040, 30901041, 30828025 and 30771558), National Scientific and Technological Supporting Project (2006BAD12B02-5-2 and 2006BAD12B02-5-2), the Program for Ganjiang Scholars and Innovative Research Team in Nanchang University (IRT0540), the CAS/SAFEA International Partnership Program for Creative Research Teams, the Thousand-People-Talent program at China Agricultural University, National Research Initiative Competitive Grants from the Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture and Texas AgriLife Research (H-8200). The authors have no conflicts of interest to declare. Y. Y. was in charge of the whole project. K. Y. conducted the animal trial and wrote the paper. S. G., T. L., R. H. and Z. R. assisted with tissue collection and chemical analyses. G. W. helped to design the experiment, interpret the data and write the paper.

**References**

Arginine enhances intestinal development

709