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HOMOMORPHISMS OF RINGS WITH INVOLUTION 

CHARLES LANSKI 

Introduction. The purpose of this paper is to examine the extent to which 
a homomorphism of a ring with involution is determined by its action on the 
symmetric elements of the ring. Assuming that the ring is "suitably free" of 
2 X 2 matrix rings, we show that any homomorphism is uniquely determined if 
its image is semi-prime without nonzero central ideals. To obtain this result we 
first investigate automorphisms of quotients of rings with involution. 

R will always denote a ring with involution, * ; S = {r Ç R\r* = r}, the set 
of symmetric elements of R ; and Z, the center of R. We write Aut(R/S) for the 
group of automorphisms of R which fix each element of 5. 

1. We begin by considering when Aut(R/S) = IR. Suppose R2 = 0, R is 
2-torsion-free, and r* = —r for all r £ R. Then any automorphism of R is in 
Aut(R/S). Hence to show Aut(R/S) = IR, R had better be semi-prime. Another 
problem which can arise is illustrated by taking R = M2(F), the 2 X 2 matrix 
ring over F, a field with chari7 F^ 2. If 

Va b~V = V d -b 
Lc ^J L~~c a 

then S = Z and again Aut(R/S) is the group of all automorphisms of R. So we 
need to eliminate the possibility that R has a direct summand which is a 2 X 2 
matrix ring over a field. The following examples generalize the one above and 
show that the problem can persist even if R has no direct summands. 

Example 1. Let R = M2(2J) where J is the ring of integers, and let * be the 
symplectic involution as defined above for M2(F). Any inner automorphism of 
M2(J) restricts to an element of Aut(R/S). Thus Aut(R/S) can be large if R 
is only an order in M2(F). 

Example 2. Let A = F{x, y, w, t], the free algebra with identity in four 
indeterminates over the field F with char F 9^ 2. Let I be the ideal of A 
generated by w2, t2, wt + tw — 1, pq, and qp, where p is either x or y and q is 
either w or t. Set R = A/I with * defined via: x* = x, y* = y, w* = —w, and 
t* = —t. Define <p 6 Aut(R/S) by setting (x)<p = x, (y)<p = y, (w)<p = w, and 
(t)<p = t — wt + tw — w. If B is the ideal generated by x and y, and D the 
ideal generated by w and t, then B ^ F{x, y}, D = M2(/ r), and <p acts like the 

identity on B and like conjugation by on D. Note that R/B ~ D. 
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The real problem Example 2 identifies is that a large piece of P , namely D 
in the example, has its symmetric elements in the center, allowing all "inner 
automorphisms" to be in Aut(P/S). It will be sufficient to make sure that R 
does not have many homomorphic images which are 2 X 2 matrix rings, as in 
the above examples. To this end we make the 

Definition. R satisfies condition (C) ifR/P is commutative for any prime ideal P 
of R with P* = P and such that the images in R/P of the elements of S commute. 

The strength of condition (C) is that we may conclude that any element 
commuting with all symmetric elements lies in the center. A generalization of 
this fact is the content of our first theorem. Before stating this result, we need a 
well-known fact about 5, the subring generated by S. 

Definition. T is the ideal of R generated by all xy — yx} for x, y G S. 

Theorem. T C S. 

Proof. See [2, p. 4]. 

THEOREM 1. LetR satisfy (C), let A be a semi-prime ideal of R and suppose that 
for some x G P , xt — tx G A for all t G T. Then x + i G Z(R/A). 

Proof. Let P be a prime ideal of R with AC.P.UT(£P, then (T + P)/P 
is a nonzero ideal in R/P and commutes with x + P. Since R/P is a prime ring, 
x + P G Z(R/P), so xr - rx G P for all r G R. 

Next assume T C P and P* = P. Then the images of the elements of S 
commute, so R/P is commutative by (C). Hence xr — rx G P for r G P . 
Lastly, if P* ^ P then (P* + P)/P is a nonzero ideal in R/P and for w* G P*, 
w* + P = (w* + w) + P. Thus each element of (P* + P)/P is the image of 
an element of S. Since T C P , the ideal (P* + P)/P is commutative, forcing 
R/P to be commutative. Therefore, in all cases, xr — rx G P . Since A is a 
semi-prime ideal, it is the intersection of all prime ideals which contain it. 
Consequently xr — rx G A for all r G R, so x + R G Z(R/A), as claimed. 

We can now use Theorem 1 to examine automorphisms of semi-prime 
images of R. Note that in the following results we are not assuming that the 
image under consideration has an involution. 

THEOREM 2. Let R satisfy (C), let A be a semi-prime ideal of R and suppose 
that (p is an automorphism of R/A such that (s + A)<p = s + A for every s G S. 
Then (r + A)<p = (r + A) + (z + A) for z + A G ZÇR/A). 

Proof. If T C A, then R/A is commutative by Theorem 1, so the theorem 
holds trivially. If T <£ A, let t G T and x G P . Then xt G P, so 

(xt + A)(p = xt + A, since T C. 5. 
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Hence (x + A)(t + A) = ((x + A)<p)(t + A) and so, for (x + A)y = y + A, 

(y - x + A)(t + A) C A 

or (y — x)T <Z A. 

Similarly T(y — x) C A, so by Theorem 1 y — x G Z(R/A). Equivalently we 
have 

(x + A)ç = (x + A) + (z + A) for z + A G Z(R/A). 

Our immediate goal is to show that Aut(i?/5) is a group of exponent two. 
We can do this only under the assumption that 2R = 0 or that R is 2-torsion-
free. First we consider 2R = 0. 

THEOREM 3. Suppose 2R = 0, R satisfies (C) and A is a semi-prime ideal of R. 
If <p is an automorphism of R/A such that (s + A)cp = s + A for all s G S, then 
(r + A)<p = (r + z) + A with (z + A)<p = z + A and z + A G Z(R/A), 
consequently <p2 = IR/A-

Proof, lî (p 9e IR/A, then for some x g A, (x + A)<p = x + z + A for some 
z + A £ Z(R/A) and z £ A, using Theorem 2. Let (x* + A)<p = x* + / + A 
for t + A G Z(R/A). Since x + x* G S, we have 

x + x* + 4 = (x + x* + A)<p = (x + A)<p + (x* + A)<p 

= (x + x* + A) + (z + t + A). 
Thus z + t £ A. Also, xx* G 5, so 

xx* + 4̂ = (xx* + i4)v? = (x + A)cp(x* + A)cp 

= xx* + z(x + x*) + z2 + A 

using 3 + 4̂ = / + A. Consequently, 

(1) z2 + A = z(x + x*) + A. 

If (z + 4̂)<p 9^ z + A, then using Theorem 2 again, we may conclude that 
(z + A)<p = z + zx + A for 2i g A and *i G Z{R/A). As above, 
(z* + 4 ) p = (z* + zi) + A. Now xz + s*x* G 5, so 

(xs + s*x* + 4 ) = (xs + z*x* + A)(p 

= (x + s)(s + s0 + (s* + Sl)(x* + 0) + A. 

Equivalently, 

(2) s2 + si(x + x*) + ss* G A. 

Since ss* G 5, (zz* + A)cp = zz* + A. If it were true that Oi + A)<p = z± + A, 
then using (2) we could conclude that 

(22 + A) = (z2 + A)<p = (z + si)2 + A = z2 + Zi* + A. 

Thus Si2 G A, and Zi + 4̂ is a nonzero nilpotent element in Z(R/A), which is 
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impossible since R/A is semi-prime. Hence (z± + A)cp 9e Z\ + A, so by 
Theorem 2, (si + A)<p = z± + z2 + A with z2 £ A and z2 + A £ Z(R/A). 
Using (2) and the fact that zz* £ 5 gives 

s2 + *i(x + x*) + A = (z2 + Zl(x + x*) + A)<p 

= (s + *i)2 + (Zl + Z2)(x + X*) + A. 

Canceling corresponding terms yields 

(3) zx
2 + A = z2(x + x*) + A. 

If (z2 + A)cp = z2 + A, then from (3) we could conclude that 

(sr2 + A) = (sr2 + A)<p = z,2 + z2
2 + A, 

or z2
2 £ ^4. This is impossible, as above, since R/A is semi-prime. Thus 

(z2 + A)<p = z2 + Zz + A with s3 g 4̂ and 23 + i G Z(R/A). Applying ^ to 
(3) yields 

(4) (si + s2)
2 + A = (22 + s8)(* + x*) + 4 , or z2* + A = zz(x + x*) + A. 

Now (x + 4̂)<̂ 2 = (x + z + A)<p = x + Zx + A. Hence 

(x + A)<p* = (x + zx + A)<p2 = (x + 2i) + A + (Oi + z2) + A)<p 

= x + zi + zx + zz + A = x + zd + A. 

Since (5 + A)^ = 5 + 4̂ for all s £ S, <p4 satisfies the hypothesis of the 
theorem, so we may use (1) to conclude 

s3
2 + A = zz(x + x*) + A. 

This, together with (4) yields 

z2
2 + A = zi + A. 

But now {z2 + zz + A)2 = (z2 + zz)
2 + A = z2

2 + zf + A = A. Since R/A 
is semi-prime we must have z2 + A = s3 + A, and consequently, 

(s2 + ^4)<P = £2 + s3 + A = A. 

As <p is an automorphism of R/A, this situation is impossible. Therefore, it 
must be that (z + A)<p = z + A, and so ç2 = IR/A, proving the theorem. 

Under the hypothesis of Theorem 3 we know that the automorphisms of 
R/A which "fix S" form an abelian group of exponent 2. Clearly, any two 
automorphisms which agree on all 5 + A for 5 G 5, differ by an element of this 
group. To show any automorphism of R/A is uniquely determined by its action 
on the image of 5 requires an additional assumption. 

THEOREM 4. Suppose 2R = 0, R satisfies (C), A is a semi-prime ideal of Rf 

and Z(R/A) has no divisors of zero in R/A. If <p is an automorphism of R/A 
fixing the image of 5, then <p = IR/A unless R/A is a commutative domain. 
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Proof. If (p 7e IR/A and (x + A)ç> ^ x + A, then from equation (1) in the 
proof of Theorem 3 we have z{z + x + x*) G A, where z is given as in Theorem 2. 
Since z G A and Z(R/A) has no divisors of zero in R/A, we must have 
x* + -4 = x + z + A = (x + A)<p. On the other hand, if (x + A)<p = x + A 
and (y + A)<p j£ y + A, then (x + y + A)(p ?£ x + y + A, so we have 
(x + y + .4)<p = (tf + y)* + A = x* + y* + A. Using that cp is a homo-
morphism gives (x + y + 4̂)<p = # + y* + -4- Thus x + A = x* + A. Con
sequently, for all x £ R we may write (x + A)(p = x* + A. It follows that 
(x*^* + A)<p can be written as yx + 4̂ and also as x;y + ^4, and so, i?/^4 is 
commutative. Under the hypothesis on Z(R/A) it is a domain. 

With regard to Theorem 4, we note that Z(R/A) has no zero divisors in R/A 
if A is a prime ideal. Also the possibility that R is commutative and <p = * 
always exists. We turn now to the situation when R/A is 2-torsion-free. 

THEOREM 5. Suppose R satisfies (C) and A is a semi-prime ideal of R with 
R/A 2-torsion-free. If <p is an automorphism of R/A with (s -\- A)<p = s + A 
for all s £ S then for any r G R 

(i) (r + A)<p = (r + z) + Aforz£A,z + Ae Z(R/A), 
(ii) (z + A)<p = -z + A, 

(iii) <p2 = IR/A, 
(iv) {z + A\z is as in (i)} generates an ideal which lies in Z(R/A). 

Proof, (i) is just Theorem 2, and (iii) follows immediately from (i) and (ii). 
Thus it suffices to prove (ii) and (iv). Using Theorem 2, for any r G R we may 
write (r + A)<p = r + z± + A, (zi + A)<p = zx + z2 + A, and generally 
(zt + A)<p = zt + zi+1 + A where z% + A G Z(R/A) and where we may 
assume Si G 4̂ if <p ̂  / « M -

As in Theorem 3, if (r* + A)cp = r* + t + A for t + A G Z(R/A), then 
r + r* G 5 implies that z± + / G -<4. Using rr* G 5* yields 

(rr* + A) = (rr* + 4)*, = (r + *i)(r* - zt) + A 

= rr* - zt* + zi(r* - r) + A 

and so 

(5) si2 + A = «i(r* - r) + 4 . 

Also, as in Theorem 3, since z±r + r*z±* G -S*, 

Sir + r*Zi + A = (z±r + r*z* + A)<p 

= (2i + z2)(r + *i) + (r* - zi)(^* -z2) + A 

or 

(6) z2(r* - r) + L̂ = si2 + 2zxz2 - zxz\ + A. 

Applying <p to (5) gives 

(*i + *2)2 + 4̂ = («x + z2)(r* - r - 2«i) + .4. 
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Expanding these expressions and using (5) and (6) results in the relation 

zi2 + 2zxz2 + z2
2 + ziz* G A, 

or equivalently. 

(7) -z&i* + A = (z1 + z2)
2 + A. 

Thus {z\ + z2)
2 + A is fixed by <p. If we begin with any zt instead of r we 

would obtain that (zt + zi+i)2 + A is fixed by (p. That is, 

(8) ((*, + zi+1y + A)<p = («« + Si+0» + 4 . 

Using this expression and the definition of zt we have 

((«, + A)<p)> = ((*, + A)vY<p 

= «zt + A)ç2)2 

= ((*, + zt+1 + A)<p)* 

= {{zt + A)<p + (zi+1 + A)<p)* 

= ((*, + A)<pY + (2ztzi+1 + A)<p + «zi+1 + A)?)2. 

Consequently, 

((z i+1 + AY + (2ziZi+1 + A))<p G A 

and so, since <p is an automorphism of R/A, 

(9) zi+1
2 + 2ztzi+1 G A. 

Since by (8), (zt
2 + A)<p = (zt + Zt+i)2 + A is fixed by <p, we may conclude 

using (9) that (2ZiZi+i + A)<p is also fixed by <p. Thus 

(2ZiZi+i + A)<p2 = (2ztzi+1 + A)<p and so 

(ZiZt+1 + A)<p = ztzi+i + A 

using the fact that <p is an automorphism and that R/A is 2-torsion free. In 
particular, 

zxz2 + A = (sis2 + -4)*> = («i + 22)(z2 + z3) + 4̂ 

or 

(10) S2
2 + S8(*i + Z2) G 4 . 

From (10) we have that xz% G 4̂ implies xz2
2 G ^4. Since the annihilator of 

any power of a central element in a semi-prime ring is the annihilator of 
the element, xz2 G A. Applying this to (9) we have (z3 + 2z2)zd G A, and so 
(z3 + 2s2)s2 G -4. Together these yield (z3 + 2z2)

2 G -4. Semi-prime rings 
cannot have central nilpotent elements, so s3 + 2z2 G -4. Using the definition 
of Zt gives 

(22 + 4̂)<£> = z2 + zz + A = —z2 + A. 
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It follows that 

(r + A)<p2 = r + 2zi + z2 + A and ((2zi + z2) + A)<p = 2z1 + z2 + A. 

Now cp2 satisfies the same hypothesis as <p with respect to the image of 51 so 
using (5) with cp2 replacing <p and y = 2z\ + z2 replacing Z\ gives 

3,2 + A = y(r* - r) + A. 

Apply ip2 to both sides remembering that y + A is fixed and the result is 

3,2 _|_ A = y(r* - r - 2y) + A, or y2 G A. 

Again, since R/A has no central nilpotent elements, y = 2z\ + z2 G A. Thus 
(zi + A)<p = — zi + A proving (ii). 

To prove (iv), let r and z = z\ be as above and for x Ç R let 

(x + 4)p = (x + t) + A 

for t + A G Z(R/A). Since x + x* 6 5, 

(r(x + x*) + A)ip = r(x + x*) + z(x + x*) + A 

so s(x + x*) G Z(R/A). Also 

(z(x - x*) + .4)^ = -z(x - x* + 2t) + A 

= z(x - x*) - 2z{x - x*) - 2zt + A, 

and so, 2z{x - x*) + 2zt + A £ Z(R/A). As zt + A £ Z(R/A), 

2z(x - x*) G Z(i?/i4). 

Hence 4xs = 2z(x + x*) + 2z(x - x*) G ZÇR/A). Consequently xz G Z(R/A) 
since i^/^4 is 2-torsion-free, establishing the theorem. 

Note that if R/A is not commutative and has no ideals in its center then <p 
must be the identity. In particular, this holds if R/A is prime. Just as for the 
2R = 0 case, if A = 0 and R is commutative it is always possible that cp is *. 

For the special case when . 4 = 0 , let us record some conditions which force 
Aut(R/S) = IR. 

THEOREM 6. Let R be a semi-prime, 2-torsion-free ring satisfying (C). Then 
unless R is commutative, Aut(R/S) = IR, and so automorphisms of R are 
uniquely determined by their effect on S, if any of the following hold: 

(1) Z contains no divisors of zero (in R); 
(2) Z C S; 
(3) 5 is a non-commutative prime ring. 

Proof. If (1) holds, the result follows exactly as in Theorem 4. If (2) holds 
then by (ii) of Theorem 5, <p = IR. Finally, if (3) holds and (r)<p = r + z, as in 
Theorem 5, then z* = —z. We know (z)<p = z — 2z, so z*cp = z* + 2z, from the 
proof of Theorem 5. Hence zz* = (zz*)<p — ( — z)(z* + 2z), and so z(z + z*) = 0. 
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Applying * gives z*(z + z*) = 0, and combining yields (z + z*)2 = 0, so 
z + z* = 0 since R is semi-prime. Consequently, z2 G 5. If z ^ 0 then by (iv) of 
Theorem 5 the ideal generated by z2 is in Z and intersects 5 nontrivially. But 5 
prime would force S to be commutative contrary to assumption. Hence z = 0 
and <p = IR. 

2. In this section we construct an example to show that the situation 
described in Theorem 5 can occur without <p = I. Let F be any field with 
char F 9^ 2, F[z] the polynomial ring over Fin one indeterminate, and F[z]{x, y) 
the free algebra with identity over F[z] in indeterminates x and y. Consider the 
ideal of F[z]{x, y} generated by z(xy — yx) and z(2x + z), and let B be the 
quotient. Define * on B by setting z* = — z,x* = —x, and y* = y. Define <p 
via (z)<p = —z, (x)<p = x + s, and (y)<p = y. It is clear that <p is an auto
morphism of B of period 2. Note that z(xy — yx) = 0 implies that the ideal 
generated by z is in the center of B, so <p has the form indicated in Theorem 5. 
It remains to show that B is semi-prime, satisfies condition (C), and that 
<p e Aut(R/S). 

First, since x and y commute in the presence of z, any monomial in x and y 
with coefficient involving zk has the form zJcxiyj. Since 2xz = —z2, 2izxi = -\-zi+l. 
Consequently, if r G B, for a suitable power of 2 we may write 

2mr = p0(x,y)+ £, *V>i(y) 

with ^ "polynomials" with coefficients in F. From this form for the elements 
of B, it follows that B is semi-prime. 

To show that condition (C) is satisfied it will be helpful to denote ab — ba 
by [a, b]. 

THEOREM 7. If P is a prime ideal of B such that the images of S commute in 
B/P, then B/P is commutative. 

Proof. Since z[x, y] = 0 in B and z G Z{B)} either z G P or [x, y] G P . If 
[x, y] G P then i£ /P is commutative. We may assume, then, that z g P . We 
claim that £y + P , [r + P , y + P]] = 0 for all r £ B. If so, then by the 
sublemma in [2, p. 5], y + P is in Z(R/P), so P / P is commutative. It suffices 
to take r to be a monomial in x and 3/. The relation certainly holds for r of the 
form x2 and xylx since these are in 5, and for x since [x, y] £ 5. If r = ty then 
ty» fey> y]] = Ùy> IA y]\y G P by induction on the degree of r. Similarly, if r = to* 
for i ^ 2, since [x2, 3/] Ç P . Lastly take r = £ry*x. Again 

[3/, [£ryfx, y]] = [y, [t, y]]xy*x G P . 

Thus 3/ + P G Z(R/P) and P / P is commutative. 

THEOREM 8. ^ G Aut(£/S). 

Proof. For r G P write 2mr = po(x„y) + YTi=i ziPi(y)- Clearly, r G S if and 
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only if 2mr € S. Also 

even 

and fixed by <p. If r Ç 5 then 

£ *V>*(y) = o, 
odd 

so it is only necessary to consider r = po(x, y). 
Note (x2)cp = (x + z)2 = x2 + 2rs + s2 = x2, and by induction (x2n)<p = x2n. 
For m a monomial in £o(#, y), write m = m0xmiX • • • xw& where each mt is a 

monomial in y and x2. Since po(x, y) £ 5, m + m* is a "part" of £o(#f 30 where 
m* = ( — l)kmk*x - • • xm0*. (If m = m* use m in place of m + TW*.) NOW 

(m + ra*)<p = m0(x + z) • • • (x + z ) ^ 

+ ( — l)kmk*(x + z) ••• (x + z)ra0*. 

Expanding gives 

(m + ra*)<p = 

m + m* + £ I . s'xA~'(wo. . . mk + (—l)*mfc* . . . m0*), 

using the fact that x and 3/ commute in the presence of z. Thus we may also 
write 

z(m0 - • • mk) = z{mk • • • m0*), 

and so 

(m + fn*) (p = m+m* + 2^2\ . I zlxk~*rno. . .mk 

where we may assume that k is even. But 

Z ( *)*f**"* = (x*)*>-x* = 0 
i=i \ t / 

for & even. Thus <p fixes £o(#, y) so <p £ Aut(B/S) as claimed. 

3. We intend next to investigate Aut(R/S) when R does not satisfy condition 
(C). As Example 1 and Example 2 illustrate, when (C) does not hold one might 
expect certain inner automorphism to arise. In a sense, all addition problems 
resulting from (C) not holding do come from inner automorphisms of certain 
quotients of R. To apply our previous results to quotients of R we must ensure 
that these quotients are either 2-torsion, or 2-torsion-free. If 2R = 0, the same 
holds for all quotients of R. IÎR is 2-torsion-free we can considérai = R(S)JJ(2)> 

for J the ring of integers and J (2) the localization at the powers of 2. The 
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involution and automorphisms of P naturally go over to Pi , and since we will be 
considering embeddings of R, there is no loss of generality in assuming that R 
is an algebra over / ( 2 ) . 

THEOREM 9. Let P be a prime ideal of R with P* = P and let <p £ Aut(P/S). 
Then (P)<p = P. 

Proof. For x 6 P, both x + x* Ç P and x*x Ç P. Since x2 = (x + x*)x — x*x, 
(x2)<p = (x + x*)(x<p) — x*x G -P. Hence (x<p)2 G P and (P)<p + P / P is a nil 
ideal of index 2 in P / P . By Levitzki's Theorem [2, Lemma 1.1] R/P has a 
nilpotent ideal, if this nil ideal is not zero. Since R/P is prime we must have 
(P)<P C P . The argument works for <p~l, so (P)<p = P . 

Let R be semi prime but not prime and let A be the intersection of all prime 
ideals P C.R with P* = P , P / P not commutative, and T C P . Let P be the 
intersection of all the other prime ideals of R. If R is a prime ring and T = 0 
take . 4 = 0 and P = P . If R is prime and T ^ 0 take P = 0 and A = R. 
Since A Pi P = 0 in all cases, R is a subdirect sum of R/A and P / P , semi-
prime rings. Furthermore, by Theorem 9, <p induces an automorphism on each 
of R/A and R/B. Now since condition (C) is equivalent to P = P* and 
TCP implies that R/P is commutative, R/B vacuously satisfies (C). Note 
that if P is prime and T 9^ 0 then any element commuting with T automatically 
lies in Z(P), so the conclusion of Theorem 1, and so, Theorem 2 holds for 
elements of Aut(P/*S). Thus in either case we may apply Theorem 3 or 
Theorem 5 to R/B (assuming either 2P = 0 or R is a J"(2) algebra) to conclude 
that automorphisms of R/B fixing the image of 5 have order 2. 

Let {P^ be the primes whose intersection is A. Then R/A is a subdirect sum 
of Rt = R/P\, and by Theorem 9, cp induces an automorphism <pt on each of 
these rings. Also, since P* = Pu each Rt has an involution given by 
(r + Pt)* = r* + Pit In each Rt the elements (x + x*) + Pi commute, since 
P C P h so by a Theorem of Amitsur [1], Rt satisfies a polynomial identity of 
degree 4. Thus the quotient ring of Rt, Q(Ri), is a simple ring four dimensional 
over its center. Now <pt naturally induces an automorphism of Q(Rt) which 
must be inner by the Skolem-Noether Theorem. Consequently, the action of <p 
on R/A is the restriction to R/A of an inner automorphism of Q(®Rt), and we 
have proved the following theorem. 

THEOREM 10. Let R be semi-prime with either 2R = 0 or R a J(2) algebra and 
let <p 6 Aut(P/5). There exist rings (with involution) P i and Ri such that 

(1) P i is the direct product of ^.-dimensional simple algebras; 
(2) P 2 is a semi-prime homomorphic image of R; 
(3) Ris a subring of R\ 0 P 2 ; 
(4) <p is the restriction of <pi + <p2 where <pi is an inner automorphism on P i ana 

ç>2 is given as in Theorem 8 or Theorem 5. 

4. Finally, we consider homomorphisms of R where, again, we assume t h a t P 
satisfies condition (C). Our first result will show that, once more, the center of 
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the image plays a key role. Note t h a t no assumption abou t an involution is 
placed on the image. 

T H E O R E M 11. Let R satisfy condition (C) and suppose that a and fi are homo-
morphisms of R onto Rr a semi-prime ring, such that {s)a = (s)fi for all s G S. 
Then for all r £ R, (r)a — (r)/3 G Z{R'), and (Ker a)fi and (Ker fi)a are central 
ideals in R''. 

Proof. T h e s ta tements abou t the kernels of a and /3 follow trivially from 
(r)a — (r)fi G Z{Rr). T o show this holds, consider t G T and r G R. T h e n 
tr G T C 5 , so (tr)a = (tr)fi and (t)a((r)a — (r)/3) = 0. Since a is onto, there 
is y G R so t h a t (r)a — (r)/3 = (y)a. Therefore we may write (ty)a = 0. Simi
larly (yt)a = 0, so (ty — yt)a = 0. T h e kernel of a is a semi-prime ideal of R, 
so by Theorem 1, y + Ker a G Z( i ? /Ker a). Bu t this yields 

(y)a = (r)a - (r)/3 G Z(R'), 

which proves the theorem. 

T h e following example shows how two homomorphisms can be quite different 
in the presence of central ideals. 

Example 3. Let W be any semi prime ring with involution and V any com
muta t ive ring. L e t i ^ = W® V® F with (w, a, b)* = (w*, b, a). Assume t h a t 
Vi is a semi prime homomorphic image of V under the mapping <p. Let 

R> = w® Vi and define R onto R' by 

(w, a, b)a = (w, (a)cp) (w, a, b)/3 = (w, (b)<p). 

By insisting t h a t Rr contain no central ideals, we can insure uniqueness. 

T H E O R E M 12. Let R satisfy (C) and suppose a and /3 are homomorphisms of R 
onto the semi-prime ring R, with a and fi agreeing on S. If R' has no nonzero 
central ideals, and if R' is 2-torsion-free, then a = fi. 

Proof. By Theorem 11, Ker a = Ker (3 = K. T h u s each of a and fi induce a 
na tura l isomorphism from R/K to R'. Le t <p be the automorphism of R/K 
obtained by taking one of these composed with the inverse of the other . 
Clearly (s + K)cp = s + K for all 5 G S, so by Theorem 5, <p = IR/K and 
a = p. 
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