HOMOMORPHISMS OF RINGS WITH INVOLUTION

CHARLES LANSKI

Introduction. The purpose of this paper is to examine the extent to which a homomorphism of a ring with involution is determined by its action on the symmetric elements of the ring. Assuming that the ring is "suitably free" of 2×2 matrix rings, we show that any homomorphism is uniquely determined if its image is semi-prime without nonzero central ideals. To obtain this result we first investigate automorphisms of quotients of rings with involution.

R will always denote a ring with involution, *; $S = \{r \in R | r^* = r\}$, the set of symmetric elements of *R*; and *Z*, the center of *R*. We write Aut(*R*/*S*) for the group of automorphisms of *R* which fix each element of *S*.

1. We begin by considering when $\operatorname{Aut}(R/S) = I_R$. Suppose $R^2 = 0$, R is 2-torsion-free, and $r^* = -r$ for all $r \in R$. Then any automorphism of R is in $\operatorname{Aut}(R/S)$. Hence to show $\operatorname{Aut}(R/S) = I_R$, R had better be semi-prime. Another problem which can arise is illustrated by taking $R = M_2(F)$, the 2×2 matrix ring over F, a field with char $F \neq 2$. If

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix},$$

then S = Z and again Aut(R/S) is the group of all automorphisms of R. So we need to eliminate the possibility that R has a direct summand which is a 2×2 matrix ring over a field. The following examples generalize the one above and show that the problem can persist even if R has no direct summands.

Example 1. Let $R = M_2(2J)$ where J is the ring of integers, and let * be the symplectic involution as defined above for $M_2(F)$. Any inner automorphism of $M_2(J)$ restricts to an element of Aut(R/S). Thus Aut(R/S) can be large if R is only an order in $M_2(F)$.

Example 2. Let $A = F\{x, y, w, t\}$, the free algebra with identity in four indeterminates over the field F with char $F \neq 2$. Let I be the ideal of A generated by w^2 , t^2 , wt + tw - 1, pq, and qp, where p is either x or y and q is either w or t. Set R = A/I with * defined via: $x^* = x$, $y^* = y$, $w^* = -w$, and $t^* = -t$. Define $\varphi \in \operatorname{Aut}(R/S)$ by setting $(x)\varphi = x$, $(y)\varphi = y$, $(w)\varphi = w$, and $(t)\varphi = t - wt + tw - w$. If B is the ideal generated by x and y, and D the ideal generated by w and t, then $B \cong F\{x, y\}$, $D \cong M_2(F)$, and φ acts like the identity on B and like conjugation by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ on D. Note that $R/B \cong D$.

Received March 8, 1973. This research was supported by NSF Grant GP-29119X.

The real problem Example 2 identifies is that a large piece of R, namely D in the example, has its symmetric elements in the center, allowing all "inner automorphisms" to be in Aut(R/S). It will be sufficient to make sure that R does not have many homomorphic images which are 2×2 matrix rings, as in the above examples. To this end we make the

Definition. R satisfies condition (C) if R/P is commutative for any prime ideal P of R with $P^* = P$ and such that the images in R/P of the elements of S commute.

The strength of condition (C) is that we may conclude that any element commuting with all symmetric elements lies in the center. A generalization of this fact is the content of our first theorem. Before stating this result, we need a well-known fact about \overline{S} , the subring generated by S.

Definition. T is the ideal of R generated by all xy - yx, for $x, y \in \overline{S}$.

Theorem. $T \subset \overline{S}$.

Proof. See [2, p. 4].

THEOREM 1. Let R satisfy (C), let A be a semi-prime ideal of R and suppose that for some $x \in R$, $xt - tx \in A$ for all $t \in T$. Then $x + A \in Z(R/A)$.

Proof. Let *P* be a prime ideal of *R* with $A \subset P$. If $T \not\subset P$, then (T + P)/P is a nonzero ideal in R/P and commutes with x + P. Since R/P is a prime ring, $x + P \in Z(R/P)$, so $xr - rx \in P$ for all $r \in R$.

Next assume $T \subset P$ and $P^* = P$. Then the images of the elements of S commute, so R/P is commutative by (C). Hence $xr - rx \in P$ for $r \in R$. Lastly, if $P^* \neq P$ then $(P^* + P)/P$ is a nonzero ideal in R/P and for $w^* \in P^*$, $w^* + P = (w^* + w) + P$. Thus each element of $(P^* + P)/P$ is the image of an element of S. Since $T \subset P$, the ideal $(P^* + P)/P$ is commutative, forcing R/P to be commutative. Therefore, in all cases, $xr - rx \in P$. Since A is a semi-prime ideal, it is the intersection of all prime ideals which contain it. Consequently $xr - rx \in A$ for all $r \in R$, so $x + R \in Z(R/A)$, as claimed.

We can now use Theorem 1 to examine automorphisms of semi-prime images of R. Note that in the following results we are not assuming that the image under consideration has an involution.

THEOREM 2. Let R satisfy (C), let A be a semi-prime ideal of R and suppose that φ is an automorphism of R/A such that $(s + A)\varphi = s + A$ for every $s \in S$. Then $(r + A)\varphi = (r + A) + (z + A)$ for $z + A \in Z(R/A)$.

Proof. If $T \subset A$, then R/A is commutative by Theorem 1, so the theorem holds trivially. If $T \not\subset A$, let $t \in T$ and $x \in R$. Then $xt \in T$, so

 $(xt + A)\varphi = xt + A$, since $T \subset \overline{S}$.

Hence $(x + A)(t + A) = ((x + A)\varphi)(t + A)$ and so, for $(x + A)\varphi = y + A$, $(y - x + A)(t + A) \subset A$

 $(y - x + A)(t + A) \subset A$ $(y - x)T \subset A.$

or

Similarly $T(y - x) \subset A$, so by Theorem 1 $y - x \in Z(R/A)$. Equivalently we have

 $(x + A)\varphi = (x + A) + (z + A)$ for $z + A \in Z(R/A)$.

Our immediate goal is to show that $\operatorname{Aut}(R/S)$ is a group of exponent two. We can do this only under the assumption that 2R = 0 or that R is 2-torsion-free. First we consider 2R = 0.

THEOREM 3. Suppose 2R = 0, R satisfies (C) and A is a semi-prime ideal of R. If φ is an automorphism of R/A such that $(s + A)\varphi = s + A$ for all $s \in S$, then $(r + A)\varphi = (r + z) + A$ with $(z + A)\varphi = z + A$ and $z + A \in Z(R/A)$, consequently $\varphi^2 = I_{R/A}$.

Proof. If $\varphi \neq I_{R/A}$, then for some $x \notin A$, $(x + A)\varphi = x + z + A$ for some $z + A \in Z(R/A)$ and $z \notin A$, using Theorem 2. Let $(x^* + A)\varphi = x^* + t + A$ for $t + A \in Z(R/A)$. Since $x + x^* \in S$, we have

$$x + x^* + A = (x + x^* + A)\varphi = (x + A)\varphi + (x^* + A)\varphi$$

= $(x + x^* + A) + (z + t + A).$

Thus $z + t \in A$. Also, $xx^* \in S$, so

$$xx^{*} + A = (xx^{*} + A)\varphi = (x + A)\varphi(x^{*} + A)\varphi$$
$$= xx^{*} + z(x + x^{*}) + z^{2} + A$$

using z + A = t + A. Consequently,

(1)
$$z^2 + A = z(x + x^*) + A$$
.

If $(z + A)\varphi \neq z + A$, then using Theorem 2 again, we may conclude that $(z + A)\varphi = z + z_1 + A$ for $z_1 \notin A$ and $z_1 \in Z(R/A)$. As above, $(z^* + A)\varphi = (z^* + z_1) + A$. Now $xz + z^*x^* \in S$, so

$$(xz + z^*x^* + A) = (xz + z^*x^* + A)\varphi$$

= $(x + z)(z + z_1) + (z^* + z_1)(x^* + z) + A.$

Equivalently,

(2) $z^2 + z_1(x + x^*) + zz^* \in A$.

Since $zz^* \in S$, $(zz^* + A)\varphi = zz^* + A$. If it were true that $(z_1 + A)\varphi = z_1 + A$, then using (2) we could conclude that

$$(z^{2} + A) = (z^{2} + A)\varphi = (z + z_{1})^{2} + A = z^{2} + z_{1}^{2} + A.$$

Thus $z_1^2 \in A$, and $z_1 + A$ is a nonzero nilpotent element in Z(R/A), which is

impossible since R/A is semi-prime. Hence $(z_1 + A)\varphi \neq z_1 + A$, so by Theorem 2, $(z_1 + A)\varphi = z_1 + z_2 + A$ with $z_2 \notin A$ and $z_2 + A \in Z(R/A)$. Using (2) and the fact that $zz^* \in S$ gives

$$z^{2} + z_{1}(x + x^{*}) + A = (z^{2} + z_{1}(x + x^{*}) + A)\varphi$$
$$= (z + z_{1})^{2} + (z_{1} + z_{2})(x + x^{*}) + A.$$

Canceling corresponding terms yields

(3)
$$z_1^2 + A = z_2(x + x^*) + A$$
.

If $(z_2 + A)\varphi = z_2 + A$, then from (3) we could conclude that

 $(z_1^2 + A) = (z_1^2 + A)\varphi = z_1^2 + z_2^2 + A,$

or $z_2^2 \in A$. This is impossible, as above, since R/A is semi-prime. Thus $(z_2 + A)\varphi = z_2 + z_3 + A$ with $z_3 \notin A$ and $z_3 + A \in Z(R/A)$. Applying φ to (3) yields

(4)
$$(z_1 + z_2)^2 + A = (z_2 + z_3)(x + x^*) + A$$
, or $z_2^2 + A = z_3(x + x^*) + A$.

Now $(x + A)\varphi^2 = (x + z + A)\varphi = x + z_1 + A$. Hence

$$(x + A)\varphi^4 = (x + z_1 + A)\varphi^2 = (x + z_1) + A + ((z_1 + z_2) + A)\varphi$$
$$= x + z_1 + z_1 + z_3 + A = x + z_3 + A.$$

Since $(s + A)\varphi^4 = s + A$ for all $s \in S$, φ^4 satisfies the hypothesis of the theorem, so we may use (1) to conclude

 $z_{3^{2}} + A = z_{3}(x + x^{*}) + A.$

This, together with (4) yields

$$z_{2^{2}} + A = z_{3^{2}} + A.$$

But now $(z_2 + z_3 + A)^2 = (z_2 + z_3)^2 + A = z_2^2 + z_3^2 + A = A$. Since R/A is semi-prime we must have $z_2 + A = z_3 + A$, and consequently,

 $(z_2 + A)\varphi = z_2 + z_3 + A = A.$

As φ is an automorphism of R/A, this situation is impossible. Therefore, it must be that $(z + A)\varphi = z + A$, and so $\varphi^2 = I_{R/A}$, proving the theorem.

Under the hypothesis of Theorem 3 we know that the automorphisms of R/A which "fix S" form an abelian group of exponent 2. Clearly, any two automorphisms which agree on all s + A for $s \in S$, differ by an element of this group. To show any automorphism of R/A is uniquely determined by its action on the image of S requires an additional assumption.

THEOREM 4. Suppose 2R = 0, R satisfies (C), A is a semi-prime ideal of R, and Z(R/A) has no divisors of zero in R/A. If φ is an automorphism of R/Afixing the image of S, then $\varphi = I_{R/A}$ unless R/A is a commutative domain.

CHARLES LANSKI

Proof. If $\varphi \neq I_{R/A}$ and $(x + A)\varphi \neq x + A$, then from equation (1) in the proof of Theorem 3 we have $z(z + x + x^*) \in A$, where z is given as in Theorem 2. Since $z \notin A$ and Z(R/A) has no divisors of zero in R/A, we must have $x^* + A = x + z + A = (x + A)\varphi$. On the other hand, if $(x + A)\varphi = x + A$ and $(y + A)\varphi \neq y + A$, then $(x + y + A)\varphi \neq x + y + A$, so we have $(x + y + A)\varphi = (x + y)^* + A = x^* + y^* + A$. Using that φ is a homomorphism gives $(x + y + A)\varphi = x + y^* + A$. Thus $x + A = x^* + A$. Consequently, for all $x \in R$ we may write $(x + A)\varphi = x^* + A$. It follows that $(x^*y^* + A)\varphi$ can be written as yx + A and also as xy + A, and so, R/A is commutative. Under the hypothesis on Z(R/A) it is a domain.

With regard to Theorem 4, we note that Z(R/A) has no zero divisors in R/A if A is a prime ideal. Also the possibility that R is commutative and $\varphi = *$ always exists. We turn now to the situation when R/A is 2-torsion-free.

THEOREM 5. Suppose R satisfies (C) and A is a semi-prime ideal of R with R/A 2-torsion-free. If φ is an automorphism of R/A with $(s + A)\varphi = s + A$ for all $s \in S$ then for any $r \in R$

- (i) $(r + A)\varphi = (r + z) + A$ for $z \notin A, z + A \in Z(R/A)$,
- (ii) $(z+A)\varphi = -z+A$,
- (iii) $\varphi^2 = I_{R/A}$,
- (iv) $\{z + A | z \text{ is as in (i)}\}$ generates an ideal which lies in Z(R/A).

Proof. (i) is just Theorem 2, and (iii) follows immediately from (i) and (ii). Thus it suffices to prove (ii) and (iv). Using Theorem 2, for any $r \in R$ we may write $(r + A)\varphi = r + z_1 + A$, $(z_1 + A)\varphi = z_1 + z_2 + A$, and generally $(z_i + A)\varphi = z_i + z_{i+1} + A$ where $z_i + A \in Z(R/A)$ and where we may assume $z_1 \notin A$ if $\varphi \neq I_{R/A}$.

As in Theorem 3, if $(r^* + A)\varphi = r^* + t + A$ for $t + A \in Z(R/A)$, then $r + r^* \in S$ implies that $z_1 + t \in A$. Using $rr^* \in S$ yields

$$(rr^* + A) = (rr^* + A)\varphi = (r + z_1)(r^* - z_1) + A$$
$$= rr^* - z_1^2 + z_1(r^* - r) + A$$

and so

(5) $z_1^2 + A = z_1(r^* - r) + A.$

Also, as in Theorem 3, since $z_1r + r^*z_1^* \in S$,

$$z_1r + r^* z_1^* + A = (z_1r + r^* z_1^* + A)\varphi$$

= $(z_1 + z_2)(r + z_1) + (r^* - z_1)(z_1^* - z_2) + A$

or

(6)
$$z_2(r^*-r) + A = z_1^2 + 2z_1z_2 - z_1z_1^* + A.$$

Applying φ to (5) gives

$$(z_1 + z_2)^2 + A = (z_1 + z_2)(r^* - r - 2z_1) + A.$$

https://doi.org/10.4153/CJM-1974-102-4 Published online by Cambridge University Press

Expanding these expressions and using (5) and (6) results in the relation

 $z_1^2 + 2z_1z_2 + z_2^2 + z_1z_1^* \in A$,

or equivalently.

(7) $-z_1z_1^* + A = (z_1 + z_2)^2 + A.$

Thus $(z_1 + z_2)^2 + A$ is fixed by φ . If we begin with any z_i instead of r we would obtain that $(z_i + z_{i+1})^2 + A$ is fixed by φ . That is,

(8)
$$((z_i + z_{i+1})^2 + A)\varphi = (z_i + z_{i+1})^2 + A.$$

Using this expression and the definition of z_i we have

$$\begin{split} ((z_i + A)\varphi)^2 &= ((z_i + A)\varphi)^2\varphi \\ &= ((z_i + A)\varphi^2)^2 \\ &= ((z_i + z_{i+1} + A)\varphi)^2 \\ &= ((z_i + A)\varphi + (z_{i+1} + A)\varphi)^2 \\ &= ((z_i + A)\varphi)^2 + (2z_i z_{i+1} + A)\varphi + ((z_{i+1} + A)\varphi)^2. \end{split}$$

Consequently,

$$((z_{i+1} + A)^2 + (2z_i z_{i+1} + A))\varphi \in A$$

and so, since φ is an automorphism of R/A,

$$(9) \quad z_{i+1}^2 + 2z_i z_{i+1} \in A.$$

Since by (8), $(z_i^2 + A)\varphi = (z_i + z_{i+1})^2 + A$ is fixed by φ , we may conclude using (9) that $(2z_i z_{i+1} + A)\varphi$ is also fixed by φ . Thus

$$\begin{aligned} (2z_iz_{i+1}+A)\varphi^2 &= (2z_iz_{i+1}+A)\varphi \text{ and so}\\ (z_iz_{i+1}+A)\varphi &= z_iz_{i+1}+A \end{aligned}$$

using the fact that φ is an automorphism and that R/A is 2-torsion free. In particular,

$$z_1 z_2 + A = (z_1 z_2 + A)\varphi = (z_1 + z_2)(z_2 + z_3) + A$$

or

$$(10) \quad z_{2}^{2}+z_{3}(z_{1}+z_{2}) \in A.$$

From (10) we have that $xz_3 \in A$ implies $xz_2^2 \in A$. Since the annihilator of any power of a central element in a semi-prime ring is the annihilator of the element, $xz_2 \in A$. Applying this to (9) we have $(z_3 + 2z_2)z_3 \in A$, and so $(z_3 + 2z_2)z_2 \in A$. Together these yield $(z_3 + 2z_2)^2 \in A$. Semi-prime rings cannot have central nilpotent elements, so $z_3 + 2z_2 \in A$. Using the definition of z_4 gives

$$(z_2 + A)\varphi = z_2 + z_3 + A = -z_2 + A.$$

It follows that

 $(r + A)\varphi^2 = r + 2z_1 + z_2 + A$ and $((2z_1 + z_2) + A)\varphi = 2z_1 + z_2 + A$. Now φ^2 satisfies the same hypothesis as φ with respect to the image of S so

using (5) with φ^2 replacing φ and $y = 2z_1 + z_2$ replacing z_1 gives

 $y^2 + A = y(r^* - r) + A.$

Apply φ^2 to both sides remembering that y + A is fixed and the result is

 $y^2 + A = y(r^* - r - 2y) + A$, or $y^2 \in A$.

Again, since R/A has no central nilpotent elements, $y = 2z_1 + z_2 \in A$. Thus $(z_1 + A)\varphi = -z_1 + A$ proving (ii).

To prove (iv), let r and $z = z_1$ be as above and for $x \in R$ let

 $(x+A)\varphi = (x+t) + A$

for $t + A \in Z(R/A)$. Since $x + x^* \in S$,

$$(r(x + x^*) + A)\varphi = r(x + x^*) + z(x + x^*) + A$$

so $z(x + x^*) \in Z(R/A)$. Also

$$(z(x - x^*) + A)\varphi = -z(x - x^* + 2t) + A$$

= $z(x - x^*) - 2z(x - x^*) - 2zt + A$,

and so, $2z(x - x^*) + 2zt + A \in Z(R/A)$. As $zt + A \in Z(R/A)$,

 $2z(x - x^*) \in Z(R/A).$

Hence $4xz = 2z(x + x^*) + 2z(x - x^*) \in Z(R/A)$. Consequently $xz \in Z(R/A)$ since R/A is 2-torsion-free, establishing the theorem.

Note that if R/A is not commutative and has no ideals in its center then φ must be the identity. In particular, this holds if R/A is prime. Just as for the 2R = 0 case, if A = 0 and R is commutative it is always possible that φ is *.

For the special case when A = 0, let us record some conditions which force $Aut(R/S) = I_R$.

THEOREM 6. Let R be a semi-prime, 2-torsion-free ring satisfying (C). Then unless R is commutative, $\operatorname{Aut}(R/S) = I_R$, and so automorphisms of R are uniquely determined by their effect on S, if any of the following hold:

- (1) Z contains no divisors of zero (in R);
- (2) $Z \subset S$;
- (3) \overline{S} is a non-commutative prime ring.

Proof. If (1) holds, the result follows exactly as in Theorem 4. If (2) holds then by (ii) of Theorem 5, $\varphi = I_R$. Finally, if (3) holds and $(r)\varphi = r + z$, as in Theorem 5, then $z^* = -z$. We know $(z)\varphi = z - 2z$, so $z^*\varphi = z^* + 2z$, from the proof of Theorem 5. Hence $zz^* = (zz^*)\varphi = (-z)(z^* + 2z)$, and so $z(z + z^*) = 0$.

https://doi.org/10.4153/CJM-1974-102-4 Published online by Cambridge University Press

Applying * gives $z^*(z + z^*) = 0$, and combining yields $(z + z^*)^2 = 0$, so $z + z^* = 0$ since *R* is semi-prime. Consequently, $z^2 \in S$. If $z \neq 0$ then by (iv) of Theorem 5 the ideal generated by z^2 is in *Z* and intersects \overline{S} nontrivially. But \overline{S} prime would force \overline{S} to be commutative contrary to assumption. Hence z = 0 and $\varphi = I_R$.

2. In this section we construct an example to show that the situation described in Theorem 5 can occur without $\varphi = I$. Let F be any field with char $F \neq 2$, F[z] the polynomial ring over F in one indeterminate, and $F[z]\{x, y\}$ the free algebra with identity over F[z] in indeterminates x and y. Consider the ideal of $F[z]\{x, y\}$ generated by z(xy - yx) and z(2x + z), and let B be the quotient. Define * on B by setting $z^* = -z$, $x^* = -x$, and $y^* = y$. Define φ via $(z)\varphi = -z$, $(x)\varphi = x + z$, and $(y)\varphi = y$. It is clear that φ is an automorphism of B of period 2. Note that z(xy - yx) = 0 implies that the ideal generated by z is in the center of B, so φ has the form indicated in Theorem 5. It remains to show that B is semi-prime, satisfies condition (C), and that $\varphi \in \operatorname{Aut}(R/S)$.

First, since x and y commute in the presence of z, any monomial in x and y with coefficient involving z^k has the form $z^k x^i y^j$. Since $2xz = -z^2$, $2^i z x^i = \pm z^{i+1}$. Consequently, if $r \in B$, for a suitable power of 2 we may write

$$2^{m}r = p_{0}(x, y) + \sum_{i=1}^{n} z^{i}p_{i}(y)$$

with p_j "polynomials" with coefficients in *F*. From this form for the elements of *B*, it follows that *B* is semi-prime.

To show that condition (C) is satisfied it will be helpful to denote ab - ba by [a, b].

THEOREM 7. If P is a prime ideal of B such that the images of S commute in B/P, then B/P is commutative.

Proof. Since z[x, y] = 0 in B and $z \in Z(B)$, either $z \in P$ or $[x, y] \in P$. If $[x, y] \in P$ then R/P is commutative. We may assume, then, that $z \in P$. We claim that [y + P, [r + P, y + P]] = 0 for all $r \in B$. If so, then by the sublemma in [2, p. 5], y + P is in Z(R/P), so R/P is commutative. It suffices to take r to be a monomial in x and y. The relation certainly holds for r of the form x^2 and xy^ix since these are in S, and for x since $[x, y] \in S$. If r = ty then $[y, [ty, y]] = [y, [t, y]]y \in P$ by induction on the degree of r. Similarly, if $r = tx^i$ for $i \ge 2$, since $[x^2, y] \in P$. Lastly take $r = txy^i x$. Again

 $[y, [txy^{i}x, y]] = [y, [t, y]]xy^{i}x \in P.$

Thus $y + P \in Z(R/P)$ and R/P is commutative.

Theorem 8. $\varphi \in \operatorname{Aut}(B/S)$.

Proof. For $r \in B$ write $2^m r = p_0(x_i, y) + \sum_{i=1}^n z^i p_i(y)$. Clearly, $r \in S$ if and

only if $2^m r \in S$. Also

$$\sum_{\text{even}} z^i p_i(y) \in S$$

and fixed by φ . If $r \in S$ then

$$\sum_{\text{odd}} z^i p_i(y) = 0,$$

so it is only necessary to consider $r = p_0(x, y)$.

Note $(x^2)\varphi = (x + z)^2 = x^2 + 2xz + z^2 = x^2$, and by induction $(x^{2n})\varphi = x^{2n}$. For *m* a monomial in $p_0(x, y)$, write $m = m_0 x m_1 x \cdots x m_k$ where each m_i is a monomial in *y* and x^2 . Since $p_0(x, y) \in S$, $m + m^*$ is a "part" of $p_0(x, y)$ where $m^* = (-1)^k m_k^* x \cdots x m_0^*$. (If $m = m^*$ use *m* in place of $m + m^*$.) Now

$$(m+m^*)\varphi = m_0(x+z)\cdots(x+z)m_k$$

+ $(-1)^k m_k^*(x+z)\cdots(x+z)m_0^*.$

Expanding gives

$$(m + m^*)\varphi = m + m^* + \sum_{i=1}^k {\binom{k}{i}} z^i x^{k-i} (m_0 \dots m_k + (-1)^k m_k^* \dots m_0^*),$$

using the fact that x and y commute in the presence of z. Thus we may also write

$$z(m_0\cdots m_k) = z(m_k^*\cdots m_0^*),$$

and so

$$(m+m^*)\varphi = m+m^*+2\sum_{i=1}^k \binom{k}{i}z^i x^{k-i}m_0\ldots m_k$$

where we may assume that k is even. But

$$\sum_{i=1}^k \binom{k}{i} z^i x^{k-i} = (x^k) \varphi - x^k = 0$$

for k even. Thus φ fixes $p_0(x, y)$ so $\varphi \in \operatorname{Aut}(B/S)$ as claimed.

3. We intend next to investigate Aut(R/S) when R does not satisfy condition (C). As Example 1 and Example 2 illustrate, when (C) does not hold one might expect certain inner automorphism to arise. In a sense, all addition problems resulting from (C) not holding do come from inner automorphisms of certain quotients of R. To apply our previous results to quotients of R we must ensure that these quotients are either 2-torsion, or 2-torsion-free. If 2R = 0, the same holds for all quotients of R. If R is 2-torsion-free we can consider $R_1 = R \bigotimes_J J_{(2)}$, for J the ring of integers and $J_{(2)}$ the localization at the powers of 2. The

involution and automorphisms of R naturally go over to R_1 , and since we will be considering embeddings of R, there is no loss of generality in assuming that R is an algebra over $J_{(2)}$.

THEOREM 9. Let P be a prime ideal of R with $P^* = P$ and let $\varphi \in Aut(R/S)$. Then $(P)\varphi = P$.

Proof. For $x \in P$, both $x + x^* \in P$ and $x^*x \in P$. Since $x^2 = (x + x^*)x - x^*x$, $(x^2)\varphi = (x + x^*)(x\varphi) - x^*x \in P$. Hence $(x\varphi)^2 \in P$ and $(P)\varphi + P/P$ is a nil ideal of index 2 in R/P. By Levitzki's Theorem [2, Lemma 1.1] R/P has a nilpotent ideal, if this nil ideal is not zero. Since R/P is prime we must have $(P)\varphi \subset P$. The argument works for φ^{-1} , so $(P)\varphi = P$.

Let *R* be semi prime but not prime and let *A* be the intersection of all prime ideals $P \subset R$ with $P^* = P$, R/P not commutative, and $T \subset P$. Let *B* be the intersection of all the other prime ideals of *R*. If *R* is a prime ring and T = 0take A = 0 and B = R. If *R* is prime and $T \neq 0$ take B = 0 and A = R. Since $A \cap B = 0$ in all cases, *R* is a subdirect sum of R/A and R/B, semiprime rings. Furthermore, by Theorem 9, φ induces an automorphism on each of R/A and R/B. Now since condition (C) is equivalent to $P = P^*$ and $T \subset P$ implies that R/P is commutative, R/B vacuously satisfies (C). Note that if *R* is prime and $T \neq 0$ then any element commuting with *T* automatically lies in Z(R), so the conclusion of Theorem 1, and so, Theorem 2 holds for elements of Aut(R/S). Thus in either case we may apply Theorem 3 or Theorem 5 to R/B (assuming either 2R = 0 or *R* is a $J_{(2)}$ algebra) to conclude that automorphisms of R/B fixing the image of *S* have order 2.

Let $\{P_i\}$ be the primes whose intersection is A. Then R/A is a subdirect sum of $R_i = R/P_i$, and by Theorem 9, φ induces an automorphism φ_i on each of these rings. Also, since $P_i^* = P_i$, each R_i has an involution given by $(r + P_i)^* = r^* + P_i$. In each R_i the elements $(x + x^*) + P_i$ commute, since $T \subset P_i$, so by a Theorem of Amitsur [1], R_i satisfies a polynomial identity of degree 4. Thus the quotient ring of R_i , $Q(R_i)$, is a simple ring four dimensional over its center. Now φ_i naturally induces an automorphism of $Q(R_i)$ which must be inner by the Skolem-Noether Theorem. Consequently, the action of φ on R/A is the restriction to R/A of an inner automorphism of $Q(\bigoplus R_i)$, and we have proved the following theorem.

THEOREM 10. Let R be semi-prime with either 2R = 0 or R a $J_{(2)}$ algebra and let $\varphi \in \operatorname{Aut}(R/S)$. There exist rings (with involution) R_1 and R_2 such that

(1) R_1 is the direct product of 4-dimensional simple algebras;

(2) R_2 is a semi-prime homomorphic image of R;

(3) R is a subring of $R_1 \bigoplus R_2$;

(4) φ is the restriction of $\varphi_1 + \varphi_2$ where φ_1 is an inner automorphism on R_1 and φ_2 is given as in Theorem 3 or Theorem 5.

4. Finally, we consider homomorphisms of R where, again, we assume that R satisfies condition (C). Our first result will show that, once more, the center of

CHARLES LANSKI

the image plays a key role. Note that no assumption about an involution is placed on the image.

THEOREM 11. Let R satisfy condition (C) and suppose that α and β are homomorphisms of R onto R' a semi-prime ring, such that $(s)\alpha = (s)\beta$ for all $s \in S$. Then for all $r \in R$, $(r)\alpha - (r)\beta \in Z(R')$, and (Ker α) β and (Ker β) α are central ideals in R'.

Proof. The statements about the kernels of α and β follow trivially from $(r)\alpha - (r)\beta \in Z(R')$. To show this holds, consider $t \in T$ and $r \in R$. Then $tr \in T \subset \overline{S}$, so $(tr)\alpha = (tr)\beta$ and $(t)\alpha((r)\alpha - (r)\beta) = 0$. Since α is onto, there is $y \in R$ so that $(r)\alpha - (r)\beta = (y)\alpha$. Therefore we may write $(ty)\alpha = 0$. Similarly $(yt)\alpha = 0$, so $(ty - yt)\alpha = 0$. The kernel of α is a semi-prime ideal of R, so by Theorem 1, $y + \text{Ker } \alpha \in Z(R/\text{Ker } \alpha)$. But this yields

 $(y)\alpha = (r)\alpha - (r)\beta \in Z(R'),$

which proves the theorem.

The following example shows how two homomorphisms can be quite different in the presence of central ideals.

Example 3. Let W be any semi prime ring with involution and V any commutative ring. Let $R = W \bigoplus V \bigoplus V$ with $(w, a, b)^* = (w^*, b, a)$. Assume that V_1 is a semi prime homomorphic image of V under the mapping φ . Let $R' = W \bigoplus V_1$ and define R onto R' by

 $(w, a, b)\alpha = (w, (a)\varphi)$ $(w, a, b)\beta = (w, (b)\varphi).$

By insisting that R' contain no central ideals, we can insure uniqueness.

THEOREM 12. Let R satisfy (C) and suppose α and β are homomorphisms of R onto the semi-prime ring R, with α and β agreeing on S. If R' has no nonzero central ideals, and if R' is 2-torsion-free, then $\alpha = \beta$.

Proof. By Theorem 11, Ker $\alpha = \text{Ker }\beta = K$. Thus each of α and β induce a natural isomorphism from R/K to R'. Let φ be the automorphism of R/K obtained by taking one of these composed with the inverse of the other. Clearly $(s + K)\varphi = s + K$ for all $s \in S$, so by Theorem 5, $\varphi = I_{R/K}$ and $\alpha = \beta$.

References

1. S. A. Amitsur, Identities in Rings with involution, Israel J. Math. 1 (1969), 63-68.

2. I. N. Herstein, Topics in ring theory (University of Chicago Press, Chicago, 1969).

University of Southern California, Los Angeles, California