HOMOMORPHISMS OF RINGS WITH INVOLUTION

CHARLES LANSKI

Introduction. The purpose of this paper is to examine the extent to which a homomorphism of a ring with involution is determined by its action on the symmetric elements of the ring. Assuming that the ring is "suitably free" of 2×2 matrix rings, we show that any homomorphism is uniquely determined if its image is semi-prime without nonzero central ideals. To obtain this result we first investigate automorphisms of quotients of rings with involution.
R will always denote a ring with involution, ${ }^{*} ; S=\left\{r \in R \mid r^{*}=r\right\}$, the set of symmetric elements of R; and Z, the center of R. We write $\operatorname{Aut}(R / S)$ for the group of automorphisms of R which fix each element of S.

1. We begin by considering when $\operatorname{Aut}(R / S)=I_{R}$. Suppose $R^{2}=0, R$ is 2 -torsion-free, and $r^{*}=-r$ for all $r \in R$. Then any automorphism of R is in $\operatorname{Aut}(R / S)$. Hence to show $\operatorname{Aut}(R / S)=I_{R}, R$ had better be semi-prime. Another problem which can arise is illustrated by taking $R=M_{2}(F)$, the 2×2 matrix ring over F, a field with $\operatorname{char} F \neq 2$. If

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{*}=\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right],
$$

then $S=Z$ and again $\operatorname{Aut}(R / S)$ is the group of all automorphisms of R. So we need to eliminate the possibility that R has a direct summand which is a 2×2 matrix ring over a field. The following examples generalize the one above and show that the problem can persist even if R has no direct summands.

Example 1. Let $R=M_{2}(2 J)$ where J is the ring of integers, and let * be the symplectic involution as defined above for $M_{2}(F)$. Any inner automorphism of $M_{2}(J)$ restricts to an element of $\operatorname{Aut}(R / S)$. Thus $\operatorname{Aut}(R / S)$ can be large if R is only an order in $M_{2}(F)$.

Example 2. Let $A=F\{x, y, w, t\}$, the free algebra with identity in four indeterminates over the field F with char $F \neq 2$. Let I be the ideal of A generated by w^{2}, t^{2}, wt $+t w-1, p q$, and $q p$, where p is either x or y and q is either w or t. Set $R=A / I$ with ${ }^{*}$ defined via: $x^{*}=x, y^{*}=y, w^{*}=-w$, and $t^{*}=-t$. Define $\varphi \in \operatorname{Aut}(R / S)$ by setting $(x) \varphi=x,(y) \varphi=y,(w) \varphi=w$, and $(t) \varphi=t-w t+t w-w$. If B is the ideal generated by x and y, and D the ideal generated by w and t, then $B \cong F\{x, y\}, D \cong M_{2}(F)$, and φ acts like the identity on B and like conjugation by $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ on D. Note that $R / B \cong D$.

Received March 8, 1973. This research was supported by NSF Grant GP-29119X.

The real problem Example 2 identifies is that a large piece of R, namely D in the example, has its symmetric elements in the center, allowing all "inner automorphisms" to be in $\operatorname{Aut}(R / S)$. It will be sufficient to make sure that R does not have many homomorphic images which are 2×2 matrix rings, as in the above examples. To this end we make the

Definition. R satisfies condition (C) if R / P is commutative for any prime ideal P of R with $P^{*}=P$ and such that the images in R / P of the elements of S commute.

The strength of condition (C) is that we may conclude that any element commuting with all symmetric elements lies in the center. A generalization of this fact is the content of our first theorem. Before stating this result, we need a well-known fact about \bar{S}, the subring generated by S.

Definition. T is the ideal of R generated by all $x y-y x$, for $x, y \in \bar{S}$.
Theorem. $T \subset \bar{S}$.
Proof. See [2, p. 4].
Theorem 1. Let R satisfy (C), let A be a semi-prime ideal of R and suppose that for some $x \in R, x t-t x \in A$ for all $t \in T$. Then $x+A \in Z(R / A)$.

Proof. Let P be a prime ideal of R with $A \subset P$. If $T \not \subset P$, then $(T+P) / P$ is a nonzero ideal in R / P and commutes with $x+P$. Since R / P is a prime ring, $x+P \in Z(R / P)$, so $x r-r x \in P$ for all $r \in R$.

Next assume $T \subset P$ and $P^{*}=P$. Then the images of the elements of S commute, so R / P is commutative by (C). Hence $x r-r x \in P$ for $r \in R$. Lastly, if $P^{*} \neq P$ then $\left(P^{*}+P\right) / P$ is a nonzero ideal in R / P and for $w^{*} \in P^{*}$, $w^{*}+P=\left(w^{*}+w\right)+P$. Thus each element of $\left(P^{*}+P\right) / P$ is the image of an element of S. Since $T \subset P$, the ideal $\left(P^{*}+P\right) / P$ is commutative, forcing R / P to be commutative. Therefore, in all cases, $x r-r x \in P$. Since A is a semi-prime ideal, it is the intersection of all prime ideals which contain it. Consequently $x r-r x \in A$ for all $r \in R$, so $x+R \in Z(R / A)$, as claimed.

We can now use Theorem 1 to examine automorphisms of semi-prime images of R. Note that in the following results we are not assuming that the image under consideration has an involution.

Theorem 2. Let R satisfy (C), let A be a semi-prime ideal of R and suppose that φ is an automorphism of R / A such that $(s+A) \varphi=s+A$ for every $s \in S$. Then $(r+A) \varphi=(r+A)+(z+A)$ for $z+A \in Z(R / A)$.

Proof. If $T \subset A$, then R / A is commutative by Theorem 1 , so the theorem holds trivially. If $T \not \subset A$, let $t \in T$ and $x \in R$. Then $x t \in T$, so

$$
(x t+A) \varphi=x t+A, \text { since } T \subset \bar{S}
$$

Hence $(x+A)(t+A)=((x+A) \varphi)(t+A)$ and so, for $(x+A) \varphi=y+A$,

$$
(y-x+A)(t+A) \subset A
$$

or $\quad(y-x) T \subset A$.
Similarly $T(y-x) \subset A$, so by Theorem $1 y-x \in Z(R / A)$. Equivalently we have

$$
(x+A) \varphi=(x+A)+(z+A) \text { for } z+A \in Z(R / A)
$$

Our immediate goal is to show that $\operatorname{Aut}(R / S)$ is a group of exponent two. We can do this only under the assumption that $2 R=0$ or that R is 2 -torsionfree. First we consider $2 R=0$.

Theorem 3. Suppose $2 R=0, R$ satisfies (C) and A is a semi-prime ideal of R. If φ is an automorphism of R / A such that $(s+A) \varphi=s+A$ for all $s \in S$, then $(r+A) \varphi=(r+z)+A$ with $(z+A) \varphi=z+A$ and $z+A \in Z(R / A)$, consequently $\varphi^{2}=I_{R / A}$.

Proof. If $\varphi \neq I_{R / 4}$, then for some $x \notin A,(x+A) \varphi=x+z+A$ for some $z+A \in Z(R / A)$ and $z \notin A$, using Theorem 2. Let $\left(x^{*}+A\right) \varphi=x^{*}+t+A$ for $t+A \in Z(R / A)$. Since $x+x^{*} \in S$, we have

$$
\begin{aligned}
x+x^{*}+A & =\left(x+x^{*}+A\right) \varphi=(x+A) \varphi+\left(x^{*}+A\right) \varphi \\
& =\left(x+x^{*}+A\right)+(z+t+A) .
\end{aligned}
$$

Thus $z+t \in A$. Also, $x x^{*} \in S$, so

$$
\begin{aligned}
x x^{*}+A & =\left(x x^{*}+A\right) \varphi=(x+A) \varphi\left(x^{*}+A\right) \varphi \\
& =x x^{*}+z\left(x+x^{*}\right)+z^{2}+A
\end{aligned}
$$

using $z+A=t+A$. Consequently,

$$
\begin{equation*}
z^{2}+A=z\left(x+x^{*}\right)+A \tag{1}
\end{equation*}
$$

If $(z+A) \varphi \neq z+A$, then using Theorem 2 again, we may conclude that $(z+A) \varphi=z+z_{1}+A$ for $z_{1} \notin A$ and $z_{1} \in Z(R / A)$. As above, $\left(z^{*}+A\right) \varphi=\left(z^{*}+z_{1}\right)+A$. Now $x z+z^{*} x^{*} \in S$, so

$$
\begin{aligned}
\left(x z+z^{*} x^{*}+A\right) & =\left(x z+z^{*} x^{*}+A\right) \varphi \\
& =(x+z)\left(z+z_{1}\right)+\left(z^{*}+z_{1}\right)\left(x^{*}+z\right)+A
\end{aligned}
$$

Equivalently,

$$
\begin{equation*}
z^{2}+z_{1}\left(x+x^{*}\right)+z z^{*} \in A \tag{2}
\end{equation*}
$$

Since $z z^{*} \in S,\left(z z^{*}+A\right) \varphi=z z^{*}+A$. If it were true that $\left(z_{1}+A\right) \varphi=z_{1}+A$, then using (2) we could conclude that

$$
\left(z^{2}+A\right)=\left(z^{2}+A\right) \varphi=\left(z+z_{1}\right)^{2}+A=z^{2}+z_{1}^{2}+A .
$$

Thus $z_{1}{ }^{2} \in A$, and $z_{1}+A$ is a nonzero nilpotent element in $Z(R / A)$, which is
impossible since R / A is semi-prime. Hence $\left(z_{1}+A\right) \varphi \neq z_{1}+A$, so by Theorem 2, $\left(z_{1}+A\right) \varphi=z_{1}+z_{2}+A$ with $z_{2} \notin A$ and $z_{2}+A \in Z(R / A)$. Using (2) and the fact that $z z^{*} \in S$ gives

$$
\begin{aligned}
z^{2}+z_{1}\left(x+x^{*}\right)+A & =\left(z^{2}+z_{1}\left(x+x^{*}\right)+A\right) \varphi \\
& =\left(z+z_{1}\right)^{2}+\left(z_{1}+z_{2}\right)\left(x+x^{*}\right)+A .
\end{aligned}
$$

Canceling corresponding terms yields

$$
\begin{equation*}
z_{1}^{2}+A=z_{2}\left(x+x^{*}\right)+A \tag{3}
\end{equation*}
$$

If $\left(z_{2}+A\right) \varphi=z_{2}+A$, then from (3) we could conclude that

$$
\left(z_{1}^{2}+A\right)=\left(z_{1}^{2}+A\right) \varphi=z_{1}^{2}+z_{2}^{2}+A,
$$

or $z_{2}{ }^{2} \in A$. This is impossible, as above, since R / A is semi-prime. Thus $\left(z_{2}+A\right) \varphi=z_{2}+z_{3}+A$ with $z_{3} \notin A$ and $z_{3}+A \in Z(R / A)$. Applying φ to (3) yields

$$
\begin{equation*}
\left(z_{1}+z_{2}\right)^{2}+A=\left(z_{2}+z_{3}\right)\left(x+x^{*}\right)+A, \text { or } z_{2}^{2}+A=z_{3}\left(x+x^{*}\right)+A \tag{4}
\end{equation*}
$$

Now $(x+A) \varphi^{2}=(x+z+A) \varphi=x+z_{1}+A$. Hence

$$
\begin{aligned}
(x+A) \varphi^{4} & =\left(x+z_{1}+A\right) \varphi^{2}=\left(x+z_{1}\right)+A+\left(\left(z_{1}+z_{2}\right)+A\right) \varphi \\
& =x+z_{1}+z_{1}+z_{3}+A=x+z_{3}+A .
\end{aligned}
$$

Since $(s+A) \varphi^{4}=s+A$ for all $s \in S, \varphi^{4}$ satisfies the hypothesis of the theorem, so we may use (1) to conclude

$$
z_{3^{2}}+A=z_{3}\left(x+x^{*}\right)+A
$$

This, together with (4) yields

$$
z_{2}^{2}+A=z_{3}^{2}+A
$$

But now $\left(z_{2}+z_{3}+A\right)^{2}=\left(z_{2}+z_{3}\right)^{2}+A=z_{2}{ }^{2}+z_{3}{ }^{2}+A=A$. Since R / A is semi-prime we must have $z_{2}+A=z_{3}+A$, and consequently,

$$
\left(z_{2}+A\right)_{\varphi}=z_{2}+z_{3}+A=A
$$

As φ is an automorphism of R / A, this situation is impossible. Therefore, it must be that $(z+A) \varphi=z+A$, and so $\varphi^{2}=I_{R / A}$, proving the theorem.

Under the hypothesis of Theorem 3 we know that the automorphisms of R / A which "fix S " form an abelian group of exponent 2 . Clearly, any two automorphisms which agree on all $s+A$ for $s \in S$, differ by an element of this group. To show any automorphism of R / A is uniquely determined by its action on the image of S requires an additional assumption.

Theorem 4. Suppose $2 R=0, R$ satisfies (C), A is a semi-prime ideal of R, and $Z(R / A)$ has no divisors of zero in R / A. If φ is an automorphism of R / A fixing the image of S, then $\varphi=I_{R / A}$ unless R / A is a commutative domain.

Proof. If $\varphi \neq I_{R / A}$ and $(x+A) \varphi \neq x+A$, then from equation (1) in the proof of Theorem 3 we have $z\left(z+x+x^{*}\right) \in A$, where z is given as in Theorem 2. Since $z \notin A$ and $Z(R / A)$ has no divisors of zero in R / A, we must have $x^{*}+A=x+z+A=(x+A) \varphi$. On the other hand, if $(x+A) \varphi=x+A$ and $(y+A) \varphi \neq y+A$, then $(x+y+A) \varphi \neq x+y+A$, so we have $(x+y+A) \varphi=(x+y)^{*}+A=x^{*}+y^{*}+A$. Using that φ is a homomorphism gives $(x+y+A) \varphi=x+y^{*}+A$. Thus $x+A=x^{*}+A$. Consequently, for all $x \in R$ we may write $(x+A) \varphi=x^{*}+A$. It follows that $\left(x^{*} y^{*}+A\right) \varphi$ can be written as $y x+A$ and also as $x y+A$, and so, R / A is commutative. Under the hypothesis on $Z(R / A)$ it is a domain.

With regard to Theorem 4, we note that $Z(R / A)$ has no zero divisors in R / A if A is a prime ideal. Also the possibility that R is commutative and $\varphi=*$ always exists. We turn now to the situation when R / A is 2 -torsion-free.

Theorem 5. Suppose R satisfies (C) and A is a semi-prime ideal of R with R / A 2-torsion-free. If φ is an automorphism of R / A with $(s+A)_{\varphi}=s+A$ for all $s \in S$ then for any $r \in R$
(i) $(r+A) \varphi=(r+z)+A$ for $z \notin A, z+A \in Z(R / A)$,
(ii) $(z+A) \varphi=-z+A$,
(iii) $\varphi^{2}=I_{R / A}$,
(iv) $\{z+A \mid z$ is as in (i) $\}$ generates an ideal which lies in $Z(R / A)$.

Proof. (i) is just Theorem 2, and (iii) follows immediately from (i) and (ii). Thus it suffices to prove (ii) and (iv). Using Theorem 2, for any $r \in R$ we may write $(r+A) \varphi=r+z_{1}+A,\left(z_{1}+A\right) \varphi=z_{1}+z_{2}+A$, and generally $\left(z_{i}+A\right) \varphi=z_{i}+z_{i+1}+A$ where $z_{\imath}+A \in Z(R / A)$ and where we may assume $z_{1} \notin A$ if $\varphi \neq I_{R / A}$.

As in Theorem 3, if $\left(r^{*}+A\right) \varphi=r^{*}+t+A$ for $t+A \in Z(R / A)$, then $r+r^{*} \in S$ implies that $z_{1}+t \in A$. Using $r r^{*} \in S$ yields

$$
\begin{aligned}
\left(r r^{*}+A\right) & =\left(r r^{*}+A\right) \varphi=\left(r+z_{1}\right)\left(r^{*}-z_{1}\right)+A \\
& =r r^{*}-z_{1}{ }^{2}+z_{1}\left(r^{*}-r\right)+A
\end{aligned}
$$

and so

$$
\begin{equation*}
z_{1}^{2}+A=z_{1}\left(r^{*}-r\right)+A . \tag{5}
\end{equation*}
$$

Also, as in Theorem 3, since $z_{1} r+r^{*} z_{1}{ }^{*} \in S$,

$$
\begin{aligned}
z_{1} r+r^{*} z_{1}{ }^{*}+A & =\left(z_{1} r+r^{*} z_{1}{ }^{*}+A\right) \varphi \\
& =\left(z_{1}+z_{2}\right)\left(r+z_{1}\right)+\left(r^{*}-z_{1}\right)\left(z_{1}^{*}-z_{2}\right)+A
\end{aligned}
$$

or

$$
\begin{equation*}
z_{2}\left(r^{*}-r\right)+A=z_{1}^{2}+2 z_{1} z_{2}-z_{1} z_{1}^{*}+A \tag{6}
\end{equation*}
$$

Applying φ to (5) gives

$$
\left(z_{1}+z_{2}\right)^{2}+A=\left(z_{1}+z_{2}\right)\left(r^{*}-r-2 z_{1}\right)+A
$$

Expanding these expressions and using (5) and (6) results in the relation

$$
z_{1}^{2}+2 z_{1} z_{2}+z_{2}^{2}+z_{1} z_{1}^{*} \in A
$$

or equivalently.

$$
\begin{equation*}
-z_{1} z_{1}^{*}+A=\left(z_{1}+z_{2}\right)^{2}+A \tag{7}
\end{equation*}
$$

Thus $\left(z_{1}+z_{2}\right)^{2}+A$ is fixed by φ. If we begin with any z_{i} instead of r we would obtain that $\left(z_{i}+z_{i+1}\right)^{2}+A$ is fixed by φ. That is,
(8) $\quad\left(\left(z_{i}+z_{i+1}\right)^{2}+A\right) \varphi=\left(z_{i}+z_{i+1}\right)^{2}+A$.

Using this expression and the definition of z_{i} we have

$$
\begin{aligned}
\left(\left(z_{i}+A\right) \varphi\right)^{2} & =\left(\left(z_{i}+A\right) \varphi\right)^{2} \varphi \\
& =\left(\left(z_{i}+A\right) \varphi^{2}\right)^{2} \\
& =\left(\left(z_{i}+z_{i+1}+A\right) \varphi\right)^{2} \\
& =\left(\left(z_{i}+A\right) \varphi+\left(z_{i+1}+A\right) \varphi\right)^{2} \\
& =\left(\left(z_{i}+A\right) \varphi\right)^{2}+\left(2 z_{i} z_{i+1}+A\right) \varphi+\left(\left(z_{i+1}+A\right) \varphi\right)^{2} .
\end{aligned}
$$

Consequently,

$$
\left(\left(z_{i+1}+A\right)^{2}+\left(2 z_{i} z_{i+1}+A\right)\right) \varphi \in A
$$

and so, since φ is an automorphism of R / A,
(9) $z_{i+1}^{2}+2 z_{i} z_{i+1} \in A$.

Since by (8), $\left(z_{i}{ }^{2}+A\right) \varphi=\left(z_{i}+z_{i+1}\right)^{2}+A$ is fixed by φ, we may conclude using (9) that $\left(2 z_{i} z_{i+1}+A\right) \varphi$ is also fixed by φ. Thus

$$
\begin{aligned}
& \left(2 z_{i} z_{i+1}+A\right) \varphi^{2}=\left(2 z_{i} z_{i+1}+A\right) \varphi \text { and so } \\
& \left(z_{i} z_{i+1}+A\right) \varphi=z_{i} z_{i+1}+A
\end{aligned}
$$

using the fact that φ is an automorphism and that R / A is 2 -torsion free. In particular,

$$
z_{1} z_{2}+A=\left(z_{1} z_{2}+A\right) \varphi=\left(z_{1}+z_{2}\right)\left(z_{2}+z_{3}\right)+A
$$

or

$$
\begin{equation*}
z_{2}^{2}+z_{3}\left(z_{1}+z_{2}\right) \in A . \tag{10}
\end{equation*}
$$

From (10) we have that $x z_{3} \in A$ implies $x z_{2}{ }^{2} \in A$. Since the annihilator of any power of a central element in a semi-prime ring is the annihilator of the element, $x z_{2} \in A$. Applying this to (9) we have $\left(z_{3}+2 z_{2}\right) z_{3} \in A$, and so $\left(z_{3}+2 z_{2}\right) z_{2} \in A$. Together these yield $\left(z_{3}+2 z_{2}\right)^{2} \in A$. Semi-prime rings cannot have central nilpotent elements, so $z_{3}+2 z_{2} \in A$. Using the definition of $z_{\mathfrak{i}}$ gives

$$
\left(z_{2}+A\right) \varphi=z_{2}+z_{3}+A=-z_{2}+A .
$$

It follows that

$$
(r+A) \varphi^{2}=r+2 z_{1}+z_{2}+A \text { and }\left(\left(2 z_{1}+z_{2}\right)+A\right) \varphi=2 z_{1}+z_{2}+A
$$

Now φ^{2} satisfies the same hypothesis as φ with respect to the image of S so using (5) with φ^{2} replacing φ and $y=2 z_{1}+z_{2}$ replacing z_{1} gives

$$
y^{2}+A=y\left(r^{*}-r\right)+A .
$$

Apply φ^{2} to both sides remembering that $y+A$ is fixed and the result is

$$
y^{2}+A=y\left(r^{*}-r-2 y\right)+A, \quad \text { or } y^{2} \in A .
$$

Again, since R / A has no central nilpotent elements, $y=2 z_{1}+z_{2} \in A$. Thus $\left(z_{1}+A\right) \varphi=-z_{1}+A$ proving (ii).

To prove (iv), let r and $z=z_{1}$ be as above and for $x \in R$ let

$$
(x+A)_{\varphi}=(x+t)+A
$$

for $t+A \in Z(R / A)$. Since $x+x^{*} \in S$,

$$
\left(r\left(x+x^{*}\right)+A\right) \varphi=r\left(x+x^{*}\right)+z\left(x+x^{*}\right)+A
$$

so $z\left(x+x^{*}\right) \in Z(R / A)$. Also

$$
\begin{aligned}
\left(z\left(x-x^{*}\right)+A\right) \varphi & =-z\left(x-x^{*}+2 t\right)+A \\
& =z\left(x-x^{*}\right)-2 z\left(x-x^{*}\right)-2 z t+A,
\end{aligned}
$$

and so, $2 z\left(x-x^{*}\right)+2 z t+A \in Z(R / A)$. As $z t+A \in Z(R / A)$,

$$
2 z\left(x-x^{*}\right) \in Z(R / A) .
$$

Hence $4 x z=2 z\left(x+x^{*}\right)+2 z\left(x-x^{*}\right) \in Z(R / A)$. Consequently $x z \in Z(R / A)$ since R / A is 2 -torsion-free, establishing the theorem.

Note that if R / A is not commutative and has no ideals in its center then φ must be the identity. In particular, this holds if R / A is prime. Just as for the $2 R=0$ case, if $A=0$ and R is commutative it is always possible that φ is *.

For the special case when $A=0$, let us record some conditions which force $\operatorname{Aut}(R / S)=I_{R}$.

Theorem 6. Let R be a semi-prime, 2 -torsion-free ring satisfying (C). Then unless R is commutative, $\operatorname{Aut}(R / S)=I_{R}$, and so automorphisms of R are uniquely determined by their effect on S, if any of the following hold:
(1) Z contains no divisors of zero (in R);
(2) $Z \subset S$;
(3) \bar{S} is a non-commutative prime ring.

Proof. If (1) holds, the result follows exactly as in Theorem 4. If (2) holds then by (ii) of Theorem 5, $\varphi=I_{R}$. Finally, if (3) holds and $(r) \varphi=r+z$, as in Theorem 5, then $z^{*}=-z$. We know $(z) \varphi=z-2 z$, so $z^{*} \varphi=z^{*}+2 z$, from the proof of Theorem 5. Hence $z z^{*}=\left(z z^{*}\right) \varphi=(-z)\left(z^{*}+2 z\right)$, and so $z\left(z+z^{*}\right)=0$.

Applying * gives $z^{*}\left(z+z^{*}\right)=0$, and combining yields $\left(z+z^{*}\right)^{2}=0$, so $z+z^{*}=0$ since R is semi-prime. Consequently, $z^{2} \in S$. If $z \neq 0$ then by (iv) of Theorem 5 the ideal generated by z^{2} is in Z and intersects \bar{S} nontrivially. But \bar{S} prime would force \bar{S} to be commutative contrary to assumption. Hence $z=0$ and $\varphi=I_{R}$.
2. In this section we construct an example to show that the situation described in Theorem 5 can occur without $\varphi=I$. Let F be any field with char $F \neq 2, F[z]$ the polynomial ring over F in one indeterminate, and $F[z]\{x, y\}$ the free algebra with identity over $F[z]$ in indeterminates x and y. Consider the ideal of $F[z]\{x, y\}$ generated by $z(x y-y x)$ and $z(2 x+z)$, and let B be the quotient. Define ${ }^{*}$ on B by setting $z^{*}=-z, x^{*}=-x$, and $y^{*}=y$. Define φ via $(z)_{\varphi}=-z,(x)_{\varphi}=x+z$, and $(y) \varphi=y$. It is clear that φ is an automorphism of B of period 2 . Note that $z(x y-y x)=0$ implies that the ideal generated by z is in the center of B, so φ has the form indicated in Theorem 5 . It remains to show that B is semi-prime, satisfies condition (C), and that $\varphi \in \operatorname{Aut}(R / S)$.

First, since x and y commute in the presence of z, any monomial in x and y with coefficient involving z^{k} has the form $z^{k} x^{i} y^{j}$. Since $2 x z=-z^{2}, 2^{i} z x^{i}= \pm z^{i+1}$. Consequently, if $r \in B$, for a suitable power of 2 we may write

$$
2^{m} r=p_{0}(x, y)+\sum_{i=1}^{n} z^{i} p_{i}(y)
$$

with p_{j} "polynomials" with coefficients in F. From this form for the elements of B, it follows that B is semi-prime.

To show that condition (C) is satisfied it will be helpful to denote $a b-b a$ by $[a, b]$.

Theorem 7. If P is a prime ideal of B such that the images of S commute in B / P, then B / P is commutative.

Proof. Since $z[x, y]=0$ in B and $z \in Z(B)$, either $z \in P$ or $[x, y] \in P$. If $[x, y] \in P$ then R / P is commutative. We may assume, then, that $z \in P$. We claim that $[y+P,[r+P, y+P]]=0$ for all $r \in B$. If so, then by the sublemma in [2, p. 5], $y+P$ is in $Z(R / P)$, so R / P is commutative. It suffices to take r to be a monomial in x and y. The relation certainly holds for r of the form x^{2} and $x y^{i} x$ since these are in S, and for x since $[x, y] \in S$. If $r=t y$ then $[y,[t y, y]]=[y,[t, y]] y \in P$ by induction on the degree of r. Similarly, if $r=t x^{i}$ for $i \geqq 2$, since $\left[x^{2}, y\right] \in P$. Lastly take $r=t x y^{i} x$. Again

$$
\left[y,\left[t x y^{i} x, y\right]\right]=[y,[t, y]] x y^{i} x \in P
$$

Thus $y+P \in Z(R / P)$ and R / P is commutative.
Theorem 8. $\varphi \in \operatorname{Aut}(B / S)$.
Proof. For $r \in B$ write $2^{m} r=p_{0}(x, y)+\sum_{i=1}^{n} z^{i} p_{i}(y)$. Clearly, $r \in S$ if and
only if $2^{m} r \in S$. Also

$$
\sum_{\text {even }} z^{i} p_{i}(y) \in S
$$

and fixed by φ. If $r \in S$ then

$$
\sum_{\text {odd }} z^{i} p_{i}(y)=0
$$

so it is only necessary to consider $r=p_{0}(x, y)$.
Note $\left(x^{2}\right) \varphi=(x+z)^{2}=x^{2}+2 x z+z^{2}=x^{2}$, and by induction $\left(x^{2 n}\right) \varphi=x^{2 n}$.
For m a monomial in $p_{0}(x, y)$, write $m=m_{0} x m_{1} x \cdots x m_{k}$ where each m_{i} is a monomial in y and x^{2}. Since $p_{0}(x, y) \in S, m+m^{*}$ is a "part" of $p_{0}(x, y)$ where $m^{*}=(-1)^{k} m_{k}{ }^{*} x \cdots x m_{0}{ }^{*}$. (If $m=m^{*}$ use m in place of $m+m^{*}$.) Now

$$
\begin{aligned}
& \left(m+m^{*}\right) \varphi=m_{0}(x+z) \cdots(x+z) m_{k} \\
& +(-1)^{k} m_{k}^{*}(x+z) \cdots(x+z) m_{0}^{*} .
\end{aligned}
$$

Expanding gives

$$
\begin{aligned}
& \left(m+m^{*}\right) \varphi= \\
& m+m^{*}+\sum_{i=1}^{k}\binom{k}{i} z^{i} x^{k-i}\left(m_{0} \ldots m_{k}+(-1)^{k} m_{k}^{*} \ldots m_{0}^{*}\right)
\end{aligned}
$$

using the fact that x and y commute in the presence of z. Thus we may also write

$$
z\left(m_{0} \cdots m_{k}\right)=z\left(m_{k}^{*} \cdots m_{0}^{*}\right)
$$

and so

$$
\left(m+m^{*}\right) \varphi=m+m^{*}+2 \sum_{i=1}^{k}\binom{k}{i} z^{i} x^{k-i} m_{0} \ldots m_{k}
$$

where we may assume that k is even. But

$$
\sum_{i=1}^{k}\binom{k}{i} z^{i} x^{k-i}=\left(x^{k}\right) \varphi-x^{k}=0
$$

for k even. Thus φ fixes $p_{0}(x, y)$ so $\varphi \in \operatorname{Aut}(B / S)$ as claimed.
3. We intend next to investigate $\operatorname{Aut}(R / S)$ when R does not satisfy condition (C). As Example 1 and Example 2 illustrate, when (C) does not hold one might expect certain inner automorphism to arise. In a sense, all addition problems resulting from (C) not holding do come from inner automorphisms of certain quotients of R. To apply our previous results to quotients of R we must ensure that these quotients are either 2 -torsion, or 2 -torsion-free. If $2 R=0$, the same holds for all quotients of R. If R is 2 -torsion-free we can consider $R_{1}=R \otimes_{J} J_{(2)}$, for J the ring of integers and $J_{(2)}$ the localization at the powers of 2 . The
involution and automorphisms of R naturally go over to R_{1}, and since we will be considering embeddings of R, there is no loss of generality in assuming that R is an algebra over $J_{(2)}$.

Theorem 9. Let P be a prime ideal of R with $P^{*}=P$ and let $\varphi \in \operatorname{Aut}(R / S)$. Then $(P) \varphi=P$.

Proof. For $x \in P$, both $x+x^{*} \in P$ and $x^{*} x \in P$. Since $x^{2}=\left(x+x^{*}\right) x-x^{*} x$, $\left(x^{2}\right) \varphi=\left(x+x^{*}\right)(x \varphi)-x^{*} x \in P$. Hence $(x \varphi)^{2} \in P$ and $(P) \varphi+P / P$ is a nil ideal of index 2 in R / P. By Levitzki's Theorem [2, Lemma 1.1] R / P has a nilpotent ideal, if this nil ideal is not zero. Since R / P is prime we must have $(P) \varphi \subset P$. The argument works for φ^{-1}, so $(P) \varphi=P$.

Let R be semi prime but not prime and let A be the intersection of all prime ideals $P \subset R$ with $P^{*}=P, R / P$ not commutative, and $T \subset P$. Let B be the intersection of all the other prime ideals of R. If R is a prime ring and $T=0$ take $A=0$ and $B=R$. If R is prime and $T \neq 0$ take $B=0$ and $A=R$. Since $A \cap B=0$ in all cases, R is a subdirect sum of R / A and R / B, semiprime rings. Furthermore, by Theorem $9, \varphi$ induces an automorphism on each of R / A and R / B. Now since condition (C) is equivalent to $P=P^{*}$ and $T \subset P$ implies that R / P is commutative, R / B vacuously satisfies (C). Note that if R is prime and $T \neq 0$ then any element commuting with T automatically lies in $Z(R)$, so the conclusion of Theorem 1, and so, Theorem 2 holds for elements of $\operatorname{Aut}(R / S)$. Thus in either case we may apply Theorem 3 or Theorem 5 to R / B (assuming either $2 R=0$ or R is a $J_{(2)}$ algebra) to conclude that automorphisms of R / B fixing the image of S have order 2 .

Let $\left\{P_{i}\right\}$ be the primes whose intersection is A. Then R / A is a subdirect sum of $R_{i}=R / P_{i}$, and by Theorem $9, \varphi$ induces an automorphism φ_{i} on each of these rings. Also, since $P_{i}{ }^{*}=P_{i}$, each R_{i} has an involution given by $\left(r+P_{i}\right)^{*}=r^{*}+P_{i}$. In each R_{i} the elements $\left(x+x^{*}\right)+P_{i}$ commute, since $T \subset P_{i}$, so by a Theorem of Amitsur [1], R_{i} satisfies a polynomial identity of degree 4 . Thus the quotient ring of $R_{i}, Q\left(R_{i}\right)$, is a simple ring four dimensional over its center. Now φ_{i} naturally induces an automorphism of $Q\left(R_{i}\right)$ which must be inner by the Skolem-Noether Theorem. Consequently, the action of φ on R / A is the restriction to R / A of an inner automorphism of $Q\left(\oplus R_{i}\right)$, and we have proved the following theorem.

Theorem 10. Let R be semi-prime with either $2 R=0$ or R a $J_{(2)}$ algebra and let $\varphi \in \operatorname{Aut}(R / S)$. There exist rings (with involution) R_{1} and R_{2} such that
(1) R_{1} is the direct product of 4-dimensional simple algebras;
(2) R_{2} is a semi-prime homomorphic image of R;
(3) R is a subring of $R_{1} \oplus R_{2}$;
(4) φ is the restriction of $\varphi_{1}+\varphi_{2}$ where φ_{1} is an inner automorphism on R_{1} ana φ_{2} is given as in Theorem 3 or Theorem 5.
4. Finally, we consider homomorphisms of R where, again, we assume that R satisfies condition (C). Our first result will show that, once more, the center of
the image plays a key role. Note that no assumption about an involution is placed on the image.

Theorem 11. Let R satisfy condition (C) and suppose that α and β are homomorphisms of R onto R^{\prime} a semi-prime ring, such that $(s) \alpha=(s) \beta$ for all $s \in S$. Then for all $r \in R,(r) \alpha-(r) \beta \in Z\left(R^{\prime}\right)$, and $(\operatorname{Ker} \alpha) \beta$ and $(\operatorname{Ker} \beta) \alpha$ are central ideals in R^{\prime}.

Proof. The statements about the kernels of α and β follow trivially from $(r) \alpha-(r) \beta \in Z\left(R^{\prime}\right)$. To show this holds, consider $t \in T$ and $r \in R$. Then $\operatorname{tr} \in T \subset \bar{S}$, so $(t r) \alpha=(t r) \beta$ and $(t) \alpha((r) \alpha-(r) \beta)=0$. Since α is onto, there is $y \in R$ so that $(r) \alpha-(r) \beta=(y) \alpha$. Therefore we may write $(t y) \alpha=0$. Similarly $(y t) \alpha=0$, so $(t y-y t) \alpha=0$. The kernel of α is a semi-prime ideal of R, so by Theorem $1, y+\operatorname{Ker} \alpha \in Z(R / \operatorname{Ker} \alpha)$. But this yields

$$
(y) \alpha=(r) \alpha-(r) \beta \in Z\left(R^{\prime}\right)
$$

which proves the theorem.
The following example shows how two homomorphisms can be quite different in the presence of central ideals.

Example 3. Let W be any semi prime ring with involution and V any commutative ring. Let $R=W \oplus V \oplus V$ with $(w, a, b)^{*}=\left(w^{*}, b, a\right)$. Assume that V_{1} is a semi prime homomorphic image of V under the mapping φ. Let $R^{\prime}=W \oplus V_{1}$ and define R onto R^{\prime} by

$$
(w, a, b) \alpha=(w,(a) \varphi) \quad(w, a, b) \beta=(w,(b) \varphi)
$$

By insisting that R^{\prime} contain no central ideals, we can insure uniqueness.
Theorem 12. Let R satisfy (C) and suppose α and β are homomorphisms of R onto the semi-prime ring R, with α and β agreeing on S. If R^{\prime} has no nonzero central ideals, and if R^{\prime} is 2-torsion-free, then $\alpha=\beta$.

Proof. By Theorem 11, $\operatorname{Ker} \alpha=\operatorname{Ker} \beta=K$. Thus each of α and β induce a natural isomorphism from R / K to R^{\prime}. Let φ be the automorphism of R / K obtained by taking one of these composed with the inverse of the other. Clearly $(s+K) \varphi=s+K$ for all $s \in S$, so by Theorem $5, \varphi=I_{R / K}$ and $\alpha=\beta$.

References

1. S. A. Amitsur, Identities in Rings with involution, Israel J. Math. 1 (1969), 63-68.
2. I. N. Herstein, Topics in ring theory (University of Chicago Press, Chicago, 1969).

University of Southern California,
Los Angeles, California

