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Abstract. Understanding the nucleosynthetic origin of nitrogen and the evolution of the N/O
ratio in the interstellar medium is crucial for a comprehensive picture of galaxy chemical evo-
lution at high-redshift because most observational metallicity (O/H) estimates are implicitly
dependent on the N/O ratio. The observed N/O at high-redshift shows an overall constancy
with O/H, albeit with a large scatter. We show that these heretofore unexplained features
can be explained by the pre-supernova wind yields from rotating massive stars (M>∼ 10 M�,
v/vcrit >∼ 0.4). Our models naturally produce the observed N/O plateau, as well as the scatter
at low O/H. We find the scatter to arise from varying star formation efficiency. However, the
models that have supernovae dominated yields produce a poor fit to the observed N/O at low
O/H. This peculiar abundance pattern at low O/H suggests that dwarf galaxies are most likely
to be devoid of SNe yields and are primarily enriched by pre-supernova wind abundances.
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1. Introduction

The origin of nitrogen in the Universe and its cosmic evolution is a question at the
forefront of current astrophysical studies. Observationally, the origin of N and its evo-
lution play an important role in optical astronomers’ metallicity determinations, which
are heavily reliant on the N/O ratio. In fact, one of the best metallicity diagnostics is
based on the [NII]/[OII] ratio (Kewley & Dopita 2002). However, at high redshift the
OII doublet is often unobservable, and therefore the metallicity estimate is dependent on
either [NII]/Hα (Denicoló et al. 2002) or [NII]/[OIII] (Pettini & Pagel 2004) ratio, and
in the worst-case scenario when only the red lines of Hα, [NII]λ6584 and [SII]λλ6717,
6731 doublets are observed, the O/H estimate needs to depend on either [NII]/Hα or
[NII]/[SII], or a carefully chosen combination of the two (Dopita et al. 2016).

Our understanding of the N/O ratio is poor because of the complex chemical origin
of N. Unlike oxygen, which has a primary origin, N has both primary and secondary
origin. An element is defined as a primary element when it is produced entirely via the
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nucleosynthesis process inside a star without any initial seeds from elements that the star
inherited from the interstellar medium (ISM) at birth. By this definition, O is a primary
element because it is produced in stars undergoing triple-α reactions that does not rely
on pre-existing C, N, or O that was imbibed by the star at birth. On the other hand,
N can be produced during the core H burning in massive stars via CNO nucleosynthesis
where the C used is inherited from the ISM, and hence this channel of N production is
secondary. However, during core He burning in massive stars, shell H burning is catalysed
by C produced inside the star itself, and hence this N production is primary. We discuss
these two N production scenarios in detail in section 2.

2. Chemical origin of nitrogen and the associated dredge-up
mechanisms

A massive star has a large central convective zone where chemical elements are quasi-
homogeneously mixed, its immediate outer layer is a radiative zone, and the outermost
one is a thin convective zone. In rotating stars, various rotational instability induced
diffusions of chemical elements dredge up the heavy elements from the core to the surface,
as has been proposed by several authors in the past (Heger et al. 2000; Meynet & Maeder
2000; Maeder & Meynet 2005; Meynet & Maeder 2005). These rotational mixings behave
as a bridge between the inner and the outer convective zones that helps in transporting
the heavy elements from the core to the surface crossing the radiative barrier. However, in
non-rotating stars, dredging up heavy metals from the inner convective zone to the outer
convective layer crossing the radiative barrier becomes challenging. Roy et al. (2020)
proposes that the mechanism of the exposure of “fossil”-convective cores, where the star
exposes regions that are no longer convective but were part of the convective core at an
early stage in the evolution for a metal-rich ([Fe/H]�−1.0) massive (� 80 M�) star, can
dredge up the heavy elements from the core to the surface. This happens because the star
shrinks as it loses mass by main-sequence winds. They also find that even the modest
amount of mass loss in these stars can expose the “fossil”-convective cores, thereby
enhancing the surface abundances of heavy elements.

Given the various dredge-up mechanisms, C produced in the He burning core, under-
going the triple-α process, gets dredged up to the surface and used as a catalyst to N
production in the H burning shell. In this method, the H burning shell uses the C that
is self-produced by the star for the CNO cycle to convert the C to N, and therefore
this N production channel has a primary origin. Whereas, when the core is H burning
undergoing CNO process, the C that is converted to N comes from the ISM at birth, and
therefore that N has a secondary origin. As O has a primary origin, if N has a primary
origin too, then we will expect N/O ratio to be constant with O/H. However, if N has a
secondary origin, then we will see N/O to increase linearly with O/H.

3. Observations of N enrichment at high-redshift

Given the challenges and complexities of accurate modelling of N production, many
authors aim to probe the origin of N by observing the N/O trend with O/H in metal-poor
systems. There are three major approaches frequently undertaken for these observations.
Firstly, one can observe metal-poor Galactic halo stars as they carry the footprints of
early N production in our Galaxy. Secondly, one can use the HII regions of the Milky-
Way and nearby galaxies at various global metallicities for the studies of N production
as these systems behave as proxies of galaxies at different redshifts. Thirdly, one can
observe high-redshift galaxies directly to study in situ N and O production.

Israelian et al. (2004) follows the first approach, and they survey 31 unevolved halo
stars within the metallicity range of −3.1� [Fe/H]� 0. They find constancy of [N/O]
below [O/H]�−1.8 hinting towards the primary origin of N, and a turnover beyond that
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metallicity with [N/O] ∝ [O/H] suggesting the secondary origin of N at high metallicity. In
a similar spirit, Spite et al. (2005) also analyse 35 stars with −4� [Fe/H]�−2. However,
contrary to Israelian et al. (2004)’s observations, they find a broad scatter in [N/O] with
no systemic trend in [N/O] with [O/H] at these low metallicities. This suggests a probable
more complex origin of N rather than the simple primary origin of N as proposed before.

Observations of HII regions in our Galaxy and local dwarfs also suggest a similar
complex origin for N. Izotov et al. (1999) measure N and O yields by observing 50 blue
compact galaxies with metallicity Z�/50< Z< Z�/7, and find that N/O is constant with
O/H at low metallicity. However, contrary to these observations, several other authors
find a large scatter of ∼ 1 dex in N/O for a given O/H at low metallicity (Kobulnicky &
Skillman 1996; Liang et al. 2006; Pérez-Montero & Dı́az 2005; Pérez-Montero & Contini
2009) suggesting no systematic trend in N/O, similar to the observations of metal-poor
halo stars.

Combining both these observations from stars and gas in the HII regions, we con-
clude that there is an overall plateau in N/O (log(N/O) ∼−1.7) at low metallicity
(12 + log(O/H)� 7.5), albeit with a large scatter (∼ 1 dex).

4. Stellar models and adundance calculation

Having discussed various observational approaches to measure N and O abundances
at low metallicities, we discuss our theoretical models to estimate yields from winds and
supernovae (SNe) in this section. For stellar models, we use modified MESA Isochrone
Stellar Tracks II (MIST-II, Dotter et al., in prep.) that are appropriate for the evolution
of massive stars. In this modified version, we include a realistic treatment for diffusion
and transport of chemical elements driven by various rotational instabilities and also
more accurate implementation of α enhancement to emulate Galactic concordance abun-
dances. For details, we refer readers to Roy et al. (2020, 2021); Grasha et al. (2021). In
this proceeding, we show results of our stellar models with masses 10 M� �M� 150 M�
for our fiducial rotation rate (see Roy et al. (2021)) of v/vcrit = 0.4 for three metal-
licities, [Fe/H] = −2.0, −3.0, and −4.0. For SN models, we adopt the yields from
Limongi & Chieffi (2018).

For the yield estimate, we consider a simple stellar population with the initial mass
function (IMF) dn/dm at the time of formation t= 0. We use the Salpeter IMF with the
upper mass limit of 150 M�. The total mass of an element X per unit stellar mass (at
formation) that is returned to the ISM gas phase at time t is

ψret(X, t) =ψw(X, t) +ψSN(X, t) = (4.1)

1

〈m〉
[∫ ∞

0

Mw(X,m, t)
dn

dm
dm+

∫ ∞

md

MSN(X,m)
dn

dm
dm

]
,

where ψw, ψSN are wind and SN contribution respectively,

〈m〉 =

∫
m
dn

dm
dm (4.2)

is the mean stellar mass, md is the “death mass” at t, and,

Mw(X,m, t) =

∫ t

0

Ṁw(X,m, t′) dt′ (4.3)

is the wind ejected cumulative mass of an element X by a star of initial mass m up to
age t.

Now we assume a gas reservoir of mass Mg that converts ε∗ of its mass instantaneously
to stars. If the mass fraction of an element X prior to this star-formation event is f0(X),
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then at a time t, after the star formation, the mass of that element in the gas phase is

M(X, t) = [(1 − ε∗)f0(X) + ε∗ψret(X, t)]Mg. (4.4)

We can therefore write the mass ratio of two elements at time t as,

M(X, t)

M(Y, t)
=

(1 − ε∗)f0(X) + ε∗ψret(X, t)

(1 − ε∗)f0(Y ) + ε∗ψret(Y, t)
. (4.5)

We also consider that subsequent to the star formation, the galaxy accretes an additional
primordial pristine gas of mass Mp with the fractional abundance of element X as fp(X).
In this scenario, the mass ratio of two elements becomes

M(X, t)

M(Y, t)
=

(1 − ε∗)f0(X) + ε∗ψret(X, t) + εp(t)fp(X)

(1 − ε∗)f0(Y ) + ε∗ψret(Y, t) + εp(t)fp(Y )
, (4.6)

where εp(t) =Mp(t)/Mg is the fractional mass of the added primordial gas. This
abundance ratio in terms of number fractions can be rewritten as:

N(X, t)

N(Y, t)
=
M(X, t)

M(Y, t)

mY

mX
, (4.7)

where mX is the atomic mass of element X. We denote N(X)/N(Y ) as X/Y .

5. N/O and O/H distributions

Having discussed our model yield calculation in section 4, we now discuss the distri-
bution of N/O versus O/H to predict the observed N/O ratio trend at low metallicity.
We show our predicted N/O–O/H distribution for different parameter combinations and
for our fiducial rotation rate of v/vcrit = 0.4 (for justification, see Roy et al. (2021)) for
three metallicities, [Fe/H] = −2, −3, and −4.0 in Figure 1. We find that when galaxies
only retain the wind yields, we see a plateau in N/O with log(N/O) ∼−1.5 – − 2.0 with
a scatter of ∼ 1 dex at low metallicities. The scatter in N/O readily arises from the
variation in metallicities and star formation efficiencies. This prediction of the plateau
and scatter strikingly matches with the observed features as discussed in Section 3. This
result indicates that the metal-poor dwarf galaxies might have their metal abundances
solely from wind yields of massive stars, with high-velocity SNe ejecta escaping them
given their shallow potential wells. On the other hand, we also notice that galaxies that
can retain both wind and SNe ejecta have higher values of N/O with log(N/O) ∼−1. This
suggests that massive metal-rich galaxies are more suitable candidates that can retain
both these low and high-velocity ejecta, and, therefore might have high values of N/O.
Also, this high N/O ratio matches well with the observed N/O upturn at high O/H
(12 + log(O/H)>∼ 8.0). Thus, this observed upturn in N/O might partially be coming
from SNe contribution in metal-rich massive galaxies along with the onset of secondary
nitrogen production in AGB stars.

Our modelled yields depend on two major parameters ε∗ and εp, other than stellar
metallicity. The dependence on εp can be easily comprehended. Changing εp, the param-
eter that controls the amount of primordial gas added to the galaxy, does not vary
N/O ratio, it only changes the O/H ratio, and therefore slides points horizontally in
Figure 1. Thus, the more pristine primordial gas is accreted by the high-redshift galax-
ies, the metal-poor they become. Understanding the dependence of N/O versus O/H on
ε∗ is more subtle. As the star formation efficiency increases, the O/H ratio increases,
whereas the N/O ratio decreases. O/H increases because the more the star-formation
efficiency, the more the astrated material gets deposited into the ISM thereby enhanc-
ing the gas phase O abundance. However, to understand the decrease in the N/O ratio
with increasing ε∗, we will first have to understand the pure wind-driven case (ε∗ = 1)
without any contribution from the pre-existing ISM abundance. For this case, as the
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Figure 1. Adapted from Figure 8 of Roy et al. (2021): log(N/O) vs. log(O/H) from our models
(coloured data points) and observations (black data points). Top panel: Models of galaxies that
retain only the low-velocity pre-SN wind yields, Bottom panel: galaxies that retain both SNe
ejecta and pre-SN winds. Black filled points (representing stellar yields) show the observations
of several authors: Israelian et al. (2004) (I04, circles), Spite et al. (2005) (S05, pentagons),
Nieva & Przybilla (2012) (NP12, squares), and open circles represent the HII regions (IT99,
Izotov et al. (1999)). The orange dashed lines show the primary and secondary N production
channels as proposed by Dopita et al. (2016). The red star represents the solar value. The dashed
blue and brown boxes divide the N/O versus O/H phase space into two regimes based on our
theoretical predictions that metal-poor dwarfs (blue box) retain only wind ejecta, leading to a
low N/O ratio with large scatter characteristic of wind yields, while metal-rich massive galaxies
(brown box) retain both wind and SN ejecta, leading to a higher N/O ratio characteristic of
SNe. Coloured points represent theoretical predictions for different initial metallicity [Fe/H] and
star formation efficiency ε∗ as indicated by the figure legend. For each point, the horizontal
bar corresponds to the scenario where a galaxy accretes an additional fraction of primordial
(εp) hydrogen and helium followed by the star-formation event. Our assumed range of εp are
log εp = −0.5 − 0.5. Note that, we omit the [Fe/H] = −4 case for SN yields because our SN yield
tables only go down to [Fe/H] = −3 as adopted from Limongi & Chieffi (2018).

majority of massive stars enter the core He-burning phase, primary O is produced more
in amount in the triple-α process compared to the primary N production in the shell
H-burning. This causes the reduction in the N/O ratio. Having said that, as we decrease
ε∗, the less amount of stellar astrated yield is deposited into the ISM, and the more of
the pre-existing ISM gas abundance start playing a stronger role. We find that the ISM
N/O ratio prior to the star formation event is higher compared to the wind ejected N/O.
Therefore, as we decrease ε∗, the N/O ratio increases.

Combining these findings together, we conclude that we predict a plateau in N/O
at low O/H, albeit with a large scatter, and this prediction matches pretty well with
observations of metal-poor halo stars and local dwarfs. We also propose that this trend
in N/O at low O/H is a signature that metal-poor dwarf galaxies may retain only the
low-velocity wind yields, and the high-velocity SNe ejecta will most likely escape their
low gravitational potential wells. On the other hand, metal-rich massive galaxies are
likely to retain both wind and SNe ejecta, thereby having a significantly higher N/O
ratio, and therefore they might be major contributors to the upturn in N/O at high O/H
(12 + log(O/H)>∼ 8.0) along with the secondary N from AGB stars.
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6. Conclusions

We conclude this paper with three salient findings:
• Winds from metal-poor ([Fe/H]�−2.0) massive (� 10 M�) stars produce substan-

tial nitrogen with the N/O ratio of log(N/O) ∼−2– − 1.5, independent of total oxygen
metallicity. Dwarf galaxies are more likely to retain these low-velocity wind yields, and
therefore this predicted N/O ratio is commonly observed in local dwarfs, along with
metal-poor halo stars.
• In addition to the mean N/O ratio produced in winds providing a good match to

the mean observed values, we also notice the scatter in N/O, similar to observations. In
our modelling, this scatter arises from varying metallicity and star formation efficiency.
• SNe produce a higher N/O ratio with log(N/O) ∼−1 compared to winds. Also,

the high-velocity SNe ejecta are more likely to be retained by more massive, metal-rich
galaxies. Therefore, SNe ejecta might play an important role in the upturn in N/O ratio
at higher O/H (12 + log(O/H)>∼ 8) along with the secondary N produced in AGB stars.
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